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Large-scale copy number variants (CNVs) in the human provide the raw material for delineating population differences, as 
natural selection may have affected at least some of the CNVs thus far discovered. Although the examination of relatively 
large numbers of specific ethnic groups has recently started in regard to inter-ethnic group differences in CNVs, identifying 
and understanding particular instances of natural selection have not been performed. The traditional FST measure, obtained 
from differences in allele frequencies between populations, has been used to identify CNVs loci subject to geographically 
varying selection. Here, we review advances and the application of multinomial-Dirichlet likelihood methods of inference for 
identifying genome regions that have been subject to natural selection with the FST estimates. The contents of presentation 
are not new; however, this review clarifies how the application of the methods to CNV data, which remains largely 
unexplored, is possible. A hierarchical Bayesian method, which is implemented via Markov Chain Monte Carlo, estimates 
locus-specific FST and can identify outlying CNVs loci with large values of FST. By applying this Bayesian method to the publicly 
available CNV data, we identified the CNV loci that show signals of natural selection, which may elucidate the genetic basis 
of human disease and diversity. 
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Introduction

It has become known that human genomes differ more as 
a consequence of structural variation than of single- 
base-pair differences [1-4]. Structural genomic variants, 
mainly in the form of copy number variants (CNVs), have 
recently been rediscovered as contributors to evolution and 
as pathoetiologic elements for complex human diseases [5, 
6]. However, so far, there are not many CNV-based genome- 
wide association studies or population genetics studies 
compared with the single-nucleotide polymorphism (SNP)- 
based counterparts. One notable CNV-based population 
genetics study was done by Jakobsson et al. [7]. They applied 
SNP, haplotype, and CNV information to reveal the struc-
tures of 29 world-wide populations. Even though their 
CNVs were not as effective as SNPs or haplotypes in 

discriminating those populations, the authors showed the 
potential to apply this information to human genetic studies. 
Other examples of CNV-based disease susceptibility studies 
are systemic autoimmunity diseases [8, 9], psoriasis [10], 
and human immunodeficiency virus (HIV) infection and 
progression to acquired immune deficiency syndrome 
(AIDS) [11]. Disease could affect the patterns of CNV 
diversity via natural selection, and higher copy numbers of 
the immunoregulatory and inflammatory cytokine gene 
CCL3L1, for example, are associated with lower risks of HIV 
infection and the progression to AIDS [11]; furthermore, in 
a genome-wide study, the level of population differentiation 
at this locus was found to be extraordinary compared to that 
of other CNVs, suggesting that natural selection may have 
influenced CCL3L1 copy number in humans [3]. 

The traditional FST measure is useful for identifying 
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regions of the genome affected by natural selection. In a 
recently published review paper, Holsinger and Weir define 
Wright’s F-statistics (FST in particular) [12] and describe 
methods-of-moment estimates and how FST estimates 
should be interpreted [13]. Although the authors also 
mention the maximum likelihood Bayesian estimates of FST, 
their description is very limited in identifying genomic 
regions under selection and do not present an application to 
the datasets. They simply compared locus-specific estimates 
of FST with its genome-wide distribution, and therefore, 
probabilities are not attached to those with a higher FST. 

Here, we outline the steps that constitute testing for 
outlier loci in population datasets by the maximum 
likelihood Bayesian method, using BayeScan computer 
software [14] (Note that the terms of locus and CNV are 
used interchangeably in this paper). The logic for 
determining outlier loci is simple. If natural selection favors 
one allele over others at a particular locus in some 
populations, the FST at that locus will be larger than at loci in 
which among-population differences are purely a result of 
genetic drift. Therefore, genome scans that compare single- 
locus estimates of FST with the genome-wide background 
might identify regions of the genome that have been 
subjected to diversifying selection [15]. 

We will demonstrate FST estimation by maximum like-
lihood Bayesian method with the publicly available high- 
resolution CNV dataset generated by Conrad et al. [4]. We 
will also show that this method identifies several genomic 
regions showing signals of natural selection. Even though 
we focus mainly on the CNV data here, the detailed steps of 
analysis are analogous for other types of molecular marker 
data, such as microsatellites, SNPs, and amplified frag-
ment-length polymorphisms.

