ON A CLASS OF THREE-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS

Uday Chand De and Krishnendu De

Abstract

The object of the present paper is to study 3-dimensional trans-Sasakian manifolds with conservative curvature tensor and also 3dimensional conformally flat trans-Sasakian manifolds. Next we consider compact connected η-Einstein 3 -dimensional trans-Sasakian manifolds. Finally, an example of a 3-dimensional trans-Sasakian manifold is given, which verifies our results.

1. Introduction

Trans-Sasakian manifolds arose in a natural way from the classification of almost contact metric structures by D. Chinea and C. Gonzales [6] and they appear as a natural generalization of both Sasakian and Kenmotsu manifolds. Again in the Gray-Hervella classification of almost Hermite manifolds [10], there appears a class W_{4} of Hermitian manifolds which are closely related to locally conformally Kähler manifolds. An almost contact metric structure on a manifold M is called a trans-Sasakian structure [17] if the product manifold $M \times \mathbb{R}$ belongs to the class W_{4}. The class $\mathrm{C}_{6} \bigoplus \mathrm{C}_{5}([15],[16])$ coincides with the class of trans-Sasakian structures of type (α, β). In [16], the local nature of the two subclasses C_{5} and C_{6} of trans-Sasakian structures is characterized completely. In [7], some curvature identities and sectional curvatures for $\mathrm{C}_{5}, \mathrm{C}_{6}$ and trans-Sasakian manifolds are obtained. It is known that [12] trans-Sasakian structures of type $(0,0),(0, \beta)$, and $(\alpha, 0)$ are cosymplectic, β-Kenmotsu and α Sasakian, respectively, where $\alpha, \beta \in \mathbb{R}$.

The local structure of trans-Sasakian manifolds of dimension $n \geq 5$ has been completely characterized by J. C. Marrero [15]. He proved that a transSasakian manifold of dimension $n \geq 5$ is either cosymplectic or α-Sasakian or β-Kenmotsu manifold. Three-dimensional trans-Sasakian manifolds have been studied by De and Tripathi [9], De and Sarkar [8], Kim, Prasad and Tripathi [14], Bagewadi and Venkatesha [1], Shukla and Singh [18] and many others. In

Received January 11, 2012.
2010 Mathematics Subject Classification. 53C15, 53C25.
Key words and phrases. trans-Sasakian manifold, conservative curvature tensor, η-Einstein manifold.
[13] Jun and Kim studied 3-dimensional almost contact metric manifolds. The curvature tensor R in a Riemanian manifold is said to be conservative [11], that is, $\operatorname{div} R=0$ if and only if $\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z)$ where S is the Ricci tensor of the manifold. Moreover, Boyer and Galicki [5] proved that if M is a compact η-Einstein K-contact manifold with Ricci tensor $S=a g+b \eta \otimes \eta$, and if $a \geq-2$, then M is Sasakian. Motivated by these works in this paper we study some curvature conditions in a 3 -dimensional trans-Sasakian manifold.

The paper is organized as follows. In Section 2, some preliminary results are recalled. After preliminaries in Section 3, we give an example of a 3-dimensional trans-Sasakian manifold of type (α, β). Then we study 3 -dimensional connected trans-Sasakian manifold with conservative curvature tensor. In the next section, we study 3 -dimensional conformally flat connected trans-Sasakian manifold. In Section 6, we prove that if a compact connected 3-dimensional transSasakian manifold is η-Einstein with constant coefficients, then it is either α Sasakian or β-Kenmotsu. Finally, we construct an example of a 3-dimensional trans-Sasakian manifold with constant function α, β on M.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g), that is, ϕ is an (1,1) tensor field, ξ is a vector field, η is a 1 -form and g is a compatible Riemannian metric such that

$$
\begin{gather*}
\phi^{2}(X)=-X+\eta(X) \xi, \eta(\xi)=1, \phi \xi=0, \eta \phi=0, \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}\\
g(X, \phi Y)=-g(\phi X, Y), g(X, \xi)=\eta(X) \tag{2.3}
\end{gather*}
$$

for all X and Y tangent to M ([2], [3]).
The fundamental 2-form Φ of the manifold is defined by

$$
\begin{equation*}
\Phi(X, Y)=g(X, \phi Y) \tag{2.4}
\end{equation*}
$$

for all X and Y tangent to M.
An almost contact metric structure (ϕ, ξ, η, g) on a connected manifold M is called trans-Sasakian structure [17] if $(M \times \mathbb{R}, J, G)$ belongs to the class W_{4} [10], where J is the almost complex structure on $M \times \mathbb{R}$ defined by

$$
J\left(X, f \frac{d}{d f}\right)=\left(\phi X-f \xi, \eta(X) \frac{d}{d t}\right)
$$

for any vector fields X on M, f is a smooth function on $M \times \mathbb{R}$ and G is the product metric on $M \times \mathbb{R}$. This may be expressed by the condition [4]

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{2.5}
\end{equation*}
$$

for smooth functions α and β on M. Hence we say that the trans-Sasakian structure is of type (α, β). From (2.5) it follows that

$$
\begin{equation*}
\nabla_{X} \xi=-\alpha(\phi X)+\beta(X-\eta(X) \xi) \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} \eta\right) Y=-\alpha g(\phi X, Y)+\beta g(\phi X, \phi Y) \tag{2.7}
\end{equation*}
$$

An explicit example of a 3-dimensional proper trans-Sasakian manifold is constructed in [15]. In [9], Ricci tensor and curvature tensor for 3-dimensional trans-Sasakian manifolds are studied and their explicit formulae are given.

