R(g,g')-CONTINUITY ON GENERALIZED TOPOLOGICAL SPACES

Young Key Kim and Won Keun Min

ABSTRACT. We introduce the notion of R(g, g')-continuity on generalized topological spaces, which is a strong form of (g, g')-continuity. We investigate some properties and relationships among R(g, g')-continuity, (g, g')-continuity and some strong forms of (g, g')-continuity.

1. Introduction

Császár [1] introduced the notion of generalized topological spaces. He also introduced the notions of continuous functions and associated interior and closure operators on generalized topological spaces. Characterizations for the generalized continuous (= (g, g')-continuous) function were investigated in [1, 3]. In [5], we introduced and investigated the notions of super (g, g')-continuous functions and strongly $\theta(g, g')$ -continuous functions on generalized topological spaces. The purpose of this paper is to introduce the notion of R(g, g')continuity on generalized topological spaces, which is a strong form of (g, g')continuity. We investigate some properties and relationships among R(g, g')continuity (g, g')-continuity and some strong forms of (g, g')-continuity.

2. Preliminaries

We recall some notions and notations defined in [1]. Let X be a nonempty set and g be a collection of subsets of X. Then g is called a generalized topology (simply GT) on X if and only if $\emptyset \in g$ and $G_i \in g$ for $i \in I \neq \emptyset$ implies $G = \bigcup_{i \in I} G_i \in g$. We call the pair (X, g) a generalized topological space on X. We denote $\mathcal{M}_g = \bigcup \{A \subseteq X : A \in g\}$. A generalized topology g on X is called strong [2] if $X \in g$. The elements of g are called g-open sets and the complements are called g-closed sets. The generalized closed sets including S. A denoted by $c_g(S)$, is the intersection of generalized closed sets including S.

 $\bigodot 2012$ The Korean Mathematical Society

Received March 16, 2011.

²⁰¹⁰ Mathematics Subject Classification. 54A05.

Key words and phrases. (g,g')-continuous, super (g,g')-continuous, strongly $\theta(g,g')$ -continuous, R(g,g')-continuous, G-regular.

And the interior of S, denoted by $i_g(S)$, the union of generalized open sets included in S.

Let g and g' be generalized topologies on X and Y, respectively. Then a function $f: (X, g) \to (Y, g')$ is said to be

(1) (g, g')-continuous [1] if $G' \in g'$ implies that $f^{-1}(G') \in g$;

(2) super (g, g')-continuous [5] if for each $x \in X$ and each g'-open set V containing f(x), there exists a g-open set U containing x such that $f(i_g(c_g(U))) \subseteq V$;

(3) strongly $\theta(g, g')$ -continuous [5] if for each $x \in X$ and each g'-open set V of f(x), there exists a g-open set U of x such that $f(c_g(U)) \subseteq V$.

3. R(g, g')-continuous functions

Definition 3.1. Let (X, g) and (Y, g') be generalized topological spaces. Then a function $f: X \to Y$ is said to be R(g, g')-continuous if for each $x \in X$ and each g'-open set V containing f(x), there is a g-open set U containing x such that $c_{q'}(f(U)) \cap \mathcal{M}_{q'} \subseteq V$.

Theorem 3.2. Let $f : X \to Y$ be a R(g, g')-continuous function on GTS's (X, g) and (Y, g'). Then if $f(\mathcal{M}_g) \subseteq \mathcal{M}_{g'}$, then $f(c_g(U)) \subseteq c_{g'}(f(U))$ for every g-open set $U \subseteq X$.

Proof. Let U be a g-open set in X. For each $x \in c_g(U)$, let V be any g'-open set containing f(x). Since f is R(g, g')-continuous, there exists a g-open set G containing x such that $c_{g'}(f(G)) \cap \mathcal{M}_{g'} \subseteq V$. Furthermore, since $x \in c_g(U)$ and a g-open set G contains $x, U \cap G \neq \emptyset$. From $f(\mathcal{M}_g) \subseteq \mathcal{M}_{g'}$, it follows

$$\emptyset \neq f(U \cap G) \subseteq f(U) \cap f(G) \subseteq f(U) \cap c_{g'}(f(G))$$
$$= (f(U) \cap \mathcal{M}_{g'}) \cap c_{g'}(f(G)) \subseteq f(U) \cap V.$$

So $f(U) \cap V \neq \emptyset$ and $f(x) \in c_{q'}(f(U))$. This implies $f(c_q(U)) \subseteq c_{q'}(f(U))$. \Box

Theorem 3.3. Let $f : (X,g) \to (Y,g')$ be a function on GTS's (X,g) and (Y,g'). If $f(\mathcal{M}_g) \subseteq \mathcal{M}_{g'}$, then the following are equivalent:

(1) f is R(q, q')-continuous.

(2) For each point $x \in X$ and a g'-open set V containing f(x), there is a g-open set U containing x such that $c_{g'}(f(c_g(U))) \cap \mathcal{M}_{g'} \subseteq V$.

