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ON A CLASS OF THREE-DIMENSIONAL TRANS-SASAKIAN

MANIFOLDS

Uday Chand De and Krishnendu De

Abstract. The object of the present paper is to study 3-dimensional
trans-Sasakian manifolds with conservative curvature tensor and also 3-
dimensional conformally flat trans-Sasakian manifolds. Next we consider
compact connected η-Einstein 3-dimensional trans-Sasakian manifolds.
Finally, an example of a 3-dimensional trans-Sasakian manifold is given,
which verifies our results.

1. Introduction

Trans-Sasakian manifolds arose in a natural way from the classification of
almost contact metric structures by D. Chinea and C. Gonzales [6] and they
appear as a natural generalization of both Sasakian and Kenmotsu manifolds.
Again in the Gray-Hervella classification of almost Hermite manifolds [10],
there appears a class W4 of Hermitian manifolds which are closely related to
locally conformally Kähler manifolds. An almost contact metric structure on
a manifold M is called a trans-Sasakian structure [17] if the product manifold
M ×R belongs to the class W4. The class C6

⊕

C5 ([15], [16]) coincides with
the class of trans-Sasakian structures of type (α,β). In [16], the local nature
of the two subclasses C5 and C6 of trans-Sasakian structures is characterized
completely. In [7], some curvature identities and sectional curvatures for C5, C6

and trans-Sasakian manifolds are obtained. It is known that [12] trans-Sasakian
structures of type (0,0), (0,β), and (α,0) are cosymplectic, β-Kenmotsu and α-
Sasakian, respectively, where α, β ∈ R.

The local structure of trans-Sasakian manifolds of dimension n ≥ 5 has
been completely characterized by J. C. Marrero [15]. He proved that a trans-
Sasakian manifold of dimension n ≥ 5 is either cosymplectic or α-Sasakian or
β-Kenmotsu manifold. Three-dimensional trans-Sasakian manifolds have been
studied by De and Tripathi [9], De and Sarkar [8], Kim, Prasad and Tripathi
[14], Bagewadi and Venkatesha [1], Shukla and Singh [18] and many others. In
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[13] Jun and Kim studied 3-dimensional almost contact metric manifolds. The
curvature tensor R in a Riemanian manifold is said to be conservative [11],
that is, divR = 0 if and only if (∇XS)(Y, Z) = (∇Y S)(X,Z) where S is the
Ricci tensor of the manifold. Moreover, Boyer and Galicki [5] proved that if M
is a compact η-Einstein K-contact manifold with Ricci tensor S = ag+ bη⊗ η,
and if a ≥ −2, then M is Sasakian. Motivated by these works in this paper we
study some curvature conditions in a 3-dimensional trans-Sasakian manifold.

The paper is organized as follows. In Section 2, some preliminary results are
recalled. After preliminaries in Section 3, we give an example of a 3-dimensional
trans-Sasakian manifold of type (α, β). Then we study 3-dimensional connected
trans-Sasakian manifold with conservative curvature tensor. In the next sec-
tion, we study 3-dimensional conformally flat connected trans-Sasakian mani-
fold. In Section 6, we prove that if a compact connected 3-dimensional trans-
Sasakian manifold is η-Einstein with constant coefficients, then it is either α-
Sasakian or β-Kenmotsu. Finally, we construct an example of a 3-dimensional
trans-Sasakian manifold with constant function α, β on M .

2. Preliminaries

LetM be a connected almost contact metric manifold with an almost contact
metric structure (φ,ξ,η,g), that is, φ is an (1,1) tensor field, ξ is a vector field,
η is a 1-form and g is a compatible Riemannian metric such that

(2.1) φ2(X) = −X + η(X)ξ, η(ξ) = 1, φξ = 0, ηφ = 0,

(2.2) g(φX, φY ) = g(X,Y )− η(X)η(Y ),

(2.3) g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X)

for all X and Y tangent to M ([2], [3]).
The fundamental 2-form Φ of the manifold is defined by

(2.4) Φ(X,Y ) = g(X,φY )

for all X and Y tangent to M .
An almost contact metric structure (φ,ξ,η,g) on a connected manifold M is

called trans-Sasakian structure [17] if (M × R, J , G) belongs to the class W4

[10], where J is the almost complex structure on M ×R defined by

J

(

X, f
d

df

)

=

(

φX − fξ, η(X)
d

dt

)

for any vector fields X on M, f is a smooth function on M×R and G is the
product metric on M×R. This may be expressed by the condition [4]

(2.5) (∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX)

for smooth functions α and β on M. Hence we say that the trans-Sasakian
structure is of type (α,β). From (2.5) it follows that

(2.6) ∇Xξ = −α(φX) + β(X − η(X)ξ),
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(2.7) (∇Xη)Y = −αg(φX, Y ) + βg(φX, φY ).