From [9] we know that for a 3 -dimensional trans-Sasakian manifold

$$
\begin{equation*}
2 \alpha \beta+\xi \alpha=0 \tag{2.8}
\end{equation*}
$$

$$
R(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(Y) X-\eta(X) Y)
$$

$$
\begin{align*}
S(X, \xi)= & \left(2\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(X)-X \beta-(\phi X) \alpha \tag{2.9}\\
S(X, Y)= & \left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right) g(X, Y) \\
& -\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Y) \tag{2.10}\\
& -(Y \beta+(\phi Y) \alpha) \eta(X)-(X \beta+(\phi X) \alpha) \eta(Y)
\end{align*}
$$

$$
\begin{equation*}
-\eta(Y)(X \beta) \xi+\phi(X) \alpha \xi \tag{2.11}
\end{equation*}
$$

$$
+\eta(X)(Y \beta) \xi+\phi(Y) \alpha \xi
$$

$$
-(Y \beta) X+(X \beta) Y-(\phi(Y) \alpha) X+(\phi(X) \alpha) Y
$$

and

$$
\begin{align*}
R(X, Y) Z= & \left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right)(g(Y, Z) X-g(X, Z) Y \\
& -g(Y, Z)\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \xi\right. \\
& -\eta(X)(\phi g r a d \alpha-\operatorname{grad} \beta)+(X \beta+(\phi X) \alpha) \xi] \\
& +g(X, Z)\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \xi\right. \\
& -\eta(Y)(\phi g r a d \alpha-g r a d \beta)+(Y \beta+(\phi Y) \alpha) \xi] \tag{2.12}\\
& -[(Z \beta+(\phi Z) \alpha) \eta(Y)+(Y \beta+(\phi Y) \alpha) \eta(Z) \\
& \left.\left.+\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \eta(Z)\right] X \\
& +[(Z \beta+(\phi Z) \alpha) \eta(X)+(X \beta+(\phi X) \alpha) \eta(Z) \\
& \left.\left.+\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Z)\right] Y,
\end{align*}
$$

where S is the Ricci tensor of type $(0,2)$ and R is the curvature tensor of type $(1,3)$ and r is the scalar curvature of the manifold M.

3. Example of a 3-dimensional trans-Sasakian manifold of type (α, β)

We consider the 3-dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}, z \neq 0\right\}$, where (x, y, z) are standard co-ordinate of \mathbb{R}^{3}.

The vector fields

$$
e_{1}=z\left(\frac{\partial}{\partial x}+y \frac{\partial}{\partial z}\right), \quad e_{2}=z \frac{\partial}{\partial y}, \quad e_{3}=\frac{\partial}{\partial z}
$$

are linearly independent at each point of M.
Let g be the Riemannian metric defined by

$$
\begin{aligned}
& g\left(e_{1}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=0, \\
& g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1 .
\end{aligned}
$$

Let η be the 1-form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in \chi(M)$. Let ϕ be the $(1,1)$ tensor field defined by

$$
\phi\left(e_{1}\right)=e_{2}, \quad \phi\left(e_{2}\right)=-e_{1}, \quad \phi\left(e_{3}\right)=0 .
$$

Then using the linearity of ϕ and g, we have

$$
\begin{gathered}
\eta\left(e_{3}\right)=1 \\
\phi^{2} Z=-Z+\eta(Z) e_{3} \\
g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W)
\end{gathered}
$$

for any $Z, W \in \chi(M)$, the set of all smooth vector fields on M.
Then for $e_{3}=\xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to metric g and R be the curvature tensor of g. Then we have

$$
\left[e_{1}, e_{2}\right]=y e_{2}-z^{2} e_{3},\left[e_{1}, e_{3}\right]=-\frac{1}{z} e_{1} \text { and }\left[e_{2}, e_{3}\right]=-\frac{1}{z} e_{2} .
$$

Taking $e_{3}=\xi$ and using Koszul formula for the Riemannian metric g, we can easily calculate

$$
\begin{gathered}
\nabla_{e_{1}} e_{3}=-\frac{1}{z} e_{1}+\frac{1}{z^{2}} e_{2}, \quad \nabla_{e_{1}} e_{2}=-\frac{1}{2} z^{2} e_{3}, \\
\nabla_{e_{1}} e_{1}=\frac{1}{z} e_{3}, \nabla_{e_{2}} e_{3}=-\frac{1}{z} e_{2}-\frac{1}{2} z^{2} e_{1}, \\
\nabla_{e_{2}} e_{2}=y e_{1}+\frac{1}{z} e_{3}, \quad \nabla_{e_{2}} e_{1}=\frac{1}{2} z^{2} e_{3}-y e_{2}, \\
\nabla_{e_{3}} e_{3}=0, \quad \nabla_{e_{3}} e_{2}=-\frac{1}{2} z^{2} e_{1}, \quad \nabla_{e_{3}} e_{1}=\frac{1}{2} z^{2} e_{2} .
\end{gathered}
$$

From the above it can be easily seen that (ϕ, ξ, η, g) is a trans-Sasakian structure on M. Consequently $M^{3}(\phi, \xi, \eta, g)$ is a trans-Sasakian manifold with $\alpha=$ $-\frac{1}{2} z^{2} \neq 0$ and $\beta=-\frac{1}{z} \neq 0$.

