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ON A CLASS OF THREE-DIMENSIONAL TRANS-SASAKTAN
MANIFOLDS

UbpAY CHAND DE AND KRISHNENDU DE

ABSTRACT. The object of the present paper is to study 3-dimensional
trans-Sasakian manifolds with conservative curvature tensor and also 3-
dimensional conformally flat trans-Sasakian manifolds. Next we consider
compact connected n-Einstein 3-dimensional trans-Sasakian manifolds.
Finally, an example of a 3-dimensional trans-Sasakian manifold is given,
which verifies our results.

1. Introduction

Trans-Sasakian manifolds arose in a natural way from the classification of
almost contact metric structures by D. Chinea and C. Gonzales [6] and they
appear as a natural generalization of both Sasakian and Kenmotsu manifolds.
Again in the Gray-Hervella classification of almost Hermite manifolds [10],
there appears a class W, of Hermitian manifolds which are closely related to
locally conformally Kéhler manifolds. An almost contact metric structure on
a manifold M is called a trans-Sasakian structure [17] if the product manifold
M xR belongs to the class W4. The class Cg @ Cs ([15], [16]) coincides with
the class of trans-Sasakian structures of type (a,8). In [16], the local nature
of the two subclasses Cy and Cg of trans-Sasakian structures is characterized
completely. In [7], some curvature identities and sectional curvatures for Cs, Cg
and trans-Sasakian manifolds are obtained. It is known that [12] trans-Sasakian
structures of type (0,0), (0,8), and («,0) are cosymplectic, S-Kenmotsu and a-
Sasakian, respectively, where «, 8 € R.

The local structure of trans-Sasakian manifolds of dimension n > 5 has
been completely characterized by J. C. Marrero [15]. He proved that a trans-
Sasakian manifold of dimension n > 5 is either cosymplectic or a-Sasakian or
B-Kenmotsu manifold. Three-dimensional trans-Sasakian manifolds have been
studied by De and Tripathi [9], De and Sarkar [8], Kim, Prasad and Tripathi
[14], Bagewadi and Venkatesha [1], Shukla and Singh [18] and many others. In
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[13] Jun and Kim studied 3-dimensional almost contact metric manifolds. The
curvature tensor R in a Riemanian manifold is said to be conservative [11],
that is, divR = 0 if and only if (VxS)(Y,Z) = (VyS)(X, Z) where S is the
Ricci tensor of the manifold. Moreover, Boyer and Galicki [5] proved that if M
is a compact n-Einstein K-contact manifold with Ricci tensor S = ag 4+ bn ® 7,
and if @ > —2, then M is Sasakian. Motivated by these works in this paper we
study some curvature conditions in a 3-dimensional trans-Sasakian manifold.

The paper is organized as follows. In Section 2, some preliminary results are
recalled. After preliminaries in Section 3, we give an example of a 3-dimensional
trans-Sasakian manifold of type (a, 8). Then we study 3-dimensional connected
trans-Sasakian manifold with conservative curvature tensor. In the next sec-
tion, we study 3-dimensional conformally flat connected trans-Sasakian mani-
fold. In Section 6, we prove that if a compact connected 3-dimensional trans-
Sasakian manifold is n-Einstein with constant coefficients, then it is either a-
Sasakian or 8-Kenmotsu. Finally, we construct an example of a 3-dimensional
trans-Sasakian manifold with constant function «, 5 on M.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact
metric structure (4,€,1,9), that is, ¢ is an (1,1) tensor field, £ is a vector field,
1 is a 1-form and ¢ is a compatible Riemannian metric such that

(2.1) ¢*(X) = X +n(X)& n(E) =1, ¢ =0, ¢ =0,
(2.2) 9(0X,¢Y) = g(X,Y) = n(X)n(Y),

for all X and Y tangent to M ([2], [3]).
The fundamental 2-form ® of the manifold is defined by
(2.4) O(X,Y) = g(X,Y)

for all X and Y tangent to M.