An explicit example of a 3-dimensional proper trans-Sasakian manifold is
constructed in [15]. In [9], Ricci tensor and curvature tensor for 3-dimensional
trans-Sasakian manifolds are studied and their explicit formulae are given.

From [9] we know that for a 3-dimensional trans-Sasakian manifold

(2.8) 2αβ + ξα = 0,

(2.9) S(X, ξ) = (2(α2 − β2)− ξβ)η(X) −Xβ − (φX)α,

(2.10)

S(X,Y ) =
( r

2
+ ξβ − (α2 − β2)

)

g(X,Y )

−
( r

2
+ ξβ − 3(α2 − β2)

)

η(X)η(Y )

− (Y β + (φY )α)η(X) − (Xβ + (φX)α)η(Y ),

(2.11)

R(X,Y )ξ = (α2 − β2)(η(Y )X − η(X)Y )

− η(Y )(Xβ)ξ + φ(X)αξ

+ η(X)(Y β)ξ + φ(Y )αξ

− (Y β)X + (Xβ)Y − (φ(Y )α)X + (φ(X)α)Y,

and

(2.12)

R(X,Y )Z =
(r

2
+ 2ξβ − 2(α2 − β2)

)

(g(Y, Z)X − g(X,Z)Y

− g(Y, Z)
[ (r

2
+ ξβ − 3(α2 − β2)

)

η(X)ξ

− η(X)(φgradα − gradβ) + (Xβ + (φX)α)ξ
]

+ g(X,Z)
[ (r

2
+ ξβ − 3(α2 − β2)

)

η(Y )ξ

− η(Y )(φgradα − gradβ) + (Y β + (φY )α)ξ
]

− [(Zβ + (φZ)α)η(Y ) + (Y β + (φY )α)η(Z)

+
r

2
+ ξβ − 3(α2 − β2))η(Y )η(Z)]X

+
[

(Zβ + (φZ)α)η(X) + (Xβ + (φX)α)η(Z)

+
r

2
+ ξβ − 3(α2 − β2))η(X)η(Z)

]

Y,

where S is the Ricci tensor of type (0, 2) and R is the curvature tensor of type
(1, 3) and r is the scalar curvature of the manifold M.
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3. Example of a 3-dimensional trans-Sasakian manifold of type
(α, β)

We consider the 3-dimensional manifold M = {(x, y, z) ∈ R
3, z 6= 0}, where

(x, y, z) are standard co-ordinate of R3.

The vector fields

e1 = z

(

∂

∂x
+ y

∂

∂z

)

, e2 = z
∂

∂y
, e3 =

∂

∂z

are linearly independent at each point of M.

Let g be the Riemannian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M). Let φ be
the (1, 1) tensor field defined by

φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0.

Then using the linearity of φ and g, we have

η(e3) = 1,

φ2Z = −Z + η(Z)e3,

g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M), the set of all smooth vector fields on M .
Then for e3 = ξ, the structure (φ, ξ, η, g) defines an almost contact metric

structure on M .
Let ∇ be the Levi-Civita connection with respect to metric g and R be the

curvature tensor of g. Then we have

[e1, e2] = ye2 − z2e3, [e1, e3] = −
1

z
e1 and [e2, e3] = −

1

z
e2.

Taking e3 = ξ and using Koszul formula for the Riemannian metric g, we
can easily calculate

∇e1e3 = −
1

z
e1 +

1

z2
e2, ∇e1e2 = −

1

2
z2e3,

∇e1e1 =
1

z
e3,∇e2e3 = −

1

z
e2 −

1

2
z2e1,

∇e2e2 = ye1 +
1

z
e3, ∇e2e1 =

1

2
z2e3 − ye2,

∇e3e3 = 0, ∇e3e2 = −
1

2
z2e1, ∇e3e1 =

1

2
z2e2.