4. 3-Dimensional connected trans-Sasakian manifolds with conservative curvature tensor

Let M be a 3 -dimensional connected trans-Sasakian manifold with conservative curvature tensor [11], that is, $\operatorname{div} R=0$. Then its Ricci tensor is given by $\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z)$. From this we obtain $r=$ constant. We know that

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=\nabla_{X} S(Y, Z)-S\left(\nabla_{X} Y, Z\right)-S\left(Y, \nabla_{X} Z\right) \tag{4.1}
\end{equation*}
$$

Using (2.10) we have

$$
\begin{aligned}
& \left(\nabla_{X} S\right)(Y, Z) \\
= & {\left[\frac{d r(X)}{2}+\nabla_{X}(\xi \beta)-2 \alpha d \alpha(X)+2 \beta d \beta(X)\right] g(Y, Z) } \\
& +\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right) \nabla_{X} g(Y, Z) \\
& -\left[\frac{d r(X)}{2}+\nabla_{X}(\xi \beta)-6 \alpha d \alpha(X)+6 \beta d \beta(X)\right] \eta(Y) \eta(Z) \\
& -\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\left[\nabla_{X} \eta(Y) \eta(Z)+\eta(Y) \nabla_{X} \eta(Z)\right] \\
& -\left(\nabla_{X}(Z \beta+(\phi Z) \alpha)\right) \eta(Y)-(Z \beta+(\phi Z) \alpha) \nabla_{X} \eta(Y) \\
& -\left(\nabla_{X}(Y \beta+(\phi Y) \alpha)\right) \eta(Z)-(Y \beta+(\phi Y) \alpha) \nabla_{X} \eta(Z) \\
& -\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right) g\left(\nabla_{X} Y, Z\right) \\
& +\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta\left(\nabla_{X} Y\right) \eta(Z) \\
& +(Z \beta+(\phi Z) \alpha) \eta\left(\nabla_{X} Y\right)+\left(\left(\nabla_{X} Y\right) \beta+\left(\phi\left(\nabla_{X} Y\right)\right) \alpha\right) \eta(Z) \\
& -\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right) g\left(Y, \nabla_{X} Z\right) \\
& +\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \eta\left(\nabla_{X} Z\right) \\
& +\left(\left(\nabla_{X} Z\right) \beta+\left(\phi\left(\nabla_{X} Z\right)\right) \alpha\right) \eta(Y)+(Y \beta+(\phi Y) \alpha) \eta\left(\nabla_{X} Z\right) r .
\end{aligned}
$$

The above relation can be written as

$$
\begin{align*}
& \left(\nabla_{X} S\right)(Y, Z) \\
= & {\left[\frac{d r(X)}{2}+\nabla_{X}(\xi \beta)-2 \alpha d \alpha(X)+2 \beta d \beta(X)\right] g(Y, Z) } \\
& -\left[\frac{d r(X)}{2}+\nabla_{X}(\xi \beta)-6 \alpha d \alpha(X)+6 \beta d \beta(X)\right] \eta(Y) \eta(Z) \tag{4.3}\\
& -\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\left[\left(\nabla_{X} \eta\right)(Y) \eta(Z)+\eta(Y)\left(\nabla_{X} \eta\right)(Z)\right]
\end{align*}
$$

$$
\begin{aligned}
& -\left(\nabla_{X}(Z \beta+(\phi Z) \alpha)\right) \eta(Y)-(Z \beta+(\phi Z) \alpha)\left(\nabla_{X} \eta\right)(Y) \\
& -\left(\nabla_{X}(Y \beta+(\phi Y) \alpha)\right) \eta(Z)-(Y \beta+(\phi Y) \alpha)\left(\nabla_{X} \eta\right)(Z) \\
& +\left(\left(\phi\left(\nabla_{X} Y\right)\right) \alpha\right) \eta(Z)+\left(\left(\phi\left(\nabla_{X} Z\right)\right) \alpha\right) \eta(Y) .
\end{aligned}
$$