Method-of-moment (or ANOVA) estimates 
of FST

F-statistics

Wright [12] introduced F-statistics (FST, FIT, and FIS) as a 
tool for describing the partitioning of genetic diversity 
within and among populations that are directly related to the 
rates of evolutionary processes, such as migration, mutation, 
and drift. Specifically, F-statistics can be defined in many 
different ways: in terms of variances of allele frequencies, 
correlations between random gametes, and probabilities 
that two gametes chosen have different alleles. Depending 
on the relativity to the subpopulation or to the total 
population, FST, FIT, and FIS are defined, where subscript IS 
refers to ‘individuals within subpopulations,’ ST to ‘sub-
populations within the total population,’ and IT to 
‘individuals within the total population.’ 

Following the work of Cockerham [16], F-statistics are 
defined in terms of the variance components - that is, the 
total variation in the genetic data is broken down into three 
components: (a) between subpopulations within the total 
population (we sometimes say ‘between populations’); (b) 
between individuals within subpopulations; and (c) between 
gametes within individuals. FST, FIT, and FIS are defined as the 
expectations under the model of a/(a + b + c), (a + b)/(a + 
b + c), and b/(b + c) and estimated by the corresponding 
sample values [17, 18]. Here, it is perhaps pertinent to 
mention that when Weir and Cockerham [18] presented 
these definitions, they assumed a model consisting of an 
ancestral population from which subpopulations have 
descended in isolation under the same evolutionary 
processes. Thus, it is meaningful to have a single measure of 
population structure; that is, a global FST, which is an average 
over subpopulations. However, in identifying candidate loci 
under natural selection, evidence for locus-specific selection 
is of interest, and thus the estimators of locus-specific FST 
will be described in the next section. 

Often, readers may be confused with several terms 
appearing in population genetics. Wright [12] interprets FST 

as a measure of the progress of the subpopulation towards 
the fixation of one allele of each locus in the absence of 
mutation and hence called a ‘fixation index.’ FST is also 
interpreted as a measure of shared ancestry with the 
subpopulations, relative to that in the population, and is 
thus called the ‘coancestry coefficient’ [19]. Therefore, if the 
value of FST is small, it means that the allele frequencies 
within each subpopulation are similar; if it is large, it means 
that the allele frequencies of subpopulations are different. 
On the other hand, FIS or FIT is defined as the correlation 
between two gametes that form a zygote relative to the 
subpopulation or population, and thus, FIS (or FIT) is called 
the ‘inbreeding coefficient’ [19]. 

Estimating FST by ANOVA methods

The estimators of F-statistics proposed by Weir [17] and 
Weir and Cockerham [18] are based on an analysis of 
variance (ANOVA) of allele frequencies, equivalently called 
the method-of-moments estimates. The weighted ANOVA 
estimates of FST, FIT, and FIS may be expressed in terms of the 
mean sum of squares for gametes (MSG), individuals (MSI), 
and populations (we sometimes say ‘between subpo-
pulations’) (MSP), where the mean squares are estimated by 
an ANOVA model. In estimating FST specifically for our 
analysis of CNV data, we need to consider unbalanced 
samples (i.e., populations of unequal size). However, as the 
formulas are messy, we present here those for balanced 
samples. Formulas for unbalanced samples can be found in 
Rousset (in Appendix A) [20]. 
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The definition of F-statistics used here is 

FIS = 

 , FST = 

 , and FIT = 



where Q values are probabilities of identity in state: Q1 

among the genes (gametes) within individuals, Q2 among 
genes in different individuals within populations, and Q3 
among the populations. The estimates  are expressed in 
terms of observed frequencies of identical pairs of genes in 
the sample, with the following relationships:

1－= MSG, 

 = (MSI－MSG)/2, 

and 

 = (MSP－MSI)/(2n),

where n is the sample size of each population. Then, the 
single locus estimator ST is given by 
ST = 