From the above it can be easily seen that (φ, ξ, η, g) is a trans-Sasakian struc-
ture on M. Consequently M3(φ, ξ, η, g) is a trans-Sasakian manifold with α=
− 1

2z
2 6= 0 and β = − 1

z
6= 0.
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4. 3-Dimensional connected trans-Sasakian manifolds with
conservative curvature tensor

Let M be a 3-dimensional connected trans-Sasakian manifold with conser-
vative curvature tensor [11], that is, divR = 0. Then its Ricci tensor is given
by (∇XS)(Y, Z) = (∇Y S)(X,Z). From this we obtain r = constant. We know
that

(4.1) (∇XS)(Y, Z) = ∇XS(Y, Z)− S(∇XY, Z)− S(Y,∇XZ).

Using (2.10) we have

(4.2)

(∇XS)(Y, Z)

=

[

dr(X)

2
+∇X(ξβ)− 2αdα(X) + 2βdβ(X)

]

g(Y, Z)

+
(r

2
+ ξβ − (α2 − β2)

)

∇Xg(Y, Z)

−

[

dr(X)

2
+∇X(ξβ) − 6αdα(X) + 6βdβ(X)

]

η(Y )η(Z)

−
(r

2
+ ξβ − 3(α2 − β2)

)

[∇Xη(Y )η(Z) + η(Y )∇Xη(Z)]

− (∇X(Zβ + (φZ)α))η(Y )− (Zβ + (φZ)α)∇Xη(Y )

− (∇X(Y β + (φY )α))η(Z) − (Y β + (φY )α)∇Xη(Z)

−
(r

2
+ ξβ − (α2 − β2)

)

g(∇XY, Z)

+
(r

2
+ ξβ − 3(α2 − β2)

)

η(∇XY )η(Z)

+ (Zβ + (φZ)α)η(∇XY ) + ((∇XY )β + (φ(∇XY ))α)η(Z)

−
(r

2
+ ξβ − (α2 − β2)

)

g(Y,∇XZ)

+
(r

2
+ ξβ − 3(α2 − β2)

)

η(Y )η(∇XZ)

+ ((∇XZ)β + (φ(∇XZ))α)η(Y ) + (Y β + (φY )α)η(∇XZ)r.

The above relation can be written as

(4.3)

(∇XS)(Y, Z)

=

[

dr(X)

2
+∇X(ξβ)− 2αdα(X) + 2βdβ(X)

]

g(Y, Z)

−

[

dr(X)

2
+∇X(ξβ) − 6αdα(X) + 6βdβ(X)

]

η(Y )η(Z)

−
(r

2
+ ξβ − 3(α2 − β2)

)

[(∇Xη)(Y )η(Z) + η(Y )(∇Xη)(Z)]
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− (∇X(Zβ + (φZ)α))η(Y )− (Zβ + (φZ)α)(∇Xη)(Y )

− (∇X(Y β + (φY )α))η(Z) − (Y β + (φY )α)(∇Xη)(Z)

+ ((φ(∇XY ))α)η(Z) + ((φ(∇XZ))α)η(Y ).

Now from (4.3) we have

(4.4)

(∇XS)(Y, Z)− (∇Y S)(X,Z)

=

[

dr(X)

2
+∇X(ξβ) − 2αdα(X) + 2βdβ(X)

]

g(Y, Z)

−

[

dr(Y )

2
+∇Y (ξβ)− 2αdα(Y ) + 2βdβ(Y )

]

g(X,Z)

−

[

dr(X)

2
+∇X(ξβ)− 6αdα(X) + 6βdβ(X)

]

η(Y )η(Z)

+

[

dr(Y )

2
+∇Y (ξβ)− 6αdα(Y ) + 6βdβ(Y )

]

η(X)η(Z)

−
(r

2
+ ξβ − 3(α2 − β2)

)

[(∇Xη)(Y )η(Z) + η(Y )(∇Xη)(Z)

− (∇Y η)(X)η(Z)− η(X)(∇Y η)(Z)]

− (∇X(Zβ + (φZ)α))η(Y ) + (∇Y (Zβ + (φZ)α))η(X)

− (∇X(Y β + (φY )α))η(Z) + (∇Y (Xβ + (φX)α))η(Z)

− (Zβ + (φZ)α)[(∇Xη)(Y )− (∇Y η)(X)]

− (Y β + (φY )α)(∇Xη)(Z)

+ (Xβ + (φX)α)(∇Y η)(Z)

+ ((φ(∇XY ))α)η(Z) − ((φ(∇Y X))α)η(Z)

+ ((φ(∇XZ))α)η(Y )− ((φ(∇Y Z))α)η(X).

