참고문헌
- Thomas, J. B., Crews, S. T. and Goodman, C. S. (1988) Molecular genetics of the single-minded locus: a gene involved in the development of the Drosophila nervous system. Cell 52, 133-141. https://doi.org/10.1016/0092-8674(88)90537-5
- Crews, S. T., Thomas, J. B. and Goodman, C. S. (1988) The Drosophila single-minded gene encodes a nuclear protein with sequence similarity to the per gene product. Cell 52, 143-151. https://doi.org/10.1016/0092-8674(88)90538-7
- Nambu, J. R., Franks, R. G., Hu, S. and Crews, S. T. (1990) The single-minded gene of Drosophila is required for the expression of genes important for the development of CNS midline cells. Cell 63, 63-75. https://doi.org/10.1016/0092-8674(90)90288-P
- Nambu, J. R., Lewis, J. O., Wharton, K. A. Jr and Crews, S. T. (1991) The Drosophila single-minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development. Cell 67, 1157-1167. https://doi.org/10.1016/0092-8674(91)90292-7
- Golembo, M., Raz, E. and Shilo, B. Z. (1996) The Drosophila embryonic midline is the site of Spitz processing, and induces activation of the EGF receptor in the ventral ectoderm. Development 122, 3363-3370.
- Skeath, J. B. (1998) The Drosophila EGF receptor controls the formation and specification of neuroblasts along the dorsal-ventral axis of the Drosophila embryo. Development 125, 3301-3312.
- Arendt, D. and Nubler-Jung, K. (1999) Comparison of early nerve cord development in insects and vertebrates. Development 126, 2309-2325.
- Sonnenfeld, M., Ward, M., Nystrom, G., Mosher, J., Stahl, S. and Crews, S. (1997) The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development 124, 4571-4582.
- Wharton, K. A. Jr, Franks, R. G., Kasai, Y. and Crews, S. T. (1994) Control of CNS midline transcription by asymmetric E-box-like elements: similarity to xenobiotic responsive regulation. Development 120, 3563-3569.
- Hong, J. W., Hendrix, D. A., Papatsenko, D. and Levine, M. S. (2008) How the Dorsal gradient works: insights from postgenome technologies. Proc. Natl. Acad. Sci. U.S.A. 105, 20072-20076. https://doi.org/10.1073/pnas.0806476105
- Reeves, G. T. and Stathopoulos, A. (2009) Graded dorsal and differential gene regulation in the Drosophila embryo. Cold Spring Harb. Perspect. Biol. 1, a000836. https://doi.org/10.1101/cshperspect.a000836
- Kasai, Y., Nambu, J. R., Lieberman, P. M. and Crews, S. T. (1992) Dorsal-ventral patterning in Drosophila: DNA binding of snail protein to the single-minded gene. Proc. Natl. Acad. Sci. U.S.A. 89, 3414-3418. https://doi.org/10.1073/pnas.89.8.3414
- Markstein, M., Zinzen, R., Markstein, P., Yee, K. P., Erives, A., Stathopoulos, A. and Levine, M. (2004) A regulatory code for neurogenic gene expression in the Drosophila embryo. Development 131, 2387-2394. https://doi.org/10.1242/dev.01124
- Zinzen, R. P., Cande, J., Ronshaugen, M., Papatsenko, D. and Levine, M. (2006) Evolution of the ventral midline in insect embryos. Dev. Cell 11, 895-902. https://doi.org/10.1016/j.devcel.2006.10.012
- Gray, S., Szymanski, P. and Levine, M. (1994) Short-range repression permits multiple enhancers to function autonomously within a complex promoter. Genes Dev. 8, 1829-1838. https://doi.org/10.1101/gad.8.15.1829
- Gray, S. and Levine, M. (1996) Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila. Genes Dev. 10, 700-710. https://doi.org/10.1101/gad.10.6.700
-
Hong, J. W. and Wu, L. C. (2010) ZAS3 represses
$NF{\kappa}B$ -dependent transcription by direct competition for DNA binding. BMB Rep. 43, 807-812. https://doi.org/10.5483/BMBRep.2010.43.12.807 -
Deng, Y., Li, Y., Fan, X., Yuan, W., Xie, H., Mo, X., Yan, Y., Zhou, J., Wang, Y., Ye, X., Wan, Y. and Wu, X. (2010) Synergistic efficacy of LBH and
${\alpha}B$ -crystallin through inhibiting transcriptional activities of p53 and p21. BMB Rep. 43, 432-437. https://doi.org/10.5483/BMBRep.2010.43.6.432 - Han, K. and Manley, J. L. (1993) Transcriptional repression by the Drosophila even-skipped protein: definition of a minimal repression domain. Genes Dev. 7, 491-503. https://doi.org/10.1101/gad.7.3.491
- Um, M., Li, C. and Manley, J. L. (1995) The transcriptional repressor even-skipped interacts directly with TATA-binding protein. Mol. Cell. Biol. 15, 5007-5016. https://doi.org/10.1128/MCB.15.9.5007
- Drouin, J., Sun, Y. L., Chamberland, M., Gauthier, Y., De Lean, A., Nemer, M. and Schmidt, T. J. (1993) Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene. EMBO J. 12, 145-156.
- Stathopoulos, A., Van Drenth, M., Erives, A., Markstein, M. and Levine, M. (2002) Whole-genome analysis of dorsal- ventral patterning in the Drosophila embryo. Cell 111, 687-701. https://doi.org/10.1016/S0092-8674(02)01087-5
- Jiang, J., Kosman, D., Ip, Y. T. and Levine, M. (1991) The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev. 5, 1881-1891. https://doi.org/10.1101/gad.5.10.1881
- Campos-Ortega, J. A. and Hartenstein, V. (1985) The embryonic development of Drosophila melanogaster. Springer-Verlag, Berlin; Heidelberg, Germany.
- Morel, V. and Schweisguth, F. (2000) Repression by suppressor of hairless and activation by Notch are required to define a single row of single-minded expressing cells in the Drosophila embryo. Genes Dev. 14, 377-388.
피인용 문헌
- Discrete Levels of Twist Activity Are Required to Direct Distinct Cell Functions during Gastrulation and Somatic Myogenesis vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0099553
- An information theoretic treatment of sequence-to-expression modeling vol.14, pp.9, 2018, https://doi.org/10.1371/journal.pcbi.1006459