                                 (1)

which is found in Weir (1997: 178) [17]. nc will be defined 
below. If one needs to obtain the multilocus estimator of ST, 
it is usual to compute the estimator as a sum of locus-specific 
numerators over a sum of locus-specific denominators (see 
Weir [17] and Weir and Cockerham [18]). This is the case 
that map information for SNPs is obtained for each gene, and 
a weighted-average FST from all SNPs is estimated for each 
gene [18]. For a set of I loci, the multilocus ANOVA 
estimators are

 IS = 










 


ST = 










 


 IT = 










 


             (2) 

for nc = (S1－S2/S1)/(n－1), where S1 is the total sample size 
and S2 is the sum of squared sample sizes of populations 
[21]. For convenience, we denote the estimator ST by FST.

Rousset [21] explained that the multilocus estimators of 
Weir [17] and Weir and Cockerham [18] differ slightly, and 
these two also differ slightly from that proposed by Rousset 
[21], which assigns more weight to larger samples. In this 
paper, the GENEPOP software (version 3.4) (http:// 
wbiomed.curtin.edu.au/genepop/) of Rousset was used for 
the calculation of FST. In order to distinguish from those of 
the method-of-moments estimates of Weir [17] and Weir 
and Cockerham [18], we will call the estimates of GENEPOP 
ANOVA estimates. 

The estimated values of FST can be negative when levels of 
differentiation are close to zero and/or sample sizes are 
small, indicating no population differentiation at these loci 
[18]. One can assign a value of zero to negative FST estimates. 

Identifying CNVs under Selection Using a 
Bayesian Method
Identifying selection

Identifying candidate CNVs under natural selection using 
locus-specific estimates of FST is of great interest, in view of 
our increased knowledge of the relationships among human 
populations from genome-wide patterns of variation. The 
logic for identifying selection is straightforward. The pattern 
of genetic differentiation at a neutral locus is completely 
determined by the demographic history, migration rates 
among the populations, and the mutation rates at the loci. It 
is reasonable to assume that all autosomal loci have 
experienced the same demographic history and migration 
rates among the populations, and the observed population 
structure can be largely explained by random drift at neutral 
loci. However, as the individuals from different populations 
often vary genetically at a few key sites in their genome, loci 
showing unusually large amounts of differentiation may 
indicate regions of the genome that have been subject to 
positive selection, whereas loci showing unusually small 
amounts of differentiation may indicate regions of the 
genome that have been subject to stabilizing (balancing) 
selection [15, 22-24]. Thus, the outlier method makes it 
possible to detect divergences in some loci of the genome 
due to selection.

Bayesian method 

Balding and Nichols have proposed the use of population- 
and locus-specific estimates in the context of a mig-
ration-drift equilibrium model [24]. They modeled allele 
frequencies of biallelic markers using a beta distribution 
with expectation p and variance p(1－p)/(1+θ) so that FST = 
1/(1+θ). Then, they used a likelihood-based approach to 
estimate population- and locus-specific FST. 

This formulation was extended later to consider multi-
allelic loci [19]. Falush et al. [25] considered the non-
equilibrium fission model that subpopulations evolve in 
isolation after splitting from an ancestral population. We will 
not distinguish the migration-drift equilibrium model and 
nonequilibrium fission model, since both lead to the same 
multinomial-Dirichlet distribution (or beta-binomial for 
biallelic loci) for the subpopulation allele frequencies [26]. 
The main difference between the two models resides in the 
interpretation given to FST: in the case of the migration-drift 
equilibrium model, FST measures how divergent each sub-
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population is from the total population, while in the case of 
the fission model, it measures the degree of genetic 
differentiation between each descendant population and the 
ancestral population.

