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R(g, g′)-CONTINUITY ON GENERALIZED TOPOLOGICAL

SPACES

Young Key Kim and Won Keun Min

Abstract. We introduce the notion of R(g, g
′

)-continuity on general-
ized topological spaces, which is a strong form of (g, g′)-continuity. We

investigate some properties and relationships among R(g, g
′

)-continuity,

(g, g
′

)-continuity and some strong forms of (g, g′)-continuity.

1. Introduction

Császár [1] introduced the notion of generalized topological spaces. He also
introduced the notions of continuous functions and associated interior and clo-
sure operators on generalized topological spaces. Characterizations for the gen-
eralized continuous (= (g, g′)-continuous) function were investigated in [1, 3].

In [5], we introduced and investigated the notions of super (g, g
′

)-continuous
functions and strongly θ(g, g′)-continuous functions on generalized topologi-

cal spaces. The purpose of this paper is to introduce the notion of R(g, g
′

)-
continuity on generalized topological spaces, which is a strong form of (g, g′)-

continuity. We investigate some properties and relationships among R(g, g
′

)-

continuity (g, g
′

)-continuity and some strong forms of (g, g′)-continuity.

2. Preliminaries

We recall some notions and notations defined in [1]. LetX be a nonempty set
and g be a collection of subsets of X . Then g is called a generalized topology

(simply GT) on X if and only if ∅ ∈ g and Gi ∈ g for i ∈ I 6= ∅ implies
G = ∪i∈IGi ∈ g. We call the pair (X, g) a generalized topological space on
X . We denote Mg = ∪{A ⊆ X : A ∈ g}. A generalized topology g on X is
called strong [2] if X ∈ g. The elements of g are called g-open sets and the
complements are called g-closed sets. The generalized-closure of a subset S of
X , denoted by cg(S), is the intersection of generalized closed sets including S.
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And the interior of S, denoted by ig(S), the union of generalized open sets
included in S.

Let g and g′ be generalized topologies on X and Y , respectively. Then a
function f : (X, g) → (Y, g′) is said to be

(1) (g, g′)-continuous [1] if G
′

∈ g′ implies that f−1(G
′

) ∈ g;

(2) super (g, g
′

)-continuous [5] if for each x ∈ X and each g′-open set V con-
taining f(x), there exists a g-open set U containing x such that f(ig(cg(U))) ⊆
V ;

(3) strongly θ(g, g′)-continuous [5] if for each x ∈ X and each g′-open set V
of f(x), there exists a g-open set U of x such that f(cg(U)) ⊆ V .

3. R(g, g′)-continuous functions

Definition 3.1. Let (X, g) and (Y, g′) be generalized topological spaces. Then

a function f : X → Y is said to be R(g, g
′

)-continuous if for each x ∈ X and
each g′-open set V containing f(x), there is a g-open set U containing x such
that cg′(f(U)) ∩Mg′ ⊆ V .

Theorem 3.2. Let f : X → Y be a R(g, g
′

)-continuous function on GTS’s

(X, g) and (Y, g′). Then if f(Mg) ⊆ Mg′ , then f(cg(U)) ⊆ cg′(f(U)) for every
g-open set U ⊆ X.

Proof. Let U be a g-open set in X . For each x ∈ cg(U), let V be any g′-open

set containing f(x). Since f is R(g, g
′

)-continuous, there exists a g-open set G
containing x such that cg′(f(G)) ∩ Mg′ ⊆ V . Furthermore, since x ∈ cg(U)
and a g-open set G contains x, U ∩G 6= ∅. From f(Mg) ⊆ Mg′ , it follows

∅ 6= f(U ∩G) ⊆ f(U) ∩ f(G) ⊆ f(U) ∩ cg′(f(G))

= (f(U) ∩Mg′) ∩ cg′(f(G)) ⊆ f(U) ∩ V.

