$R\left(g, g^{\prime}\right)$-CONTINUITY ON GENERALIZED TOPOLOGICAL SPACES

Young Key Kim and Won Keun Min

Abstract

We introduce the notion of $R\left(g, g^{\prime}\right)$-continuity on generalized topological spaces, which is a strong form of $\left(g, g^{\prime}\right)$-continuity. We investigate some properties and relationships among $R\left(g, g^{\prime}\right)$-continuity, $\left(g, g^{\prime}\right)$-continuity and some strong forms of $\left(g, g^{\prime}\right)$-continuity.

1. Introduction

Császár [1] introduced the notion of generalized topological spaces. He also introduced the notions of continuous functions and associated interior and closure operators on generalized topological spaces. Characterizations for the generalized continuous ($=\left(g, g^{\prime}\right)$-continuous) function were investigated in $[1,3]$. In [5], we introduced and investigated the notions of super $\left(g, g^{\prime}\right)$-continuous functions and strongly $\theta\left(g, g^{\prime}\right)$-continuous functions on generalized topological spaces. The purpose of this paper is to introduce the notion of $R\left(g, g^{\prime}\right)$ continuity on generalized topological spaces, which is a strong form of $\left(g, g^{\prime}\right)$ continuity. We investigate some properties and relationships among $R\left(g, g^{\prime}\right)$ continuity $\left(g, g^{\prime}\right)$-continuity and some strong forms of $\left(g, g^{\prime}\right)$-continuity.

2. Preliminaries

We recall some notions and notations defined in [1]. Let X be a nonempty set and g be a collection of subsets of X. Then g is called a generalized topology (simply GT) on X if and only if $\emptyset \in g$ and $G_{i} \in g$ for $i \in I \neq \emptyset$ implies $G=\cup_{i \in I} G_{i} \in g$. We call the pair (X, g) a generalized topological space on X. We denote $\mathcal{M}_{g}=\cup\{A \subseteq X: A \in g\}$. A generalized topology g on X is called strong [2] if $X \in g$. The elements of g are called g-open sets and the complements are called g-closed sets. The generalized-closure of a subset S of X, denoted by $c_{g}(S)$, is the intersection of generalized closed sets including S.

[^0]And the interior of S, denoted by $i_{g}(S)$, the union of generalized open sets included in S.

Let g and g^{\prime} be generalized topologies on X and Y, respectively. Then a function $f:(X, g) \rightarrow\left(Y, g^{\prime}\right)$ is said to be
(1) $\left(g, g^{\prime}\right)$-continuous [1] if $G^{\prime} \in g^{\prime}$ implies that $f^{-1}\left(G^{\prime}\right) \in g$;
(2) super $\left(g, g^{\prime}\right)$-continuous [5] if for each $x \in X$ and each g^{\prime}-open set V containing $f(x)$, there exists a g-open set U containing x such that $f\left(i_{g}\left(c_{g}(U)\right)\right) \subseteq$ V;
(3) strongly $\theta\left(g, g^{\prime}\right)$-continuous [5] if for each $x \in X$ and each g^{\prime}-open set V of $f(x)$, there exists a g-open set U of x such that $f\left(c_{g}(U)\right) \subseteq V$.

3. $R\left(g, g^{\prime}\right)$-continuous functions

Definition 3.1. Let (X, g) and $\left(Y, g^{\prime}\right)$ be generalized topological spaces. Then a function $f: X \rightarrow Y$ is said to be $R\left(g, g^{\prime}\right)$-continuous if for each $x \in X$ and each g^{\prime}-open set V containing $f(x)$, there is a g-open set U containing x such that $c_{g^{\prime}}(f(U)) \cap \mathcal{M}_{g^{\prime}} \subseteq V$.

Theorem 3.2. Let $f: X \rightarrow Y$ be a $R\left(g, g^{\prime}\right)$-continuous function on GTS's (X, g) and $\left(Y, g^{\prime}\right)$. Then if $f\left(\mathcal{M}_{g}\right) \subseteq \mathcal{M}_{g^{\prime}}$, then $f\left(c_{g}(U)\right) \subseteq c_{g^{\prime}}(f(U))$ for every g-open set $U \subseteq X$.
Proof. Let U be a g-open set in X. For each $x \in c_{g}(U)$, let V be any g^{\prime}-open set containing $f(x)$. Since f is $R\left(g, g^{\prime}\right)$-continuous, there exists a g-open set G containing x such that $c_{g^{\prime}}(f(G)) \cap \mathcal{M}_{g^{\prime}} \subseteq V$. Furthermore, since $x \in c_{g}(U)$ and a g-open set G contains $x, U \cap G \neq \emptyset$. From $f\left(\mathcal{M}_{g}\right) \subseteq \mathcal{M}_{g^{\prime}}$, it follows

$$
\begin{aligned}
\emptyset & \neq f(U \cap G) \subseteq f(U) \cap f(G) \subseteq f(U) \cap c_{g^{\prime}}(f(G)) \\
& =\left(f(U) \cap \mathcal{M}_{g^{\prime}}\right) \cap c_{g^{\prime}}(f(G)) \subseteq f(U) \cap V
\end{aligned}
$$