Now from (4.3) we have

$$
\begin{aligned}
& \left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z) \\
= & {\left[\frac{d r(X)}{2}+\nabla_{X}(\xi \beta)-2 \alpha d \alpha(X)+2 \beta d \beta(X)\right] g(Y, Z) } \\
& -\left[\frac{d r(Y)}{2}+\nabla_{Y}(\xi \beta)-2 \alpha d \alpha(Y)+2 \beta d \beta(Y)\right] g(X, Z) \\
& -\left[\frac{d r(X)}{2}+\nabla_{X}(\xi \beta)-6 \alpha d \alpha(X)+6 \beta d \beta(X)\right] \eta(Y) \eta(Z) \\
& +\left[\frac{d r(Y)}{2}+\nabla_{Y}(\xi \beta)-6 \alpha d \alpha(Y)+6 \beta d \beta(Y)\right] \eta(X) \eta(Z) \\
& -\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\left[\left(\nabla_{X} \eta\right)(Y) \eta(Z)+\eta(Y)\left(\nabla_{X} \eta\right)(Z)\right. \\
& \left.-\left(\nabla_{Y} \eta\right)(X) \eta(Z)-\eta(X)\left(\nabla_{Y} \eta\right)(Z)\right] \\
& -\left(\nabla_{X}(Z \beta+(\phi Z) \alpha)\right) \eta(Y)+\left(\nabla_{Y}(Z \beta+(\phi Z) \alpha)\right) \eta(X) \\
& -\left(\nabla_{X}(Y \beta+(\phi Y) \alpha)\right) \eta(Z)+\left(\nabla_{Y}(X \beta+(\phi X) \alpha)\right) \eta(Z) \\
& -(Z \beta+(\phi Z) \alpha)\left[\left(\nabla_{X} \eta\right)(Y)-\left(\nabla_{Y} \eta\right)(X)\right] \\
& -(Y \beta+(\phi Y) \alpha)\left(\nabla_{X} \eta\right)(Z) \\
& +(X \beta+(\phi X) \alpha)\left(\nabla_{Y} \eta\right)(Z) \\
& +\left(\left(\phi\left(\nabla_{X} Y\right)\right) \alpha\right) \eta(Z)-\left(\left(\phi\left(\nabla_{Y} X\right)\right) \alpha\right) \eta(Z) \\
& +\left(\left(\phi\left(\nabla_{X} Z\right)\right) \alpha\right) \eta(Y)-\left(\left(\phi\left(\nabla_{Y} Z\right)\right) \alpha\right) \eta(X) .
\end{aligned}
$$

Suppose $\operatorname{div} R=0$ and α, β are constants. Then using (2.7) in (4.4) and using $r=$ constant, we obtain

$$
\begin{align*}
& \left(\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right)[-\alpha g(\phi X, Y) \eta(Z) \\
& -\alpha g(\phi X, Z) \eta(Y)+\alpha g(\phi Y, X) \eta(Z) \tag{4.5}\\
& +\alpha g(\phi Y, Z) \eta(X)+\beta g(\phi X, \phi Z) \eta(Y)-\beta g(\phi Y, \phi Z) \eta(X)]=0 .
\end{align*}
$$

Let $\left\{e_{0}, e_{1}, e_{2}\right\}$ be a local ϕ-basis, that is, an orthonormal frame such that $e_{0}=\xi$ and $e_{2}=\phi e_{1}$. In (4.5) putting $X=e_{1}, Y=e_{2}$, we get

$$
\begin{equation*}
2 \alpha\left[\left(\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right] \eta(Z)=0\right. \tag{4.6}
\end{equation*}
$$

This implies either $\alpha=0$ or $r=6\left(\alpha^{2}-\beta^{2}\right)$, or both holds. If $r=6\left(\alpha^{2}-\beta^{2}\right)$, then from (2.10) it follows that

$$
\begin{equation*}
S(X, Y)=2\left(\alpha^{2}-\beta^{2}\right) g(X, Y) \tag{4.7}
\end{equation*}
$$

This implies that the manifold is an Einstein manifold. This leads to the following theorem:
Theorem 4.1. If a 3-dimensional connected trans-Sasakian manifold is of conservative curvature tensor, then the manifold is either a β-Kenmotsu manifold or an Einstein manifold or both holds provided $\alpha, \beta=$ constant.

If the manifold is an Einstein manifold, then the manifold is of conservative curvature tensor. Hence we obtain the following:
Corollary 1. A 3-dimensional connected trans-Sasakian manifold which is not a β-Kenmotsu manifold is of conservative curvature tensor if and only if the manifold is an Einstein manifold provided $\alpha, \beta=$ constant.

5. 3-Dimensional conformally flat connected trans-Sasakian manifolds

Let M be a 3-dimensional conformally flat connected trans-Sasakian manifold. At first we prove the following:
Lemma 5.1. Let M be a 3-dimensional connected trans-Sasakian manifold with $\alpha, \beta=$ constant. If there exist functions L and N on M such that

$$
\begin{equation*}
\left(\nabla_{X} Q\right) Y-\left(\nabla_{Y} Q\right) X=L X+N Y, X, Y \in \chi(M) \tag{5.1}
\end{equation*}
$$

then either $\alpha=0$ or

$$
\begin{equation*}
Q X=2\left(\alpha^{2}-\beta^{2}\right) X \tag{5.2}
\end{equation*}
$$

Proof. We have from (2.10),

$$
\begin{equation*}
Q X=a X+b \eta(X) \xi \tag{5.3}
\end{equation*}
$$

where $a=\left(\frac{r}{2}-\left(\alpha^{2}-\beta^{2}\right)\right)$ and $b=-\left(\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right)$ and thus using (5.3) we have

$$
\begin{align*}
& \left(\nabla_{X} Q\right) Y-\left(\nabla_{Y} Q\right) X \tag{5.4}\\
= & (X a) Y-(Y a) X+(X b) \eta(Y) \xi-(Y b) \eta(X) \xi \\
& +b \alpha(\eta(x) \phi Y-\eta(Y) \phi(X))+b \beta(\eta(Y) X-\eta(X) Y)-2 \alpha b g(\phi X, Y) \xi
\end{align*}
$$

Replacing X by ϕX and Y by ϕY in (5.3) we get
(5.5) $\left(\nabla_{\phi X} Q\right) \phi Y-\left(\nabla_{\phi Y} Q\right) \phi X=(\phi X a) \phi Y-(\phi Y a) \phi X-2 \alpha b g\left(\phi^{2} X, \phi Y\right) \xi$.