An almost contact metric structure (¢,£,7,9) on a connected manifold M is
called trans-Sasakian structure [17] if (M x R, J , G) belongs to the class Wy
[10], where J is the almost complex structure on M xR defined by

7 (x.05) = (ox - senc0 )

for any vector fields X on M, f is a smooth function on M xR and G is the
product metric on M xR. This may be expressed by the condition [4]

(2.5) (Vx9)Y = ag(X,Y)§ = n(Y)X) + B(g(oX, Y)§ = n(Y)9X)

for smooth functions a and 8 on M. Hence we say that the trans-Sasakian
structure is of type (,3). From (2.5) it follows that

(2.6) Vx&=—a(¢X) + B(X —n(X)$),
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(2.7) (Vxn)Y = —ag(¢X,Y) + Bg(¢X, ¢Y).

An explicit example of a 3-dimensional proper trans-Sasakian manifold is
constructed in [15]. In [9], Ricci tensor and curvature tensor for 3-dimensional
trans-Sasakian manifolds are studied and their explicit formulae are given.

From [9] we know that for a 3-dimensional trans-Sasakian manifold

(2.8) 208 + a =0,
(2.9) S(X,€) = (2(a® = %) = €Pm(X) — XB — (pX)a,

SOLY) = (5+€8—(a* = 5%) g(X.Y)

(2.10) — (5 +€8-3(a* = 8%) n(Xm(Y)
— (YB+(@Y)a)n(X) = (XB+ (6X)a)n(Y),

R(X,Y)¢ = (a® = B)(n(Y)X — n(X)Y)

(V) (XB)E + d(X)ag
@11 Fn(X)(YB)E + (Y )ag

~(YBX + (XA — (9(V)a)X + (X)),
and

R(X,Y)Z = (5 +28 - 2(a? - 8%) (9(Y 2)X — g(X, 2)Y

— (V. 2)[ (5 +€8 - 3(a® - %)) n(X)¢
— 1(X)(6grada — gradp) + (X5 + (6X)a)¢|
+9(X,2)[ (5 + 8- 3(0® - 8%)) (V)¢

(212) —n(Y)(égrada — gradB) + (Y + (6Y)a)¢
—[(ZB+ (#Z)am(Y) + (Y B + (#Y )a)n(2)
+ 5 6830 = B In(2)|X
+[(28 + (02)0)n(X) + (XB+ (6X)a)n(2)
+ 5 €83 = B)n(X)(2)|Y.

where S is the Ricci tensor of type (0,2) and R is the curvature tensor of type
(1,3) and r is the scalar curvature of the manifold M.
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3. Example of a 3-dimensional trans-Sasakian manifold of type
(o, B)

We consider the 3-dimensional manifold M = {(x,y,z) € R?, 2z # 0}, where
(x,y, 2) are standard co-ordinate of R3.
The vector fields

e*zéJr2 e*zge*2
L= \or Y82 ) 27 oy’ 0T 0z

are linearly independent at each point of M.
Let g be the Riemannian metric defined by
gle1,e3) = gler,e2) = glez, e3) =0,

gler,e1) = glez, e2) = gles, e3) = 1.
Let n be the 1-form defined by n(Z) = g(Z, e3) for any Z € x(M). Let ¢ be
the (1,1) tensor field defined by

dler) = ez, o¢(ez) = —e1, o¢(ez) =0.

Then using the linearity of ¢ and g, we have
77(63) =1,
$*Z = —Z +n(Z)es,
for any Z, W € x(M), the set of all smooth vector fields on M.
Then for ez = &, the structure (¢,£,7, g) defines an almost contact metric
structure on M.

Let V be the Levi-Civita connection with respect to metric g and R be the
curvature tensor of g. Then we have

1 1
[e1, ea] = yea — 22es, le1,es] = —;el and [eg, e3] = —;62.

Taking es = £ and using Koszul formula for the Riemannian metric g, we
can easily calculate

1 1 1
2
Ve, €3 = ——€1 + —e2, Ve e =—-2%;3,
Z z 2

1 1 1
2
Ve e1 = —e3,Ve,e3 = ——ea — =271,
z z 2

1 1
Ve,e2 = yer + 2633 Ve, €1 = 52263 — Yyea,

1
2 2
Ve,e3 =0, Veex = —52 e1, Vesel = 52 es.

