
Commun. Korean Math. Soc. 27 (2012), No. 4, pp. 771–780
http://dx.doi.org/10.4134/CKMS.2012.27.4.771

BIMINIMAL CURVES IN 2-DIMENSIONAL SPACE FORMS

Jun-ichi Inoguchi and Ji-Eun Lee

Abstract. We study biminimal curves in 2-dimensional Riemannian man-
ifolds of constant curvature.

Introduction

Elastic curves provide examples of classically known geometric variational
problem. A plane curve is said to be an elastic curve if it is a critical point of
the elastic energy, or equivalently a critical point of the total squared curvature
[9].

In this paper, we study another geometric variational problem of curves in
Riemannian 2-manifolds of constant curvature. The Euler-Lagrange equation
studied in this paper is derived from the theory of biharmonic maps in Rie-
mannian geometry.

A smooth map φ : (M, g) → (N, h) between Riemannian manifolds is said
to be biharmonic if it is a critical point of the bienergy functional:

E2(φ) =

∫

M

|τ(φ)|2 dvg,

where τ(φ) = tr ∇dφ is the tension field of φ. Clearly, if φ is harmonic, i.e.,
τ(φ) = 0, then φ is biharmonic. A biharmonic map is said to be proper if it is
not harmonic.

Chen and Ishikawa [3] studied biharmonic curves and surfaces in semi-
Euclidean space (see also [6]). Caddeo, Montaldo and Piu [1] studied bihar-
monic curves on Riemannian 2-manifolds. They showed that biharmonic curves
on Riemannian 2-manifolds of non-positive curvature are geodesics. Proper bi-
harmonic curves on the unit 2-sphere are small circles of radius 1/

√
2.

Next, Loubeau and Montaldo introduced the notion of biminimal immersion
[10].

An isometric immersion φ : (M, g) → (N, h) is said to be biminimal if it is a
critical point of the bienergy functional under all normal variations. Thus the
biminimality is weaker than biharmonicity for isometric immersions, in general.
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In this paper we study biminimal curves on Riemannian 2-manifolds of con-
stant curvature. We shall give natural equations for biminimal curves explicitly
in terms of Jacobi’s elliptic functions.

1. Preliminaries

1.1. Let (Mm, g) and (Nn, h) be Riemannian manifolds and φ : M → N a
smooth map. Then φ induces a vector bundle φ∗TN over M by

φ∗TN =
⋃

p∈M

Tφ(p)N,

where TN is the tangent bundle of N . The space of all smooth sections of
φ∗TN is denoted by Γ (φ∗TN). A section of φ∗TN is called a vector field along

φ.
The Levi-Civita connection ∇h of (N, h) induces a unique connection ∇φ of

φ∗TN which satisfies the condition

∇φ
X(V ◦ φ) = (∇h

dφ(X)V ) ◦ φ
for all X ∈ Γ (TM) and V ∈ Γ (φ∗TN) (see [4, p. 4]).

The second fundamental form ∇dφ is defined by

(∇dφ)(X,Y ) = ∇φ
Xdφ(Y )− dφ(∇XY ), X, Y ∈ Γ (TM).

Here ∇ is the Levi-Civita connection of (M, g). The tension field τ(φ) is a
section of φ∗TN defined by

τ(φ) = tr∇dφ.

A smooth map φ is said to be harmonic if its tension field vanishes. It is
well known that φ is harmonic if and only if φ is a critical point of the energy:

E(φ) =
1

2

∫

|dφ|2 dvg

with respect to all compactly supported variations.
Now let φ : M → N be a harmonic map. Then the Hessian Hφ of E is given

by

Hφ(V,W ) =

∫

h(Jφ(V ),W ) dvg, V,W ∈ Γ (φ∗TN).

Here the Jacobi operator Jφ is defined by

Jφ(V ) := △̄φV −Rφ(V ), V ∈ Γ (φ∗TN),

△̄φ := −
m
∑

i=1

(∇φ
ei
∇φ

ei
−∇φ

∇ei
ei
), Rφ(V ) =

m
∑

i=1

RN(V, dφ(ei))dφ(ei),

where RN and {ei} are the Riemannian curvature of N and a local orthonormal
frame field of M , respectively. For general theory of harmonic maps, we refer
to Urakawa’s monograph [12].

Eells and Sampson [5] suggested to study polyharmonic maps. Polyharmonic
maps of order 2 are frequently called biharmonic maps.
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Definition 1.1. A smooth map φ : (M, g) → (N, h) is said to be biharmonic

if it is a critical point of the bienergy functional:

E2(φ) =
1

2

∫

M

|τ(φ)|2 dvg,

with respect to all compactly supported variation.

The Euler-Lagrange equation of E2 is

τ2(φ) := −Jφ(τ(φ)) = 0.

The section τ2(φ) is called the bitension field of φ. For more informations on
biharmonic maps, we refer to a survey [11] by Montaldo and Oniciuc.

If φ is an isometric immersion, then τ(φ) = mH, where H is the mean
curvature vector field. Hence φ is harmonic if and only if φ is a minimal
immersion. As is well known, an isometric immersion φ : M → N is minimal if
and only if it is a critical point of the volume functional V . The Euler-Lagrange
equation of V is H = 0.