We consider a collection of J subpopulations and a set of I 
loci. Let Ki be the number of alleles at the i th locus. The 
extent of differentiation between subpopulation j and the 
ancestral population at locus i is measured by 

 . Let pi = 
{ pik } denote the allele frequencies of the ancestral po-
pulation at locus i, where pik is the frequency of the allele k at 
locus i



   . We use p = { pi } to denote the entire set 
of allele frequencies of the ancestral population and =   
 { } to denote the current allele frequencies at locus i for 
subpopulation j. Under the model and the definitions above, 
the allele frequencies at locus i in subpopulation j follow a 
Dirichlet distribution with parameters θjpi, a Bayesian prior 
distribution,
~Dir(θijpi1, …, θijpiKi),                                        (3)

where θij = 1/
 －1. The extent of differentiation at locus 

i between subpopulation j and the ancestral population is 
measured by 

  and is the result of its demographic history. 
The full prior distribution across loci and populations is 
given by 

  









                                   (4) 

We need a hierarchical model for locus- and popula-
tion-specific effects to identify candidate loci under natural 
selection. It is no doubt that population- and locus-specific 
estimates of 

  by the moments (or ANOVA) methods are 
likely to be inaccurate, especially for loci with a small 
number of different alleles. As an alternative, Beaumont and 
Balding [22] proposed a familiar logistic regression model to 
decompose population- and locus-specific 

  coefficients 
(bounded between 0 and 1) into a population-specific 
component, βj, shared by all loci and a locus-specific com-
ponent, αi, shared by all populations [22]: 











 


 



 


=αi +βj                             (5)

The locus-specific effects express mutation and some 
forms of selection, and population-specific effects express 
migration rates, population sizes, and population-specific 
mating patterns [22]. The advantage of this formulation is 
that instead of estimating locus- and population-specific IㆍJ

  coefficients (as in the method of moments or ANOVA), 

we only have to estimate I the parameters αi and the J 
parameters βj. With the estimates of αi and βj, 

  (and 
equivalently θij = exp(－(αi +βj)) can be estimated. 

 Above all, the estimate of αi is our objective to detect 
outlier loci as selection candidates. Departure from 
neutrality at a given locus is assumed when αi is signi-

ficantly different from 0 at that locus. A positive value of αi  
suggests diversifying selection, whereas negative values 
suggest balancing selection. The posterior probability that a 
locus is subject to selection, P(αi ≠ 0), is estimated directly 
from the Markov Chain Monte Carlo method (MCMC) (see 
below). 

Likelihood for allele counts 

The data of codominant markers consist of allele counts 
obtained from samples of size nij. We use αijk to denote the 
number of alleles k observed at locus i in the sample from 
subpopulation j. Thus, nij = kαijk . The full dataset can be 
presented as a matrix N = { aij }, where aij = { αij1, αij2, …, 
αijKi } is the allele count at locus i for subpopulation j. The 
observed allele frequencies, aij, can be considered as sampled 
from the true alleles frequencies ij and therefore can be 
described by the multinomial distribution:

αij ~ Multinomia l { nij; , ,  …  }               (6)

We adopt the multinomial-Dirichlet distribution as a 
marginal distribution of aij, the allele frequency counts at a 
locus within a subpopulation, and the reasons of its adoption 
are explained in Foll and Gaggiotti [26]:

P(aij | pi, αi, βj) = 
 







 

The joint likelihood for allele counts is obtained by 
multiplying across all loci and populations:

L(p, α, β) = 









P(aij | pi, αi, βj)                         (7) 

Since the allele frequencies in the ancestral population pi = 
{ pik } are unknown, they are estimated by introducing a 
noninformative Dirichlet prior, pi ~ Dir (1, … , 1), into the 
Bayesian model [27]. 

The full Bayesian model is given by 
(p, α, β | N) ∝ L(p, α, β)(p)(α)(β).               (8)

Following Beaumont and Balding [22], the Gaussian prior 
distributions are used for the population effects βj and for 
the locus effects αi. Their means and variances are chosen to 
improve convergence and for each 

 to have non- 
negligible density over almost the whole interval from 0 to 1. 

Identifying CNVs subject to selection

As described above, the effect of selection is para-
meterized by αi  in the logistic regression. Thus, two models 
in the logistic, one that includes both effects of αi  (i.e., αi  ≠

0) and βj (selection model, M2) and another one that does 
not include the effect of selection (i.e., αi = 0) and only 
includes the effect of βj (neutral model, M1), are considered.