From the above it can be easily seen that (¢,£,n,g) is a trans-Sasakian struc-
ture on M. Consequently M3(¢,&,7,g) is a trans-Sasakian manifold with a=
—322#0and f=—-1£0.
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4. 3-Dimensional connected trans-Sasakian manifolds with
conservative curvature tensor

Let M be a 3-dimensional connected trans-Sasakian manifold with conser-
vative curvature tensor [11], that is, divR = 0. Then its Ricci tensor is given
by (VxS)(Y,Z) = (VyS)(X, Z). From this we obtain r» = constant. We know
that

(4.1) (VxS)(Y, Z) = VxS(Y, Z) — S(VxY, Z) — S(Y,Vx Z).
Using (2.10) we have
(VxS)(¥. 2)
= |52 4 Tx(69) — 20da(x) + 2805(3) | (7. 2)
(3488 (02— 5) Vxg(v.2)
[dr(X)
-(

x(€B) — Gada(X) + 6ﬂdﬂ<x>] (Y I(2)

2
L€ =302 = 8%)) [Vxn(V)n(Z) + n(Y)Vxn(Z)]
(vX(Zﬂ+<¢z>a>>n(Y> (28 + (62)a)Vxn(Y)
“2) ~ (Vx(YB+ (6Y)a)n(2) — (V5 + (Y )a)Vxn(Z)
—(5+¢8-(a* = 89) 9(VxY, 2)
+ (5 +€8 =300 = 8) n(VxY)(2)
+(Zﬂ+(¢Z) T + (T8 + T Jen(2)
—(5+€8—(a* = p9) 9(¥.Vx2)
+ (5 +¢8 -3 = %) n(¥)n(Vx2)
)

+((Vx2)B+ (9(Vx2))a)n(Y) + (Y B+ (Y )a)n(Vx Z)r.
The above relation can be written as
(Vx9)(Y,2)

- [@ + Vx(€8) — 2ada(X) + 2ﬁd5(X)} 9(Y, 2)
(4.3) dr(X)
- [T

— (5 +€8-3(a% = 89) [(Vam) (¥ )n(2) +n(¥)(Vx)(2)]

V(€8 — 6ada(X) + Gﬁdmxﬂ n(Y)0(Z)
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= (Vx(ZB + (92)a))n(Y) = (Z8 + (¢Z)a)(Vxn)(Y)
= (Vx(YB + (¢Y)))n(Z) = (Y B + (6Y))(Vxn)(Z)
+ (((VxY))a)n(Z) + ((¢(Vx Z))a)n(Y).
Now from (4.3) we have
(VxS)(Y, Z) = (VyS)(X, 2)
dr(X)

= |75 + Vx(68) — 20da(X) +26dF(X )} 9(Y, 2)

_ -@ + Vy (£8) — 2ada(Y) 4 28dB(Y )} 9(X, Z)
[ 1 7x(68) — bada(x) + 684503 0 n(2)
N _@+v (¢B) — 6ada(Y) + 68dB(Y )} n(X)n(2)
(4.4) — (5 +€8-3a% = 8%) [(Vxn) (Y )n(Z) +n(Y)(Vxn)(2)
Vyn)(X)i(Z) — n(X)(Vyn)(Z)]

= (
= (Vx(ZB+ (92)a)n(Y) + (Vy (Z5 + (¢2)))n(X)
— (Vx(YB + (¢Y)a))n(Z) + (Vy (X8 + (6X)))n(2)
—(ZB+ (2)a)[(Vxm)(Y) = (Vyn)(X)]
(YB+ (¢Y))(Vxn)(Z
(XB+(¢X)a)(Vyn)(Z2
((e(VxY)))n(Z) — ((¢(Vy X))a)n(Z)
+ ((2(Vx 2))a)n(Y) = ((¢(Vy Z))a)n(X).
Suppose divR = 0 and «, 8 are constants. Then using (2.7) in (4.4) and
using r = constant, we obtain

(g _ 3(042 _ 52)) [—ag(eX,Y)n(Z)
(4.5) —ag(6X, Z)n(Y) + ag(eY, X)n(Z)
+ag(eY, Z)n(X) + Bg(¢X, oZ)n(Y) — Bg(¢Y, ¢Z)n(X)] = 0.