So $f(U) \cap V \neq \emptyset$ and $f(x) \in c_{g^{\prime}}(f(U))$. This implies $f\left(c_{g}(U)\right) \subseteq c_{g^{\prime}}(f(U))$.
Theorem 3.3. Let $f:(X, g) \rightarrow\left(Y, g^{\prime}\right)$ be a function on GTS's (X, g) and $\left(Y, g^{\prime}\right)$. If $f\left(\mathcal{M}_{g}\right) \subseteq \mathcal{M}_{g^{\prime}}$, then the following are equivalent:
(1) f is $R\left(g, g^{\prime}\right)$-continuous.
(2) For each point $x \in X$ and a g^{\prime}-open set V containing $f(x)$, there is a g-open set U containing x such that $c_{g^{\prime}}\left(f\left(c_{g}(U)\right)\right) \cap \mathcal{M}_{g^{\prime}} \subseteq V$.
(3) For each point $x \in X$ and a g^{\prime}-closed set F with $\bar{f}(x) \notin F$, there is a g-open set U containing x and a g^{\prime}-open set V such that $F \cap \mathcal{M}_{g^{\prime}} \subseteq V$ and $f\left(c_{g}(U)\right) \cap V=\emptyset$.
(4) For each point $x \in X$ and a g^{\prime}-closed set F with $f(x) \notin F$, there is a g-open set U containing x and a g^{\prime}-open set V such that $F \cap \mathcal{M}_{g^{\prime}} \subseteq V$ and $f(U) \cap V=\emptyset$.
Proof. (1) \Rightarrow (2) For $x \in X$, let V be a g^{\prime}-open set containing $f(x)$. Then there is a g-open set U containing x such that $c_{g^{\prime}}(f(U)) \cap \mathcal{M}_{g^{\prime}} \subseteq V$. By

Theorem 3.2, we have $f\left(c_{g}(U)\right) \subseteq c_{g^{\prime}}(f(U))$. It implies $c_{g^{\prime}}\left(f\left(c_{g}(U)\right)\right) \cap \mathcal{M}_{g^{\prime}} \subseteq$ $\left.c_{g^{\prime}}(f(U))\right) \cap \mathcal{M}_{g^{\prime}} \subseteq V$.
$(2) \Rightarrow$ (3) For $x \in X$, let F be a g^{\prime}-closed set with $f(x) \notin F$. Since $f(x) \in Y-F$ and $Y-F$ is g^{\prime}-open, by (2), there is a g-open set U containing x such that $c_{g^{\prime}}\left(f\left(c_{g}(U)\right)\right) \cap \mathcal{M}_{g^{\prime}} \subseteq Y-F$. Set $V=Y-\left(c_{g^{\prime}}\left(f\left(c_{g}(U)\right)\right)\right.$. Then V is a g^{\prime}-open set such that $F \cap \mathcal{M}_{g^{\prime}} \subseteq V$ and $f\left(c_{g}(U)\right) \cap V=\emptyset$.
(3) $\Rightarrow(4)$ It is obvious.
(4) \Rightarrow (1) Let $x \in X$ and V a g^{\prime}-open set containing $f(x)$. Then $Y-V$ is a g^{\prime}-closed set and $f(x) \notin Y-V$. By (4), there is a g-open set U containing x and a g^{\prime}-open set W such that $(Y-V) \cap \mathcal{M}_{g^{\prime}} \subseteq W$ and $f(U) \cap W=\emptyset$. So $c_{g^{\prime}}(f(U)) \cap \mathcal{M}_{g^{\prime}} \subseteq c_{g^{\prime}}(Y-W) \cap \mathcal{M}_{g^{\prime}}=(Y-W) \cap \mathcal{M}_{g^{\prime}} \subseteq V$, and hence f is $R\left(g, g^{\prime}\right)$-continuous.