From (5.1) and (5.5), we obtain

$$
\begin{equation*}
(L+(\phi Y) a) \phi X+(N-(\phi X) a) \phi Y=2 \alpha b g\left(\phi^{2} X, \phi Y\right) \xi \tag{5.6}
\end{equation*}
$$

Using (2.1) in (5.6) yields

$$
\begin{equation*}
2 \alpha b g(X, \phi Y)=0 \tag{5.7}
\end{equation*}
$$

which implies either $\alpha=0$ or $b=0$. Thus from the definition of η-Einstein manifold, we get $Q X=a X$ and hence $Q X=2\left(\alpha^{2}-\beta^{2}\right) X$.

It is classical that on a 3-dimensional conformally flat Riemannian manifold [19], we have

$$
\begin{equation*}
\left(\nabla_{X} Q\right) Y-\left(\nabla_{Y} Q\right) X=\frac{1}{4}(d r(X) Y-d r(Y) X) \tag{5.8}
\end{equation*}
$$

Then by Lemma 5.1 we get either $\alpha=0$ or $Q X=2\left(\alpha^{2}-\beta^{2}\right) X$. This leads to the following theorem:

Theorem 5.1. A 3-dimensional conformally flat connected trans-Sasakian manifold is either a β-Kenmotsu manifold or an Einstein manifold.

Since an Einstein manifold is of conservative curvature tensor, hence we obtain the following:

Corollary 2. In a 3-dimensional conformally flat connected trans-Sasakian manifold which is not a β-Kenmotsu manifold, the curvature tensor is conservative.

6. Compact connected $\boldsymbol{\eta}$-Einstein manifolds

Let M be a 3-dimensional compact connected trans-Sasakian manifold. If the manifold is η-Einstein, then the Ricci tensor S of type $(0,2)$ of the manifold is given by

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{6.1}
\end{equation*}
$$

where a, b are smooth functions on M. Here we suppose that a and b are constants. Putting $Y=\xi$ in (6.1) and using (2.9), we get

$$
\begin{equation*}
X \beta+(\phi X) \alpha+\left[(a+b)-2\left(\alpha^{2}-\beta^{2}\right)+\xi \beta\right] \eta(X)=0 . \tag{6.2}
\end{equation*}
$$

For $X=\xi,(6.2)$ yields

$$
\begin{equation*}
\xi \beta=\left(\alpha^{2}-\beta^{2}\right)-\frac{(a+b)}{2} . \tag{6.3}
\end{equation*}
$$

By virtue of (6.2) and (6.3), it follows that

$$
\begin{equation*}
X \beta+(\phi X) \alpha+\left[\frac{(a+b)}{2}-\alpha^{2}+\beta^{2}\right] \eta(X)=0 \tag{6.4}
\end{equation*}
$$

The gradient of the function β is related to the exterior derivative $d \beta$ by the formula

$$
\begin{equation*}
d \beta(X)=g(\operatorname{grad} \beta, X) . \tag{6.5}
\end{equation*}
$$

Using (6.5) in (6.4) we obtain

$$
\begin{equation*}
d \beta(X)+g(\operatorname{grad} \alpha, \phi X)+\left[\frac{(a+b)}{2}-\alpha^{2}+\beta^{2}\right] \eta(X)=0 \tag{6.6}
\end{equation*}
$$

Differentiating (6.6) covariantly with respect to Y we get

$$
\begin{align*}
& \left(\nabla_{Y} d \beta\right)(X)+g\left(\nabla_{Y} \operatorname{grad\alpha }, \phi X\right)+g\left(\operatorname{grad} \alpha,\left(\nabla_{Y} \phi\right) X\right) \\
& +Y\left(\beta^{2}-\alpha^{2}\right) \eta(X)+\left[\frac{(a+b)}{2}-\alpha^{2}+\beta^{2}\right]\left(\nabla_{Y} \eta\right)(X)=0 . \tag{6.7}
\end{align*}
$$

Interchanging X and Y in (6.7), we get

$$
\begin{align*}
& \left(\nabla_{X} d \beta\right)(Y)+g\left(\nabla_{X} \operatorname{grad} \alpha, \phi Y\right)+g\left(\operatorname{grad} \alpha,\left(\nabla_{X} \phi\right) Y\right) \\
& +X\left(\beta^{2}-\alpha^{2}\right) \eta(Y)+\left[\frac{(a+b)}{2}-\alpha^{2}+\beta^{2}\right]\left(\nabla_{X} \eta\right)(Y)=0 \tag{6.8}
\end{align*}
$$