Let {eo, e1,ea} be a local ¢-basis, that is, an orthonormal frame such that
eo =& and ez = ¢ey. In (4.5) putting X = e1, Y = eq, we get

(4.6) 2 [(g ~3(a? - ﬁQ)} n(Z) = 0.

This implies either a = 0 or 7 =6(a? — 3?), or both holds. If r=6(a? — 5?),
then from (2.10) it follows that

(4.7) S(X,Y) =2(a? - B*g(X,Y).

< —

+
+

AA
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This implies that the manifold is an Einstein manifold. This leads to the
following theorem:

Theorem 4.1. If a 3-dimensional connected trans-Sasakian manifold is of con-
servative curvature tensor, then the manifold is either a B-Kenmotsu manifold
or an Finstein manifold or both holds provided o, B = constant.

If the manifold is an Einstein manifold, then the manifold is of conservative
curvature tensor. Hence we obtain the following:

Corollary 1. A 3-dimensional connected trans-Sasakian manifold which is not
a B-Kenmotsu manifold is of conservative curvature tensor if and only if the
manifold is an Finstein manifold provided o, 8 = constant.

5. 3-Dimensional conformally flat connected trans-Sasakian
manifolds

Let M be a 3-dimensional conformally flat connected trans-Sasakian mani-
fold. At first we prove the following;:

Lemma 5.1. Let M be a 3-dimensional connected trans-Sasakian manifold
with o, B = constant. If there exist functions L and N on M such that

(5.1) (VxQ)Y — (VyQ)X = LX + NY, X, Y € x(M),
then either a =0 or

(5.2) QX =2(a? - %) X.

Proof. We have from (2.10),

(5.3) QX =aX +n(X)E,

where a = (5 — (a® — ?)) and b = —(5 — 3(a® — 7)) and thus using (5.3) we
have
(5.4)

(VxQ)Y — (Vy@Q)X

= (Xa)Y = (Ya)X + (Xb)n(Y)§ — (Yb)n(X)E

+ ba(n(x)gY —n(Y)o(X)) +08(n(Y)X —n(X)Y) — 2abg( X, Y)E.
Replacing X by ¢X and Y by ¢Y in (5.3) we get
(5.5) (VoxQ)oY — (VoyQ)oX = (6Xa)pY — (¢Y a)pX — 2abg(¢° X, pY )¢
From (5.1) and (5.5), we obtain

(5.6) (L+ (6Y)a)oX + (N = (¢X)a)pY = 2abg(¢*X, oY )E.
Using (2.1) in (5.6) yields
(5.7) 2abg(X, ¢Y) = 0,

which implies either & = 0 or b = 0. Thus from the definition of n-Einstein
manifold, we get QX = aX and hence QX = 2(a? — 5%)X. O
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It is classical that on a 3-dimensional conformally flat Riemannian manifold
[19], we have

(5.8) (VxQ)Y ~ (VyQ)X = L (dr(X)Y — dr(¥)X).

Then by Lemma 5.1 we get either a = 0 or QX = 2(a? — 3?)X. This leads to
the following theorem:

Theorem 5.1. A 3-dimensional conformally flat connected trans-Sasakian
manifold is either a B-Kenmotsu manifold or an Einstein manifold.

Since an Einstein manifold is of conservative curvature tensor, hence we
obtain the following;:

Corollary 2. In a 3-dimensional conformally flat connected trans-Sasakian
manifold which is not a S-Kenmotsu manifold, the curvature tensor is conser-
vative.

6. Compact connected n-Einstein manifolds

Let M be a 3-dimensional compact connected trans-Sasakian manifold. If
the manifold is 7-Einstein, then the Ricci tensor S of type (0, 2) of the manifold
is given by

(6.1) S(X,Y) =ag(X,Y) + bn(X)n(Y),

where a,b are smooth functions on M. Here we suppose that a and b are con-
stants. Putting Y = ¢ in (6.1) and using (2.9), we get

(6.2) XB+ (¢oX)a+ [(a+b) —2(a® = %) + £B]n(X) = 0.
For X = ¢, (6.2) yields

(63) &= (o2 —p) - 1D
By virtue of (6.2) and (6.3), it follows that
(6.4) XB+ (0 X)a+ @—a2+ﬁ2 n(X)=0.