Corollary 3.4. Let $f:(X, g) \rightarrow\left(Y, g^{\prime}\right)$ be a function on GTS's (X, g) and $\left(Y, g^{\prime}\right)$. If Y is strong, then the following are equivalent:
(1) f is $R\left(g, g^{\prime}\right)$-continuous.
(2) For each point $x \in X$ and a g^{\prime}-open set V containing $f(x)$, there is a g-open set U containing x such that $c_{g^{\prime}}\left(f\left(c_{g}(U)\right)\right) \subseteq V$.
(3) For each point $x \in X$ and a g^{\prime}-closed set F with $f(x) \notin F$, there is a g-open set U containing x and a g^{\prime}-open set V such that $F \subseteq V$ and $f\left(c_{g}(U)\right) \cap$ $V=\emptyset$.
(4) For each point $x \in X$ and a g^{\prime}-closed set F with $f(x) \notin F$, there is a g open set U containing x and a g^{\prime}-open set V such that $F \subseteq V$ and $f(U) \cap V=\emptyset$.

Theorem 3.5. Let $f: X \rightarrow Y$ be a function on GTS's (X, g) and $\left(Y, g^{\prime}\right)$. Then if f is $R\left(g, g^{\prime}\right)$-continuous and Y is strong, then it is strongly $\theta\left(g, g^{\prime}\right)$ continuous.
Proof. It follows from Corollary 3.4(2).
Remark 3.6. The converse of Theorem 3.5 is not true in general as shown by the next example.
Example 3.7. Let $X=\{a, b, c\}$ and $Y=\{1,2,3\}$. Consider generalized topologies $g=\{\emptyset,\{a\}\}$ on X and $g^{\prime}=\{\emptyset,\{1\}, Y\}$ on Y. Let us define a function $f: X \rightarrow Y$ as $f(a)=f(b)=f(c)=1$. Then f is strongly $\theta\left(g, g^{\prime}\right)$-continuous. But since $c_{g^{\prime}} f(\{a\})=c_{g^{\prime}}(\{1\})=Y, f$ can not be $R\left(g, g^{\prime}\right)$-continuous.

From Remark 3.8 of [5] and Theorem 3.5, we have the implications:
$R\left(g, g^{\prime}\right)$-continuous \Rightarrow strongly $\theta\left(g, g^{\prime}\right)$-continuous \Rightarrow super $\left(g, g^{\prime}\right)$-continuous $\Rightarrow\left(g, g^{\prime}\right)$-continuous.
Definition 3.8. Let (X, g) and $\left(Y, g^{\prime}\right)$ be generalized topological spaces. Then a function $f: X \rightarrow Y$ is said to be weakly $\left(g, g^{\prime}\right)$-closed if for each g-closed set F in $X, c_{g}^{\prime}\left(f\left(i_{g}(F)\right) \subseteq f(F)\right.$.
Lemma 3.9. Let (X, g) and $\left(Y, g^{\prime}\right)$ be GTS's. Then if a function $f: X \rightarrow Y$ is weakly $\left(g, g^{\prime}\right)$-closed, then $c_{g}^{\prime}(f(U)) \subseteq f\left(c_{g}(U)\right)$ for every g-open set U in X.

Proof. For any g-open set $U \subseteq X$, since $c_{g}(U)$ is g-closed and $U \subseteq i_{g}\left(c_{g}(U)\right)$, it is obtained.

Theorem 3.10. Let (X, g) and $\left(Y, g^{\prime}\right)$ be GTS's. Then if a function $f: X \rightarrow$ Y is weakly $\left(g, g^{\prime}\right)$-closed and strongly $\theta\left(g, g^{\prime}\right)$-continuous, then it is $R\left(g, g^{\prime}\right)$ continuous.

Proof. For $x \in X$, let V be a g^{\prime}-open set containing $f(x)$. Then from the strong $\theta\left(g, g^{\prime}\right)$-continuity of f, there exists a g-open set U of x such that $f\left(c_{g}(U)\right) \subseteq V$. From Lemma 3.9, it follows $c_{g}^{\prime}(f(U)) \cap \mathcal{M}_{g^{\prime}} \subseteq f\left(c_{g}(U)\right) \cap \mathcal{M}_{g^{\prime}} \subseteq V$. Hence by Theorem 3.3(2), f is $R\left(g, g^{\prime}\right)$-continuous.

Definition 3.11. Let (X, g) be a generalized topological space. Then X is said to be relative G-regular (simply, G-regular) [4] on \mathcal{M}_{g} if for $x \in \mathcal{M}_{g}$ and a g-closed set F with $x \notin F$, there exist $U, V \in g$ such that $x \in U, F \cap \mathcal{M}_{g} \subseteq V$ and $U \cap V=\emptyset$.

Theorem 3.12 ([4]). Let (X, g) be a GTS. Then X is G-regular if and only if for $x \in \mathcal{M}_{g}$ and a g-open set U containing x, there is a g-open set V containing x such that $x \in V \subseteq c_{g} V \cap \mathcal{M}_{g} \subseteq U$.