Subtracting (6.7) from (6.8)we get

$$
\begin{align*}
& \left.\left.g\left(\nabla_{X} \operatorname{grad} \alpha, \phi Y\right)-g\left(\nabla_{Y} \operatorname{grad} \alpha, \phi X\right)+\left[\left(\nabla_{X} \phi\right) Y\right)-\left(\nabla_{Y} \phi\right) X\right)\right] \alpha \\
& +\left[X\left(\beta^{2}-\alpha^{2}\right) \eta(Y)-Y\left(\beta^{2}-\alpha^{2}\right) \eta(X)\right] \tag{6.9}\\
& +\left[\frac{(a+b)}{2}-\alpha^{2}+\beta^{2}\right]\left[\left(\nabla_{X} \eta\right)(Y)-\left(\nabla_{Y} \eta\right)(X)\right]=0
\end{align*}
$$

From (2.7) and (2.4) we get

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)-\left(\nabla_{Y} \eta\right)(X)=2 \alpha \Phi(X, Y) \tag{6.10}
\end{equation*}
$$

Using (6.10) in (6.9) we have

$$
\begin{align*}
& \left.\left.g\left(\nabla_{X} \text { grad } \alpha, \phi Y\right)-g\left(\nabla_{Y} \operatorname{grad} \alpha, \phi X\right)+\left[\left(\nabla_{X} \phi\right) Y\right)-\left(\nabla_{Y} \phi\right) X\right)\right] \alpha \\
& +\left[X\left(\beta^{2}-\alpha^{2}\right) \eta(Y)-Y\left(\beta^{2}-\alpha^{2}\right) \eta(X)\right] \tag{6.11}\\
& +2\left[\frac{(a+b)}{2}-\alpha^{2}+\beta^{2}\right] \Phi(X, Y)=0
\end{align*}
$$

Let $\left\{e_{0}, e_{1}, e_{2}\right\}$ be a local ϕ-basis, that is, an orthonormal frame such that $e_{0}=\xi$ and $e_{2}=\phi e_{1}$. In (2.5) putting $X=e_{1}, Y=e_{2}$, we get

$$
\begin{align*}
\left(\nabla_{e_{1}} \phi\right) e_{2} & =\alpha\left(g\left(e_{1}, e_{2}\right) \xi-\eta\left(e_{2}\right) e_{1}\right)+\beta\left(g\left(\phi e_{1}, e_{2}\right) \xi-\eta\left(e_{2}\right) \phi e_{1}\right) \tag{6.12}\\
& =\beta g\left(\phi e_{1}, e_{2}\right) \xi=\beta \xi
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\left(\nabla_{e_{2}} \phi\right) e_{1}=-\beta \xi \tag{6.13}
\end{equation*}
$$

Now,

$$
\begin{equation*}
\Phi\left(e_{1}, e_{2}\right)=g\left(e_{1}, \phi e_{2}\right)=g\left(e_{1}, \phi^{2} e_{1}\right)=-1 . \tag{6.14}
\end{equation*}
$$

In (6.11) putting $X=e_{1}$ and $Y=e_{2}$ and using (6.12), (6.13) and (6.14) we obtain

$$
\begin{equation*}
g\left(\nabla_{e_{1}} g r a d \alpha, e_{1}\right)+g\left(\nabla_{e_{2}} \operatorname{grad} \alpha, e_{2}\right)=2 \beta \xi \alpha-2 \alpha\left[\frac{(a+b)}{2}-\alpha^{2}+\beta^{2}\right] \tag{6.15}
\end{equation*}
$$

Also (2.8) can be written as

$$
\begin{equation*}
g(\operatorname{grad} \alpha, \xi)=-2 \alpha \beta \tag{6.16}
\end{equation*}
$$

Differentiating (6.16) covariantly with respect to ξ we get

$$
\begin{equation*}
g\left(\nabla_{\xi} g r a d \alpha, \xi\right)+g\left(\operatorname{grad} \alpha, \nabla_{\xi} \xi\right)=-2 \beta(\xi \alpha)-2 \alpha(\xi \beta) \tag{6.17}
\end{equation*}
$$

In view of (6.3) we can write the above relation as

$$
\begin{equation*}
g\left(\nabla_{\xi} \operatorname{grad} \alpha, \xi\right)=-2 \beta(\xi \alpha)+2 \alpha\left[\frac{(a+b)}{2}-\alpha^{2}+\beta^{2}\right] \tag{6.18}
\end{equation*}
$$

From (6.15) and (6.18), we get $\Delta \alpha=0$, where Δ is the Laplacian defined by $\Delta \alpha=\sum_{i=0}^{2} g\left(\nabla_{e_{i}} g r a d \alpha, e_{i}\right)$.

Since M is compact, we get α is constant.
Now let us consider the following two cases:
Case i): In this case we suppose that α is a non-zero constant. Then by (2.8), $\beta=0$ everywhere on M.