We can decide in a Bayesian framework whether or not 

.
.

.
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Fig. 1. Empirical distributions of copy number variants (CNV) data
with the three population groups. CNV data are from Conrad et 
al. [4]. 

there is selection at all. This is done by estimating the 
posterior probabilities for two models for each locus in the 
logistic regression: neutral (M1) and selection (model 2, 
M2), on the basis of a dataset N = { aij }. We use a reversible 
jump MCMC algorithm [28] to estimate the posterior 
probability of each one of these models, and this is done 
separately for each locus i. We can then have posterior 
probability that a locus is subject to selection - that is, P(αi  

≠0). This probability is estimated directly from the output 
of the MCMC by simply counting the number of times αi  is 
included in the model (see Foll and Gaggiotti [27] for a more 
detailed explanation).

In BayeScan, selection decision (model choice decision), 
with a specific goal of detecting outlier loci in mind, is 
actually performed by using posterior odds (PO). For this, 
we first need to describe ‘Bayes factors.’ For the two models 
of neutral (M1) and selection (M2), the Bayes factor (BF) for 
model M2 is given by BF = P(N | M2)/P(N | M1), where N 
= { aij } is a dataset and P indicates probability. This BF 
provides a degree of evidence in favor of one model versus 
another. In the context of multiple testing - that is, testing a 
large number of loci simultaneously - we also need to 
incorporate our skepticism about the chance that each locus 
is under selection. This is done by setting the prior odds for 
the neutral model P(M1)/P(M2). We make selection deci-
sions by using PO, which is defined as PO = P(M2|N)/ 
P(M1|N) = BF × P(M2)/P(M1). PO are simply the ratio of 
posterior probabilities and indicate how much more likely 
the model with selection (M2) is compared to the neutral 
model (M1) (GENEPOP software). PO of 0.5-1.0, 1.0-1.5, 
1.5-2.0, and 2-∞ are, respectively, considered as substantial, 
strong, very strong, and decisive evidence for selection [14].

A big advantage of posterior probabilities is that they 
directly allow the control of the false discovery rate (FDR), 
where FDR is defined as the expected proportion of false 
positives among outlier loci. Controlling for FDR has a much 
greater power than controlling for family-wise error rates 
using Bonferroni correction, for example [29]. In BayeScan, 
by first setting a target FDR, the PO threshold achieving this 
FDR is determined, and outliers equal to or above this PO 
threshold are listed in the output of R that is provided along 
with BayeScan. 

Empirical Distribution of FST Based on CNV
Study populations

We obtained the high-resolution CNV data by Conrad et 
al. [4] from the Database of Genomic Variants (http:// 
projects.tcag.ca/variation/). The dataset consists of 90 Han 
Chinese (CHB) and Japanese (JPT), 180 Caucasians of 
European descent (CEU), and 180 Yoruba (YRI) samples. 

Among the 450 individuals, we removed 19 individuals with 
more than 400 missing CNV genotypes. Each CNV was 
analyzed as biallelic dominant data, classified as neutral 
versus non-neutral (losses or gains).

Empirical distribution of FST

To assess population differentiation with an allele fre-
quency spectrum of CNVs, the locus-specific estimates by 
ANOVA method and by hierarchical Bayesian method were 
obtained from all autosomes. The estimated values by the 
ANOVA method (moments estimates) can be negative when 
levels of differentiation are close to 0 and/or sample sizes are 
small, indicating no population differentiation at these loci 
[18]. In the hierarchical Bayesian method, the locus-specific 
estimate values are all positive, since they are generated by 
posterior distributions, which is an important benefit of a 
Bayesian method. 