Suppose divR = 0 and α, β are constants. Then using (2.7) in (4.4) and
using r = constant, we obtain

(4.5)

( r

2
− 3(α2 − β2)

)

[−αg(φX, Y )η(Z)

− αg(φX,Z)η(Y ) + αg(φY,X)η(Z)

+ αg(φY, Z)η(X) + βg(φX, φZ)η(Y )− βg(φY, φZ)η(X)] = 0.

Let {e0, e1, e2} be a local φ-basis, that is, an orthonormal frame such that
e0 = ξ and e2 = φe1. In (4.5) putting X = e1, Y = e2, we get

(4.6) 2α
[( r

2
− 3(α2 − β2

)]

η(Z) = 0.

This implies either α = 0 or r =6(α2 − β2), or both holds. If r=6(α2 − β2),
then from (2.10) it follows that

(4.7) S(X,Y ) = 2(α2 − β2)g(X,Y ).
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This implies that the manifold is an Einstein manifold. This leads to the
following theorem:

Theorem 4.1. If a 3-dimensional connected trans-Sasakian manifold is of con-

servative curvature tensor, then the manifold is either a β-Kenmotsu manifold

or an Einstein manifold or both holds provided α, β = constant.

If the manifold is an Einstein manifold, then the manifold is of conservative
curvature tensor. Hence we obtain the following:

Corollary 1. A 3-dimensional connected trans-Sasakian manifold which is not

a β-Kenmotsu manifold is of conservative curvature tensor if and only if the

manifold is an Einstein manifold provided α, β = constant.

5. 3-Dimensional conformally flat connected trans-Sasakian
manifolds

Let M be a 3-dimensional conformally flat connected trans-Sasakian mani-
fold. At first we prove the following:

Lemma 5.1. Let M be a 3-dimensional connected trans-Sasakian manifold

with α, β = constant. If there exist functions L and N on M such that

(5.1) (∇XQ)Y − (∇Y Q)X = LX +NY, X, Y ∈ χ(M),

then either α = 0 or

(5.2) QX = 2(α2 − β2)X.

Proof. We have from (2.10),

(5.3) QX = aX + bη(X)ξ,

where a = ( r2 − (α2 − β2)) and b = −( r2 − 3(α2 − β2)) and thus using (5.3) we
have
(5.4)

(∇XQ)Y − (∇Y Q)X

= (Xa)Y − (Y a)X + (Xb)η(Y )ξ − (Y b)η(X)ξ

+ bα(η(x)φY − η(Y )φ(X)) + bβ(η(Y )X − η(X)Y )− 2αbg(φX, Y )ξ.

Replacing X by φX and Y by φY in (5.3) we get

(5.5) (∇φXQ)φY − (∇φY Q)φX = (φXa)φY − (φY a)φX − 2αbg(φ2X,φY )ξ.

From (5.1) and (5.5), we obtain

(5.6) (L+ (φY )a)φX + (N − (φX)a)φY = 2αbg(φ2X,φY )ξ.

Using (2.1) in (5.6) yields

(5.7) 2αbg(X,φY ) = 0,

which implies either α = 0 or b = 0. Thus from the definition of η-Einstein
manifold, we get QX = aX and hence QX = 2(α2 − β2)X . �
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It is classical that on a 3-dimensional conformally flat Riemannian manifold
[19], we have

(5.8) (∇XQ)Y − (∇Y Q)X =
1

4
(dr(X)Y − dr(Y )X).

Then by Lemma 5.1 we get either α = 0 or QX = 2(α2 − β2)X. This leads to
the following theorem:

Theorem 5.1. A 3-dimensional conformally flat connected trans-Sasakian

manifold is either a β-Kenmotsu manifold or an Einstein manifold.

Since an Einstein manifold is of conservative curvature tensor, hence we
obtain the following:

Corollary 2. In a 3-dimensional conformally flat connected trans-Sasakian

manifold which is not a β-Kenmotsu manifold, the curvature tensor is conser-

vative.