So f(U)∩V 6= ∅ and f(x) ∈ cg′(f(U)). This implies f(cg(U)) ⊆ cg′(f(U)). �

Theorem 3.3. Let f : (X, g) → (Y, g′) be a function on GTS’s (X, g) and

(Y, g′). If f(Mg) ⊆ Mg′ , then the following are equivalent:

(1) f is R(g, g
′

)-continuous.
(2) For each point x ∈ X and a g′-open set V containing f(x), there is a

g-open set U containing x such that cg′(f(cg(U))) ∩Mg′ ⊆ V .

(3) For each point x ∈ X and a g′-closed set F with f(x) /∈ F , there is a

g-open set U containing x and a g′-open set V such that F ∩ Mg′ ⊆ V and

f(cg(U)) ∩ V = ∅.
(4) For each point x ∈ X and a g′-closed set F with f(x) /∈ F , there is a

g-open set U containing x and a g′-open set V such that F ∩ Mg′ ⊆ V and

f(U) ∩ V = ∅.

Proof. (1) ⇒ (2) For x ∈ X , let V be a g′-open set containing f(x). Then
there is a g-open set U containing x such that cg′(f(U)) ∩ Mg′ ⊆ V . By
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Theorem 3.2, we have f(cg(U)) ⊆ cg′(f(U)). It implies cg′(f(cg(U))) ∩Mg′ ⊆
cg′(f(U))) ∩Mg′ ⊆ V .

(2) ⇒ (3) For x ∈ X , let F be a g′-closed set with f(x) /∈ F . Since
f(x) ∈ Y − F and Y − F is g′-open, by (2), there is a g-open set U containing
x such that cg′(f(cg(U))) ∩Mg′ ⊆ Y − F . Set V = Y − (cg′(f(cg(U))). Then
V is a g′-open set such that F ∩Mg′ ⊆ V and f(cg(U)) ∩ V = ∅.

(3) ⇒ (4) It is obvious.
(4) ⇒ (1) Let x ∈ X and V a g′-open set containing f(x). Then Y − V is

a g′-closed set and f(x) /∈ Y − V . By (4), there is a g-open set U containing
x and a g′-open set W such that (Y − V ) ∩Mg′ ⊆ W and f(U) ∩W = ∅. So
cg′(f(U)) ∩Mg′ ⊆ cg′(Y −W ) ∩Mg′ = (Y −W ) ∩Mg′ ⊆ V , and hence f is

R(g, g
′

)-continuous. �

Corollary 3.4. Let f : (X, g) → (Y, g′) be a function on GTS’s (X, g) and

(Y, g′). If Y is strong, then the following are equivalent:

(1) f is R(g, g
′

)-continuous.
(2) For each point x ∈ X and a g′-open set V containing f(x), there is a

g-open set U containing x such that cg′(f(cg(U))) ⊆ V .

(3) For each point x ∈ X and a g′-closed set F with f(x) /∈ F , there is a

g-open set U containing x and a g′-open set V such that F ⊆ V and f(cg(U))∩
V = ∅.

(4) For each point x ∈ X and a g′-closed set F with f(x) /∈ F , there is a g-
open set U containing x and a g′-open set V such that F ⊆ V and f(U)∩V = ∅.

Theorem 3.5. Let f : X → Y be a function on GTS’s (X, g) and (Y, g′).

Then if f is R(g, g
′

)-continuous and Y is strong, then it is strongly θ(g, g′)-
continuous.

Proof. It follows from Corollary 3.4(2). �

Remark 3.6. The converse of Theorem 3.5 is not true in general as shown by
the next example.

Example 3.7. Let X = {a, b, c} and Y = {1, 2, 3}. Consider generalized
topologies g = {∅, {a}} onX and g′ = {∅, {1}, Y } on Y . Let us define a function
f : X → Y as f(a) = f(b) = f(c) = 1. Then f is strongly θ(g, g′)-continuous.

But since cg′f({a}) = cg′({1}) = Y , f can not be R(g, g
′

)-continuous.

From Remark 3.8 of [5] and Theorem 3.5, we have the implications:

R(g, g
′

)-continuous⇒ strongly θ(g, g′)-continuous⇒ super (g, g′)-continuous
⇒(g, g′)-continuous.