The gradient of the function S is related to the exterior derivative d3 by the
formula

(6.5) df(X) = g(gradp, X).
Using (6.5) in (6.4) we obtain

(6.6) dB(X) + g(grada, pX) + @ —a?+ 32| n(X) =0.
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Differentiating (6.6) covariantly with respect to Y we get
(VydB)(X) + g(Vygrada, pX) + g(grada, (Vy ¢)X)
b
£y (8 = ) + [ - e 7] (90 =0,
Interchanging X and Y in (6.7), we get
(VxdB)(Y) + g(Vxgrada, Y ) + g(grada, (Vx¢)Y)

L X (B~ oY) + [ﬂ _a?t ﬂﬂ (Vxn)(¥) =0.

(6.7)

(6.8)
2
Subtracting (6.7) from (6.8)we get
9(Vxgrada,¢Y) — g(Vygrada, 9 X) + [(Vx@)Y) — (Vy ) X)]a

6oy X —atn(y) =Y (5 - a?n(x)]

# [ a2 () - (Fym] =0,
From (2.7) and (2.4) we get
(6.10) (Vxm)(Y) = (Vyn)(X) = 20@(X,Y).

Using (6.10) in (6.9) we have
9(Vxgrada,dY') — g(Vygrada, 9 X) + [(Vx¢)Y) — (Vy¢)X)|a
+HX (B~ oY) - Y (% - a®)n(X)]

+2 @—au/ﬁ B(X,Y) =0.

(6.11)

Let {eo, e1,ea} be a local ¢-basis, that is, an orthonormal frame such that
eo =& and es = ¢eq. In (2.5) putting X =e1, Y = eq, we get

(Ve,9)ea = a(gler, e2)€ —nlez)er) + B(g(der, e2)€ — n(ez)per)

(642 — Bglger, ea)t = BE.
Similarly,
(6.13) (Ve,d)er = —B¢.
Now,
(6.14) Bleq, ez) = gle1, des) = gler, p*er) = —1.

In (6.11) putting X = e; and Y = ey and using (6.12), (6.13) and (6.14) we
obtain

(6.15)
b
9(Ve,grada,er) + g(Ve,grada, es) = 286a — 2« % —a?+p?.

Also (2.8) can be written as

(6.16) g(grada, &) = —2ap.
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Differentiating (6.16) covariantly with respect to £ we get

(6.17) g(Vegrade, §) + g(grada, V&) = —28(Ea) — 2a(£5).
In view of (6.3) we can write the above relation as
(6.18) g(Vegrada,§) = —26(a) + 2« @ —a?+ 3% .

From (6.15) and (6.18), we get Aa = 0, where A is the Laplacian defined
by Aa = Z?:o 9(Ve,grada, e;).

Since M is compact, we get « is constant.

Now let us consider the following two cases:

Case i): In this case we suppose that a is a non-zero constant. Then by
(2.8), 8 =0 everywhere on M.

Case ii): In this case let @ = 0. Then from (6.4) it follows

(a+b)

XB+ {T +/32] n(X) =0,

that is,
(a+0)
2

g(gradp, X) + [ - 62] g(X,€) =0.

Therefore,

(6.19) gradB + [(a%b) + 62] £=0.

Differentiating (6.19) covariantly with respect to X we have

Vxgradf + (XB*)¢ + {—(a ;r ) + 52} Vx&=0.

Using (2.6) we get from above

Vxgrads + (X5 + [(“%b) + 62] (—agX + B(X — n(X)E)) = 0.

Now taking inner product with X, we have

oV xgradd, X) = = g((x2)6. %)~ |2 4 2] (g-a0x. )

+ Bg(X — n(X)E, X)).
Therefore putting X = e; and taking summation over i, i« = 0,1, 2, we get

from above

(6.21) AB=—28 (5/3 p Lty 52) .