Theorem 3.13. Let (X, g) and $\left(Y, g^{\prime}\right)$ be GTS's. Then a function $f: X \rightarrow Y$ is strongly $\theta\left(g, g^{\prime}\right)$-continuous and Y is G-regular, then it is $R\left(g, g^{\prime}\right)$-continuous.

Proof. For $x \in X$, let V be a g^{\prime}-open set containing $f(x)$. Since Y is G-regular, for the g^{\prime}-open set V containing $f(x)$, there is a g^{\prime}-open set W containing $f(x)$ such that $f(x) \in W \subseteq c_{g}^{\prime} W \cap \mathcal{M}_{g^{\prime}} \subseteq V$. For the g^{\prime}-open set W containing $f(x)$, from the strong $\theta\left(g, g^{\prime}\right)$-continuity of f, there exists a g-open set U of x such that $f\left(c_{g}(U)\right) \subseteq W$. This implies $c_{g}^{\prime}\left(f\left(c_{g}(U)\right)\right) \cap \mathcal{M}_{g^{\prime}} \subseteq c_{g}^{\prime}(W) \cap \mathcal{M}_{g^{\prime}} \subseteq V$. By Theorem 3.3(2), $R\left(g, g^{\prime}\right)$-continuous.

From Corollary 3.13 of [5], Lemma 3.5 and Theorem 3.13, the following corollary is easily obtained:

Corollary 3.14. Let $f: X \rightarrow Y$ be a function between two GTS's (X, g) and $\left(Y, g^{\prime}\right)$. Then if Y is G-regular and strong, then the following things are equivalent:
(1) $R\left(g, g^{\prime}\right)$-continuity.
(2) strongly $\theta\left(g, g^{\prime}\right)$-continuity.
(3) $\left(g, g^{\prime}\right)$-continuity.

Let (X, g) and $\left(Y, g^{\prime}\right)$ be GTS's. Then a function $f: X \rightarrow Y$ is said to be $\left(g, g^{\prime}\right)$-open [3] if for every g-open set G in $X, f(G)$ is g^{\prime}-open in Y.

Theorem 3.15. Let (X, g) and $\left(Y, g^{\prime}\right)$ be GTS's and $f\left(\mathcal{M}_{g}\right)=\mathcal{M}_{g^{\prime}}$. Then if a function $f: X \rightarrow Y$ is $\left(g, g^{\prime}\right)$-open and $R\left(g, g^{\prime}\right)$-continuous, then Y is G-regular.

Proof. Let $y \in \mathcal{M}_{g}^{\prime}$ and V any g^{\prime}-open set containing y. Let $f(x)=y$ for $x \in X$. Then since f is $R\left(g, g^{\prime}\right)$-continuous, there exists a g-open set U containing x such that $c_{g}^{\prime}(f(U)) \cap \mathcal{M}_{g^{\prime}} \subseteq V$. Since f is $\left(g, g^{\prime}\right)$-open, $f(U)$ is a g^{\prime}-open set containing y, and so $f(U)=f(U) \cap \mathcal{M}_{g^{\prime}} \subseteq c_{g}^{\prime}(f(U)) \cap \mathcal{M}_{g^{\prime}} \subseteq V$. Therefore, since $f(U)$ is a g^{\prime}-open set containing y, by Theorem 3.12, Y is G-regular.

References

[1] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), no. 4, 351-357.
[2],δ-and θ-modificatons of generalized topologies, Acta Math. Hungar. 120 (2008), no. 3, 275-279.
[3] W. K. Min, Some results on generalized topological spaces and generalized systems, Acta Math. Hungar. 108 (2005), no. 1-2, 171-181.
[4] , $\left(\delta, \delta^{\prime}\right)$-continuity on generalized topological spaces, Acta Math. Hungar. 129 (2010), no. 4, 350-356.
[5] , Some strong forms of $\left(g, g^{\prime}\right)$-continuity on generalized topological spaces, submitted.

Young Key Kim
Department of Mathematics
MyongJi University
Yongin 449-728, Korea
E-mail address: ykkim@mju.ac.kr
Won Keun Min
Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea
E-mail address: wkmin@kangwon.ac.kr

[^0]: Received March 16, 2011.
 2010 Mathematics Subject Classification. 54A05.
 Key words and phrases. $\left(g, g^{\prime}\right)$-continuous, super $\left(g, g^{\prime}\right)$-continuous, strongly $\theta\left(g, g^{\prime}\right)$ continuous, $R\left(g, g^{\prime}\right)$-continuous, G-regular.