(3) For each point $x \in X$ and a g'-closed set F with $f(x) \notin F$, there is a g-open set U containing x and a g'-open set V such that $F \cap \mathcal{M}_{g'} \subseteq V$ and $f(c_g(U)) \cap V = \emptyset$.

(4) For each point $x \in X$ and a g'-closed set F with $f(x) \notin F$, there is a g-open set U containing x and a g'-open set V such that $F \cap \mathcal{M}_{g'} \subseteq V$ and $f(U) \cap V = \emptyset$.

Proof. (1) \Rightarrow (2) For $x \in X$, let V be a g'-open set containing f(x). Then there is a g-open set U containing x such that $c_{g'}(f(U)) \cap \mathcal{M}_{g'} \subseteq V$. By

810

Theorem 3.2, we have $f(c_g(U)) \subseteq c_{g'}(f(U))$. It implies $c_{g'}(f(c_g(U))) \cap \mathcal{M}_{g'} \subseteq c_{g'}(f(U))) \cap \mathcal{M}_{g'} \subseteq V$.

 $(2) \Rightarrow (3)$ For $x \in X$, let F be a g'-closed set with $f(x) \notin F$. Since $f(x) \in Y - F$ and Y - F is g'-open, by (2), there is a g-open set U containing x such that $c_{g'}(f(c_g(U))) \cap \mathcal{M}_{g'} \subseteq Y - F$. Set $V = Y - (c_{g'}(f(c_g(U)))$. Then V is a g'-open set such that $F \cap \mathcal{M}_{g'} \subseteq V$ and $f(c_g(U)) \cap V = \emptyset$.

 $(3) \Rightarrow (4)$ It is obvious.

 $(4) \Rightarrow (1) \text{ Let } x \in X \text{ and } V \text{ a } g' \text{-open set containing } f(x). \text{ Then } Y - V \text{ is a } g' \text{-closed set and } f(x) \notin Y - V. \text{ By } (4), \text{ there is a } g \text{-open set } U \text{ containing } x \text{ and a } g' \text{-open set } W \text{ such that } (Y - V) \cap \mathcal{M}_{g'} \subseteq W \text{ and } f(U) \cap W = \emptyset. \text{ So } c_{g'}(f(U)) \cap \mathcal{M}_{g'} \subseteq c_{g'}(Y - W) \cap \mathcal{M}_{g'} = (Y - W) \cap \mathcal{M}_{g'} \subseteq V, \text{ and hence } f \text{ is } R(g,g') \text{-continuous.} \qquad \Box$

Corollary 3.4. Let $f : (X,g) \to (Y,g')$ be a function on GTS's (X,g) and (Y,g'). If Y is strong, then the following are equivalent:

(1) f is R(q, q')-continuous.

(2) For each point $x \in X$ and a g'-open set V containing f(x), there is a g-open set U containing x such that $c_{g'}(f(c_g(U))) \subseteq V$.

(3) For each point $x \in X$ and a g-closed set F with $f(x) \notin F$, there is a g-open set U containing x and a g'-open set V such that $F \subseteq V$ and $f(c_g(U)) \cap V = \emptyset$.

(4) For each point $x \in X$ and a g'-closed set F with $f(x) \notin F$, there is a gopen set U containing x and a g'-open set V such that $F \subseteq V$ and $f(U) \cap V = \emptyset$.

Theorem 3.5. Let $f : X \to Y$ be a function on GTS's (X,g) and (Y,g'). Then if f is R(g,g')-continuous and Y is strong, then it is strongly $\theta(g,g')$ -continuous.

Proof. It follows from Corollary 3.4(2).

811

Remark 3.6. The converse of Theorem 3.5 is not true in general as shown by the next example.

Example 3.7. Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3\}$. Consider generalized topologies $g = \{\emptyset, \{a\}\}$ on X and $g' = \{\emptyset, \{1\}, Y\}$ on Y. Let us define a function $f: X \to Y$ as f(a) = f(b) = f(c) = 1. Then f is strongly $\theta(g, g')$ -continuous. But since $c_{g'}f(\{a\}) = c_{g'}(\{1\}) = Y$, f can not be R(g, g')-continuous.

From Remark 3.8 of [5] and Theorem 3.5, we have the implications:

R(g, g')-continuous \Rightarrow strongly $\theta(g, g')$ -continuous \Rightarrow super (g, g')-continuous $\Rightarrow (g, g')$ -continuous.

Definition 3.8. Let (X, g) and (Y, g') be generalized topological spaces. Then a function $f: X \to Y$ is said to be *weakly* (g, g')-closed if for each g-closed set F in $X, c'_g(f(i_g(F)) \subseteq f(F)$.