6. Compact connected η-Einstein manifolds

Let M be a 3-dimensional compact connected trans-Sasakian manifold. If
the manifold is η-Einstein, then the Ricci tensor S of type (0, 2) of the manifold
is given by

(6.1) S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a, b are smooth functions on M. Here we suppose that a and b are con-
stants. Putting Y = ξ in (6.1) and using (2.9), we get

(6.2) Xβ + (φX)α+ [(a+ b)− 2(α2 − β2) + ξβ]η(X) = 0.

For X = ξ, (6.2) yields

(6.3) ξβ = (α2 − β2)−
(a+ b)

2
.

By virtue of (6.2) and (6.3), it follows that

(6.4) Xβ + (φX)α+

[

(a+ b)

2
− α2 + β2

]

η(X) = 0.

The gradient of the function β is related to the exterior derivative dβ by the
formula

(6.5) dβ(X) = g(gradβ,X).

Using (6.5) in (6.4) we obtain

(6.6) dβ(X) + g(gradα, φX) +

[

(a+ b)

2
− α2 + β2

]

η(X) = 0.
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Differentiating (6.6) covariantly with respect to Y we get

(6.7)

(∇Y dβ)(X) + g(∇Y gradα, φX) + g(gradα, (∇Y φ)X)

+ Y (β2 − α2)η(X) +

[

(a+ b)

2
− α2 + β2

]

(∇Y η)(X) = 0.

Interchanging X and Y in (6.7), we get

(6.8)

(∇Xdβ)(Y ) + g(∇Xgradα, φY ) + g(gradα, (∇Xφ)Y )

+X(β2 − α2)η(Y ) +

[

(a+ b)

2
− α2 + β2

]

(∇Xη)(Y ) = 0.

Subtracting (6.7) from (6.8)we get

(6.9)

g(∇Xgradα, φY )− g(∇Y gradα, φX) + [(∇Xφ)Y )− (∇Y φ)X)]α

+ [X(β2 − α2)η(Y )− Y (β2 − α2)η(X)]

+

[

(a+ b)

2
− α2 + β2

]

[(∇Xη)(Y )− (∇Y η)(X)] = 0.

From (2.7) and (2.4) we get

(6.10) (∇Xη)(Y )− (∇Y η)(X) = 2αΦ(X,Y ).

Using (6.10) in (6.9) we have

(6.11)

g(∇Xgradα, φY )− g(∇Y gradα, φX) + [(∇Xφ)Y )− (∇Y φ)X)]α

+ [X(β2 − α2)η(Y )− Y (β2 − α2)η(X)]

+ 2

[

(a+ b)

2
− α2 + β2

]

Φ(X,Y ) = 0.

Let {e0, e1, e2} be a local φ-basis, that is, an orthonormal frame such that
e0 = ξ and e2 = φe1. In (2.5) putting X = e1, Y = e2, we get

(6.12)
(∇e1φ)e2 = α(g(e1, e2)ξ − η(e2)e1) + β(g(φe1, e2)ξ − η(e2)φe1)

= βg(φe1, e2)ξ = βξ.

Similarly,

(6.13) (∇e2φ)e1 = −βξ.

Now,

(6.14) Φ(e1, e2) = g(e1, φe2) = g(e1, φ
2e1) = −1.

In (6.11) putting X = e1 and Y = e2 and using (6.12), (6.13) and (6.14) we
obtain
(6.15)

g(∇e1gradα, e1) + g(∇e2gradα, e2) = 2βξα− 2α

[

(a+ b)

2
− α2 + β2

]

.

Also (2.8) can be written as

(6.16) g(gradα, ξ) = −2αβ.
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Differentiating (6.16) covariantly with respect to ξ we get

(6.17) g(∇ξgradα, ξ) + g(gradα,∇ξξ) = −2β(ξα)− 2α(ξβ).

In view of (6.3) we can write the above relation as

(6.18) g(∇ξgradα, ξ) = −2β(ξα) + 2α

[

(a+ b)

2
− α2 + β2

]

.

From (6.15) and (6.18), we get ∆α = 0, where ∆ is the Laplacian defined

by ∆α =
∑2

i=0 g(∇eigradα, ei).
Since M is compact, we get α is constant.
Now let us consider the following two cases:
Case i): In this case we suppose that α is a non-zero constant. Then by

(2.8), β = 0 everywhere on M .
Case ii): In this case let α = 0. Then from (6.4) it follows

Xβ +

[

(a+ b)

2
+ β2

]

η(X) = 0,

that is,

g(gradβ,X) +

[

(a+ b)

2
+ β2

]

g(X, ξ) = 0.