Definition 3.8. Let (X, g) and (Y, g′) be generalized topological spaces. Then
a function f : X → Y is said to be weakly (g, g′)-closed if for each g-closed set
F in X , c′g(f(ig(F )) ⊆ f(F ).

Lemma 3.9. Let (X, g) and (Y, g′) be GTS’s. Then if a function f : X → Y
is weakly (g, g′)-closed, then c′g(f(U)) ⊆ f(cg(U)) for every g-open set U in X.
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Proof. For any g-open set U ⊆ X , since cg(U) is g-closed and U ⊆ ig(cg(U)),
it is obtained. �

Theorem 3.10. Let (X, g) and (Y, g′) be GTS’s. Then if a function f : X →

Y is weakly (g, g′)-closed and strongly θ(g, g′)-continuous, then it is R(g, g
′

)-
continuous.

Proof. For x ∈ X , let V be a g′-open set containing f(x). Then from the strong
θ(g, g′)-continuity of f , there exists a g-open set U of x such that f(cg(U)) ⊆ V .
From Lemma 3.9, it follows c′g(f(U))∩Mg′ ⊆ f(cg(U)) ∩Mg′ ⊆ V . Hence by

Theorem 3.3(2), f is R(g, g
′

)-continuous. �

Definition 3.11. Let (X, g) be a generalized topological space. Then X is
said to be relative G-regular (simply, G-regular) [4] on Mg if for x ∈ Mg and a
g-closed set F with x /∈ F , there exist U, V ∈ g such that x ∈ U , F ∩Mg ⊆ V
and U ∩ V = ∅.

Theorem 3.12 ([4]). Let (X, g) be a GTS. Then X is G-regular if and only if

for x ∈ Mg and a g-open set U containing x, there is a g-open set V containing

x such that x ∈ V ⊆ cgV ∩Mg ⊆ U .

Theorem 3.13. Let (X, g) and (Y, g′) be GTS’s. Then a function f : X → Y is

strongly θ(g, g′)-continuous and Y is G-regular, then it is R(g, g
′

)-continuous.

Proof. For x ∈ X , let V be a g′-open set containing f(x). Since Y is G-regular,
for the g′-open set V containing f(x), there is a g′-open set W containing f(x)
such that f(x) ∈ W ⊆ c′gW ∩Mg′ ⊆ V . For the g′-open set W containing f(x),
from the strong θ(g, g′)-continuity of f , there exists a g-open set U of x such
that f(cg(U)) ⊆ W . This implies c′g(f(cg(U)))∩Mg′ ⊆ c′g(W )∩Mg′ ⊆ V . By

Theorem 3.3(2), R(g, g
′

)-continuous. �

From Corollary 3.13 of [5], Lemma 3.5 and Theorem 3.13, the following
corollary is easily obtained:

Corollary 3.14. Let f : X → Y be a function between two GTS’s (X, g)
and (Y, g′). Then if Y is G-regular and strong, then the following things are

equivalent:
(1) R(g, g

′

)-continuity.
(2) strongly θ(g, g′)-continuity.
(3) (g, g′)-continuity.

Let (X, g) and (Y, g′) be GTS’s. Then a function f : X → Y is said to be
(g, g′)-open [3] if for every g-open set G in X , f(G) is g′-open in Y .

Theorem 3.15. Let (X, g) and (Y, g′) be GTS’s and f(Mg) = Mg′ . Then

if a function f : X → Y is (g, g′)-open and R(g, g
′

)-continuous, then Y is

G-regular.
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Proof. Let y ∈ M′

g and V any g′-open set containing y. Let f(x) = y for x ∈ X .

Then since f is R(g, g
′

)-continuous, there exists a g-open set U containing x
such that c′g(f(U)) ∩Mg′ ⊆ V . Since f is (g, g′)-open, f(U) is a g′-open set
containing y, and so f(U) = f(U) ∩Mg′ ⊆ c′g(f(U)) ∩Mg′ ⊆ V . Therefore,
since f(U) is a g′-open set containing y, by Theorem 3.12, Y is G-regular. �
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