Lemma 3.9. Let (X,g) and (Y,g') be GTS's. Then if a function $f: X \to Y$ is weakly (g,g')-closed, then $c'_q(f(U)) \subseteq f(c_g(U))$ for every g-open set U in X.

Proof. For any g-open set $U \subseteq X$, since $c_g(U)$ is g-closed and $U \subseteq i_g(c_g(U))$, it is obtained.

Theorem 3.10. Let (X,g) and (Y,g') be GTS's. Then if a function $f: X \to Y$ is weakly (g,g')-closed and strongly $\theta(g,g')$ -continuous, then it is R(g,g')-continuous.

Proof. For $x \in X$, let V be a g'-open set containing f(x). Then from the strong $\theta(g, g')$ -continuity of f, there exists a g-open set U of x such that $f(c_g(U)) \subseteq V$. From Lemma 3.9, it follows $c'_g(f(U)) \cap \mathcal{M}_{g'} \subseteq f(c_g(U)) \cap \mathcal{M}_{g'} \subseteq V$. Hence by Theorem 3.3(2), f is R(g, g')-continuous.

Definition 3.11. Let (X, g) be a generalized topological space. Then X is said to be *relative G-regular* (simply, *G-regular*) [4] on \mathcal{M}_g if for $x \in \mathcal{M}_g$ and a g-closed set F with $x \notin F$, there exist $U, V \in g$ such that $x \in U, F \cap \mathcal{M}_g \subseteq V$ and $U \cap V = \emptyset$.

Theorem 3.12 ([4]). Let (X, g) be a GTS. Then X is G-regular if and only if for $x \in \mathcal{M}_g$ and a g-open set U containing x, there is a g-open set V containing x such that $x \in V \subseteq c_q V \cap \mathcal{M}_q \subseteq U$.

Theorem 3.13. Let (X, g) and (Y, g') be GTS's. Then a function $f : X \to Y$ is strongly $\theta(g, g')$ -continuous and Y is G-regular, then it is R(g, g')-continuous.

Proof. For $x \in X$, let V be a g'-open set containing f(x). Since Y is G-regular, for the g'-open set V containing f(x), there is a g'-open set W containing f(x) such that $f(x) \in W \subseteq c'_g W \cap \mathcal{M}_{g'} \subseteq V$. For the g'-open set W containing f(x), from the strong $\theta(g,g')$ -continuity of f, there exists a g-open set U of x such that $f(c_g(U)) \subseteq W$. This implies $c'_g(f(c_g(U))) \cap \mathcal{M}_{g'} \subseteq c'_g(W) \cap \mathcal{M}_{g'} \subseteq V$. By Theorem 3.3(2), R(g,g')-continuous.

From Corollary 3.13 of [5], Lemma 3.5 and Theorem 3.13, the following corollary is easily obtained:

Corollary 3.14. Let $f : X \to Y$ be a function between two GTS's (X,g) and (Y,g'). Then if Y is G-regular and strong, then the following things are equivalent:

- (1) R(g, g')-continuity.
- (2) strongly $\theta(g, g')$ -continuity.
- (3) (g, g')-continuity.

Let (X, g) and (Y, g') be GTS's. Then a function $f : X \to Y$ is said to be (g, g')-open [3] if for every g-open set G in X, f(G) is g'-open in Y.

Theorem 3.15. Let (X,g) and (Y,g') be GTS's and $f(\mathcal{M}_g) = \mathcal{M}_{g'}$. Then if a function $f : X \to Y$ is (g,g')-open and R(g,g')-continuous, then Y is *G*-regular.

812

Proof. Let $y \in \mathcal{M}'_g$ and V any g'-open set containing y. Let f(x) = y for $x \in X$. Then since f is R(g, g')-continuous, there exists a g-open set U containing x such that $c'_g(f(U)) \cap \mathcal{M}_{g'} \subseteq V$. Since f is (g, g')-open, f(U) is a g'-open set containing y, and so $f(U) = f(U) \cap \mathcal{M}_{g'} \subseteq c'_g(f(U)) \cap \mathcal{M}_{g'} \subseteq V$. Therefore, since f(U) is a g'-open set containing y, by Theorem 3.12, Y is G-regular. \Box

References

- Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), no. 4, 351–357.
- [2] _____, δ-and θ-modificatons of generalized topologies, Acta Math. Hungar. 120 (2008), no. 3, 275–279.
- [3] W. K. Min, Some results on generalized topological spaces and generalized systems, Acta Math. Hungar. 108 (2005), no. 1-2, 171–181.
- [4] _____, (δ, δ') -continuity on generalized topological spaces, Acta Math. Hungar. **129** (2010), no. 4, 350–356.
- [5] _____, Some strong forms of (g, g')-continuity on generalized topological spaces, submitted.

Young Key Kim Department of Mathematics MyongJi University Yongin 449-728, Korea *E-mail address*: ykkim@mju.ac.kr

Won Keun Min Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail address:* wkmin@kangwon.ac.kr