Therefore,

(6.19) gradβ +

[

(a+ b)

2
+ β2

]

ξ = 0.

Differentiating (6.19) covariantly with respect to X we have

∇Xgradβ + (Xβ2)ξ +

[

(a+ b)

2
+ β2

]

∇Xξ = 0.

Using (2.6) we get from above

∇Xgradβ + (Xβ2)ξ +

[

(a+ b)

2
+ β2

]

(−αφX + β(X − η(X)ξ)) = 0.

Now taking inner product with X , we have

(6.20)
g(∇Xgradβ,X) = − g((Xβ2)ξ,X)−

[

(a+ b)

2
+ β2

]

(g(−αφX,X)

+ βg(X − η(X)ξ,X)).

Therefore putting X = ei and taking summation over i, i = 0, 1, 2, we get
from above

(6.21) ∆β = −2β

(

ξβ +
(a+ b)

2
+ β2

)

.

For α = 0, (6.3) yields ξβ = −( (a+b)
2 + β2), which in view of (6.21) gives

∆β = 0. Hence β=constant, M being compact. This leads to the following:
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Theorem 6.1. If a compact 3-dimensional trans-Sasakian manifold is an η-

Einstein manifold with constant coefficients, then it is either α-Sasakian or

β-Kenmotsu.

7. Example of a 3-dimensional trans-Sasakian manifold

We consider the 3-dimensional manifold M = {(x, y, z) ∈ R
3, z 6= 0}, where

(x, y, z) are standard co-ordinate of R3.

The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = z

∂

∂z

are linearly independent at each point of M.

Let g be the Riemannian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1

that is, the form of the metric becomes

g =
dx2 + dy2 + dz2

z2
.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M). Let φ be
the (1, 1) tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of φ and g, we have

η(e3) = 1,

φ2Z = −Z + η(Z)e3,

g(φZ, φW ) = g(Z,W )− η(Z)η(W )

for any Z,W ∈ χ(M).
Then for e3 = ξ, the structure (φ, ξ, η, g) defines an almost contact metric

structure on M .
Let ∇ be the Levi-Civita connection with respect to metric g. Then we have

[e1, e3] = e1e3 − e3e1

= z
∂

∂x

(

z
∂

∂z

)

− z
∂

∂z

(

z
∂

∂x

)

= z2
∂2

∂x∂z
− z2

∂2

∂z∂x
− z

∂

∂x
= −e1.

Similarly,

[e1, e2] = 0 and [e2, e3] = −e2.
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The Riemannian connection ∇ of the metric g is given by

(7.1)
2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]),

which known as Koszul’s formula.
Using (7.1) we have

(7.2)
2g(∇e1e3, e1) = − 2g(e1, e1)

= 2g(−e1, e1).

Again by (7.1)

(7.3) 2g(∇e1e3, e2) = 0 = 2g(−e1, e2)

and

(7.4) 2g(∇e1e3, e3) = 0 = 2g(−e1, e3).

From (7.2), (7.3) and (7.4) we obtain

2g(∇e1e3, X) = 2g(−e1, X)

for all X ∈ χ(M).
Thus

∇e1e3 = −e1.

Therefore, (7.1) further yields

(7.5)

∇e1e3 = −e1, ∇e1e2 = 0, ∇e1e1 = e3,

∇e2e3 = −e2, ∇e2e2 = e3, ∇e2e1 = 0,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

(7.5) tells us that the manifold satisfies (2.6) for α = 0 and β = −1 and ξ = e3.

Hence the manifold is a trans-Sasakian manifold of type (0,−1).
It is known that

(7.6) R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

With the help of the above results and using (7.6) it can be easily verified
that

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1,

R(e1, e2)e2 = −e1, R(e2, e3)e2 = e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 = e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = e3.

From the above expressions of the curvature tensor we obtain

S(e1, e1) = g(R(e1, e2)e2, e1) + g(R(e1, e3)e3, e1)

= − 2.

Similarly we have
S(e2, e2) = S(e3, e3) = −2.

Therefore,
r = S(e1, e1) + S(e2, e2) + S(e3, e3) = −6.
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We note that here α, β and r are all constants. β 6= 0 implies that the manifold
is a β-Kenmotsu manifold. From the expressions of the Ricci tensor it follows
that the manifold is an Einstein manifold. Therefore Theorem 4.1 is verified.
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