With the CNV data of this study, the summary statistics of 
FST was 0.0853 ± 0.1195 (median, 0.0360; range, －0.0071 
to 0.8994) for the ANOVA method and 0.2459 ± 0.0115 
(median, 0.2462; range, 0.2193 to 0.6166) for the Bayesian 
method. The empirical distributions of FST are found in Fig. 
1. As can be seen from the Figure, low FST values are 
prevalent, and a large variability persisted in the ANOVA 
method, while FST distribution was sharply focused in the 
Bayesian method. The comparison of empirical distributions 
of the ANOVA and Bayesian methods demonstrates that 
Bayesian estimates perform better than ANOVA in iden-
tifying CNVs affected by natural selection.
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CNP_id Chr Start Stop
Proportion of non-neutral

FST
CEU CHB + JPT YRI

CNVR2664.1 5 159282379 159283692 0.90 1.00 0.00 0.623
CNVR371.1 1 153926378 153931106 0.00 0.00 0.85 0.544

CNV, copy number variants; CEU, Caucasians of European descent; CHB, Han Chinese; JPT, Japanese; YRI, Yoruba.

Table 1. Identified outlier CNVs potentially subject to positive selection by BayeScan 

Fig. 2. Spacial scans for identification of FST outlier copy number
variants (CNVs) potentially subject to positive selection by 
BayeScan. CNV data are from Conrad et al. [4]. PO, posterior odds.

Bayesian outlier detections 

We searched the genome regions that show signals of 
natural selection by the Bayesian likelihood method im-
plemented via reversible jump MCMC in BayeScan software 
[27]. For each CNV, BayeScan directly estimates the 
probability that a CNV is under positive selection, from 
which the PO are computed [27]. The posterior odds 
indicate how much more likely the model with selection is 
compared to the neutral model, and posterior odds of 5.0 
was chosen as a threshold in the detection of CNVs under 
positive selection. This directly allows us to control the FDR, 
the expected proportion of false positives among outlier 
CNVs [29]. In our analysis, we chose FDR to be 0.05. In the 
BayeScan application, first following 10 pilot runs of 5,000 
iterations and an additional burn-in of 50,000 iterations, we 
used 50,000 iterations (sample size of 5,000 and a thinning 
interval of 10). 

Outliers detected by BayeScan

BayeScan identified the three outlier CNVs with Conrad et 
al.’s [4] CNV data (Table 1, Fig. 2). The most decisive outlier 
is CNVR2664.1 (chromosome 5), in which most CEU (90%) 

and all CHB + JPT populations are outlying gain or loss 
status. The next decisive outlier is CNVR371.1 (chr. 1), in 
which only the YRI population has non-neutral CNVs. 

Conclusion

In general, the observed population structure observed by 
hierarchical clustering, multidimensional scaling (MDS) 
plots, and tree plots can be largely explained by random drift 
at neutral CNVs. However, as individuals from different 
populations often vary genetically at a few key sites in their 
genome, only the outlier method makes it possible to detect 
accelerated divergence in some CNV regions of the genome 
due to local selection. This local selection is detected relative 
to the majority of CNVs, in which among-population 
differences are purely a result of genetic drift. 

Successful outlier detection depends on reliable and 
obtainable estimates of FST and also on sampling variances of 
FST. Very large variances that are associated with single locus 
moment estimates of FST preclude the use of these estimates 
to detect selection in spite of the fact that sampling variances 
will decrease with the number of alleles at a locus and with 
the numbers of populations sampled. In this respect, the 
availability of locus- and population-specific Bayesian 
estimates of FST provides a set of tools for identifying 
genomic regions or populations with unusual evolutionary 
histories. The most important benefits of Bayesian estimates 
and its selection method are that the Bayesian methods 
allow probability statements to be made about FST and can be 
extended to explore the relationship with demographic or 
environmental covariates in the model [26]. Furthermore, 
likelihood-based Bayesian methods have the flexibility to 
accommodate missing data. However, implementations of 
Bayesian methods may be computationally demanding.

Selection provides information about the adaptation to a 
wide range of habitats and climates [30], and thus, inter-
preting the story of human adaptation is an interesting 
research area for the studies of evolution and disease pro-
cesses in the future. Thus, more studies of outlier detection 
need to be replicated with large population-based data. 
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