(6.20)

For a = 0, (6.3) yields £8 = —((QQLIJ) + B?), which in view of (6.21) gives
AB = 0. Hence f=constant, M being compact. This leads to the following:
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Theorem 6.1. If a compact 3-dimensional trans-Sasakian manifold is an n-
Einstein manifold with constant coefficients, then it is either a-Sasakian or
B-Kenmotsu.

7. Example of a 3-dimensional trans-Sasakian manifold

We consider the 3-dimensional manifold M = {(x,y,z) € R?, 2z # 0}, where
(7,9, z) are standard co-ordinate of R3.
The vector fields

0 0] 0
—, e2=2z—, €3=2——
ox’ ° oy ° 0z
are linearly independent at each point of M.

Let g be the Riemannian metric defined by

e =2

gle1,e3) = gler,e2) = glea,e3) =0,

gler,e1) = g(ez, e2) = g(es, e3) = 1
that is, the form of the metric becomes
dx? + dy? + dz?
g=—%—"":
z
Let 7 be the 1-form defined by n(Z) = g(Z, e3) for any Z € x(M). Let ¢ be
the (1, 1) tensor field defined by
p(e1) = —e2, dle2) =e1, ¢(ez) =0.

Then using the linearity of ¢ and g, we have
77(63> =1,
$*Z = —Z +n(Z)es,
9(6Z,0W) = g(Z, W) = n(Z)n(W)
for any Z, W € x(M).
Then for e3 = &, the structure (¢,&,7,g) defines an almost contact metric

structure on M.
Let V be the Levi-Civita connection with respect to metric g. Then we have

le1,e3] = eiez —ese;
0 0 0 0
S (za—) -2 (z%)
= 22 & —226—2—22
0xdz 0z0x ox
= —€1.

Similarly,
[e1,ea] =0 and [eq, es] = —ea.
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The Riemannian connection V of the metric g is given by
29(VxY,Z2)=Xg(Y,2)+Yg(Z,X) - Zg(X,Y)
—9(X,[Y, Z]) = g(Y, [X, Z]) + 9(Z, [ X, Y]),
which known as Koszul’s formula.
Using (7.1) we have

(7.1)

(7.2) 29(Ve,e3,e1) = —2g(er,eq)
= 2g(—e1, €1).
Again by (7.1)
(7.3) 29(Ve,e3,e2) =0 =2g(—eq,e2)
and
(7.4) 29(Ve,e3,e3) =0 =2g(—eq,e3).

From (7.2), (7.3) and (7.4) we obtain
29(v61635 X) = 29(7615 X)
for all X € x(M).

Thus
Ve, e3 = —eq.
Therefore, (7.1) further yields
Ve e3=—e1, Veea=0, Ve =es,
(7.5) Ve,e3 = —€3, Ve,ea=e3, Ve,e1 =0,

Vegeg == 0, Vegeg = O, V63€1 =0.

(7.5) tells us that the manifold satisfies (2.6) for « = 0 and 8 = —1 and £ = e3.
Hence the manifold is a trans-Sasakian manifold of type (0, —1).
It is known that

(7.6) R(X,Y)Z =VxVyZ —VyVxZ —VxyZ.

With the help of the above results and using (7.6) it can be easily verified
that

R(eq,e2)es =0, R(ez,e3)es = —ea, R(e1,es)es = —eq,
R(ey,e2)es = —ey, R(ez,es)ea =e3, R(e1,es)ea =0,
R(e1,ea)er = ea, R(ea,esz)er =0, R(e1,es)er = es.
From the above expressions of the curvature tensor we obtain
S(e1,e1) = g(R(e1,ea)ea, e1) + g(R(e1,e3)es, e1)
= —2.

Similarly we have
5(62,62) = 5(63,63) = -2
Therefore,
r = S(e1,e1) + S(ez, ea) + S(es, e3) = —6.
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We note that here a, 5 and r are all constants. § # 0 implies that the manifold
is a S-Kenmotsu manifold. From the expressions of the Ricci tensor it follows
that the manifold is an Einstein manifold. Therefore Theorem 4.1 is verified.
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