Case ii): In this case let $\alpha=0$. Then from (6.4) it follows

$$
X \beta+\left[\frac{(a+b)}{2}+\beta^{2}\right] \eta(X)=0
$$

that is,

$$
g(\operatorname{grad} \beta, X)+\left[\frac{(a+b)}{2}+\beta^{2}\right] g(X, \xi)=0 .
$$

Therefore,

$$
\begin{equation*}
\operatorname{grad} \beta+\left[\frac{(a+b)}{2}+\beta^{2}\right] \xi=0 \tag{6.19}
\end{equation*}
$$

Differentiating (6.19) covariantly with respect to X we have

$$
\nabla_{X} \operatorname{grad} \beta+\left(X \beta^{2}\right) \xi+\left[\frac{(a+b)}{2}+\beta^{2}\right] \nabla_{X} \xi=0
$$

Using (2.6) we get from above

$$
\nabla_{X} \operatorname{grad} \beta+\left(X \beta^{2}\right) \xi+\left[\frac{(a+b)}{2}+\beta^{2}\right](-\alpha \phi X+\beta(X-\eta(X) \xi))=0
$$

Now taking inner product with X, we have

$$
\begin{align*}
g\left(\nabla_{X} \operatorname{grad} \beta, X\right)= & -g\left(\left(X \beta^{2}\right) \xi, X\right)-\left[\frac{(a+b)}{2}+\beta^{2}\right](g(-\alpha \phi X, X) \tag{6.20}\\
& +\beta g(X-\eta(X) \xi, X))
\end{align*}
$$

Therefore putting $X=e_{i}$ and taking summation over $i, i=0,1,2$, we get from above

$$
\begin{equation*}
\Delta \beta=-2 \beta\left(\xi \beta+\frac{(a+b)}{2}+\beta^{2}\right) . \tag{6.21}
\end{equation*}
$$

For $\alpha=0$, (6.3) yields $\xi \beta=-\left(\frac{(a+b)}{2}+\beta^{2}\right)$, which in view of (6.21) gives $\Delta \beta=0$. Hence $\beta=$ constant, M being compact. This leads to the following:

Theorem 6.1. If a compact 3-dimensional trans-Sasakian manifold is an η Einstein manifold with constant coefficients, then it is either α-Sasakian or β-Kenmotsu.

7. Example of a 3-dimensional trans-Sasakian manifold

We consider the 3-dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}, z \neq 0\right\}$, where (x, y, z) are standard co-ordinate of \mathbb{R}^{3}.

The vector fields

$$
e_{1}=z \frac{\partial}{\partial x}, \quad e_{2}=z \frac{\partial}{\partial y}, \quad e_{3}=z \frac{\partial}{\partial z}
$$

are linearly independent at each point of M.
Let g be the Riemannian metric defined by

$$
\begin{gathered}
g\left(e_{1}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=0 \\
g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1
\end{gathered}
$$

that is, the form of the metric becomes

$$
g=\frac{d x^{2}+d y^{2}+d z^{2}}{z^{2}}
$$

Let η be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in \chi(M)$. Let ϕ be the $(1,1)$ tensor field defined by

$$
\phi\left(e_{1}\right)=-e_{2}, \quad \phi\left(e_{2}\right)=e_{1}, \quad \phi\left(e_{3}\right)=0
$$

Then using the linearity of ϕ and g, we have

$$
\begin{gathered}
\eta\left(e_{3}\right)=1 \\
\phi^{2} Z=-Z+\eta(Z) e_{3} \\
g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W)
\end{gathered}
$$

for any $Z, W \in \chi(M)$.
Then for $e_{3}=\xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to metric g. Then we have

$$
\begin{aligned}
{\left[e_{1}, e_{3}\right] } & =e_{1} e_{3}-e_{3} e_{1} \\
& =z \frac{\partial}{\partial x}\left(z \frac{\partial}{\partial z}\right)-z \frac{\partial}{\partial z}\left(z \frac{\partial}{\partial x}\right) \\
& =z^{2} \frac{\partial^{2}}{\partial x \partial z}-z^{2} \frac{\partial^{2}}{\partial z \partial x}-z \frac{\partial}{\partial x} \\
& =-e_{1} .
\end{aligned}
$$

Similarly,

$$
\left[e_{1}, e_{2}\right]=0 \quad \text { and } \quad\left[e_{2}, e_{3}\right]=-e_{2}
$$

The Riemannian connection ∇ of the metric g is given by

$$
\begin{align*}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y]), \tag{7.1}
\end{align*}
$$

which known as Koszul's formula.
Using (7.1) we have

$$
\begin{align*}
2 g\left(\nabla_{e_{1}} e_{3}, e_{1}\right) & =-2 g\left(e_{1}, e_{1}\right) \\
& =2 g\left(-e_{1}, e_{1}\right) \tag{7.2}
\end{align*}
$$

Again by (7.1)

$$
\begin{equation*}
2 g\left(\nabla_{e_{1}} e_{3}, e_{2}\right)=0=2 g\left(-e_{1}, e_{2}\right) \tag{7.3}
\end{equation*}
$$

and

$$
\begin{equation*}
2 g\left(\nabla_{e_{1}} e_{3}, e_{3}\right)=0=2 g\left(-e_{1}, e_{3}\right) \tag{7.4}
\end{equation*}
$$

From (7.2), (7.3) and (7.4) we obtain

$$
2 g\left(\nabla_{e_{1}} e_{3}, X\right)=2 g\left(-e_{1}, X\right)
$$

for all $X \in \chi(M)$.
Thus

$$
\nabla_{e_{1}} e_{3}=-e_{1} .
$$

Therefore, (7.1) further yields

$$
\begin{align*}
& \nabla_{e_{1}} e_{3}=-e_{1}, \quad \nabla_{e_{1}} e_{2}=0, \quad \nabla_{e_{1}} e_{1}=e_{3}, \\
& \nabla_{e_{2}} e_{3}=-e_{2}, \quad \nabla_{e_{2}} e_{2}=e_{3}, \quad \nabla_{e_{2}} e_{1}=0, \tag{7.5}\\
& \nabla_{e_{3}} e_{3}=0, \quad \nabla_{e_{3}} e_{2}=0, \quad \nabla_{e_{3}} e_{1}=0 .
\end{align*}
$$

(7.5) tells us that the manifold satisfies (2.6) for $\alpha=0$ and $\beta=-1$ and $\xi=e_{3}$. Hence the manifold is a trans-Sasakian manifold of type $(0,-1)$.

It is known that

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z . \tag{7.6}
\end{equation*}
$$

With the help of the above results and using (7.6) it can be easily verified that

$$
\begin{array}{rll}
R\left(e_{1}, e_{2}\right) e_{3}=0, & R\left(e_{2}, e_{3}\right) e_{3}=-e_{2}, & R\left(e_{1}, e_{3}\right) e_{3}=-e_{1}, \\
R\left(e_{1}, e_{2}\right) e_{2}=-e_{1}, & R\left(e_{2}, e_{3}\right) e_{2}=e_{3}, & R\left(e_{1}, e_{3}\right) e_{2}=0 \\
R\left(e_{1}, e_{2}\right) e_{1}=e_{2}, & R\left(e_{2}, e_{3}\right) e_{1}=0, & R\left(e_{1}, e_{3}\right) e_{1}=e_{3} .
\end{array}
$$

From the above expressions of the curvature tensor we obtain

$$
\begin{aligned}
S\left(e_{1}, e_{1}\right) & =g\left(R\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right)+g\left(R\left(e_{1}, e_{3}\right) e_{3}, e_{1}\right) \\
& =-2
\end{aligned}
$$

Similarly we have

$$
S\left(e_{2}, e_{2}\right)=S\left(e_{3}, e_{3}\right)=-2 .
$$

Therefore,

$$
r=S\left(e_{1}, e_{1}\right)+S\left(e_{2}, e_{2}\right)+S\left(e_{3}, e_{3}\right)=-6 .
$$

We note that here α, β and r are all constants. $\beta \neq 0$ implies that the manifold is a β-Kenmotsu manifold. From the expressions of the Ricci tensor it follows that the manifold is an Einstein manifold. Therefore Theorem 4.1 is verified.

References

[1] C. S. Bagewadi and Venkatesha, Some curvature tensors on a trans-sasakian manifolds, Turkish J. Math. 31 (2007), no. 2, 111-121.
[2] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Note in Mathematics, Vol. 509, Springer-Verlag, Berlin-New York, 1976.
[3] , Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, Vol. 203, Birkhäuser Boston, Inc., Boston, 2002.
[4] D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat. 34 (1990), no. 1, 199-207.
[5] C. P. Boyer and K. Galicki, Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2419-2430.
[6] D. Chinea and C. Gonzales, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156 (1990), 15-36.
[7] , Curvature relations in trans-sasakian manifolds, in "Proceedings of the XIIth Portuguese-Spanish Conference on Mathematics, Vol.II,(Portuguese), Braga, 1987", Univ. Minho, Braga, (1987), 564-571.
[8] U. C. De and A. Sarkar, On three-dimensional trans-Sasakian manifolds, Extracta Math. 23 (2008), no. 3, 265-277.
[9] U. C. De and M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J. 43 (2003), no. 2, 247-255.
[10] A. Gray and L. M. Hervella, The sixteen classes of almost hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58.
[11] N. J. Hicks, Notes on Differential Geometry, Affilated East-West Press Pvt. Ltd. 1965.
[12] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1-27.
[13] J. B. Jun and U. K. Kim, On 3-dimensional almost contact metric manifolds, Kyungpook Math. J. 34 (1994), no. 2, 293-301.
[14] J. S. Kim, R. Prasad, and M. M. Tripathi, On generalized Ricci-recurrent trans-Sasakian manifolds, J. Korean Math. Soc. 39 (2002), no. 6, 953-961.
[15] J. C. Marrero, The local structure of trans-sasakian manifolds, Ann. Mat. Pura Appl. (4) $\mathbf{1 6 2}$ (1992), 77-86.
[16] J. C. Marrero and D. Chinea, On trans-Sasakian manifolds, in "Proceedings of the XIVth Spanish-Portuguese Conference on Mathematics, Vol.I-III, (Spanish),Puerto de la Cruz, 1989", Univ. La Laguna, La Laguna (1990), 655-659.
[17] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187-193.
[18] S. S. Shukla and D. D. Singh, On ϵ-trans-Sasakian manifolds, Int. J. Math. Anal. (Ruse) 4 (2010), no. 49-52, 2401-2414.
[19] K. Yano, Integral Formulas in Riemannian Geometry, Mercel Dekker, INC., New York, 1970.

Uday Chand De
Department of Pure Mathematics
Calcutta University
35 Ballygunge Circular Road
Kol 700019, West Bengal, India
E-mail address: uc_de@yahoo.com

Krishnendu De
Konnagar High School(H.S.)
68 G.T. Road (West), Konnagar, Hooghly
Pin.712235, West Bengal, India
E-mail address: krishnendu_de@yahoo.com