Motivated by this coincidence, the following notion was introduced by Lou-
beau and Montaldo:

Definition 1.2 ([10]). An isometric immersion φ : (Mm, g) → (Nn, h) is called
a biminimal immersion if it is a critical point of the bienergy functional E2 with
respect to all normal variation with compact support. Here, a normal variation
means a variation {φt} through φ = φ0 such that the variational vector field
V = dφt/dt|t=0 is normal to M .

The Euler-Lagrange equation of this variational problem is τ2(φ)
⊥ = 0.

Here τ2(φ)
⊥ is the normal component of τ2(φ). Since τ(φ) = mH, the Euler-

Lagrange equation is given explicitly by

(1.1)
{

△̄φH−Rφ(H)
}⊥

= 0.

Obviously, every biharmonic immersion is biminimal, but the converse is not
always true.

2. Biminimal curves

From now on we restrict our attention to unit speed curves in Riemannian
2-manifolds.

For a unit speed curve γ(s) in a Riemannian 2-manifold M , its tension field
is given by τ(γ) = ∇γ′γ′. Thus the bienergy of γ is the elastic energy

E2(γ) =
1

2

∫

κ(s)2 ds,

where κ(s) is the signed curvature of γ.
Here we recall the following fundamental result.
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Lemma 2.1 ([10]). A unit speed curve γ(s) in a Riemannian 2-manifold of

Gaussian curvature K is biminimal if and only if its signed curvature κ(s)
satisfies:

(2.1) κ′′ − κ3 + κK = 0.

Note that γ is biharmonic if and only if γ is biminimal and additionally sat-
isfies κκ′ = 0. Thus non-geodesic biharmonic curves have constant curvature.

Corollary 2.1. A non-geodesic curve in a Riemannian 2-manifold is bihar-

monic if and only if γ is a Riemannian circle of signed curvature κ satisfying

K = κ2 > 0. Thus proper biharmonic curves can exist only in constant positive

curvature 2-manifolds.

Remark 1. Let γ be a unit speed curve in Euclidean plane R
2. Then γ is an

elastic curve if and only if its signed curvature satisfies

κ′′ +
1

2
(κ3 − λκ) = 0

for some constant λ [9]. Thus the Euler-Lagrange equation of the biminimal
curve is different from the elastic curve equation.

3. Biminimal curves on Euclidean plane

First, we investigate biminimal curves on the Euclidean plane R
2. In this

case, the signed curvature κ(s) is a solution to

κ′′(s)− κ(s)3 = 0.

Multiplying 2κ′(s) to both hand sides of this ordinary differential equation, we
get

(κ′)2 =
1

2
(κ4 +A)

for some constant A. Thus we obtain
∫

dκ√
κ2 +A

= ± 1√
2
(s− s0).

The left hand side of this equation is an elliptic integral of the first kind. Hence
the signed curvature κ(s) can be represented by Jacobi’s elliptic functions.

In our previous paper [8], we have solved the ordinary differential equation
κ′′ = κ3. For our purpose, we recall the integration procedure given in [8].

Definition 3.1. For a positive constant k such that 0 < k < 1, the Jacobi’s
sn-function sn of modulus k is defined by

sn−1(x; k) =

∫ x

0

dx
√

(1− x2)(1 − k2x2)
, −1 ≤ x ≤ 1.
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The sn-function is defined on the interval −K(k) ≤ x ≤ K(k), where K(k)
is the complete elliptic integral of the first kind defined by

K(k) :=

∫ π

2

0

dθ
√

1− k2 sin2 θ
.

The sn function is extended to the whole line R as a periodic function with
fundamental period 4K(k). The cn function is defined by

cn(x; k) =
√

1− sn (x; k)2.

One can check the following integral formulas.
∫ u

1

du√
u4 − 1

=
1√
2
cn−1

(

1

u
;
1√
2

)

,(3.1)

∫ u

1

du√
u4 + 1

= K

(

1√
2

)

− 1

2
cn−1

(

u2 − 1

u2 + 1
;
1√
2

)

.(3.2)

3.1. A = 0. A simple and particular case is A = 0. In this case, κ is an
elementary function given explicitly by

(3.3) κ(s) = ∓
√
2

s− s0
.

The plane curve determined by this signed curvature is a logarithmic spiral.
This case was discussed in [10].

3.1.1. A > 0. In this case we express A = a2 with a > 0. Put κ =
√
au, then

by (3.2), we have
∫ κ

√
a

dκ√
κ4 + a2

=
1√
a

∫ u

1

du√
u4 + 1

=
1√
a

{

K

(

1√
2

)

− 1

2
cn−1

(

u2 − 1

u2 + 1
;
1√
2

)}

.

Thus we obtain

(3.4) κ(s) = ±
√
a

(

1 + cn(ν(s); 1/
√
2)

1− cn(ν(s); 1/
√
2)

)
1

2

,

where

ν(s) = ∓
√
2a(s− s0) + 2K(1/

√
2).

3.1.2. A < 0. In this case we express A = −a2 with a > 0. Put κ =
√
au as

before, then by (3.1) we get
∫ κ

√
a

dκ√
κ4 − a2

=
1√
a

∫ u

1

du√
u4 − 1

=
1√
a

{

1√
2
cn−1

(

1

u
;
1√
2

)}

.
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From we get the following formula:

(3.5) κ(s) =

√
a

cn
(√

a(s− s0);
1√
2

) .

Note that cn is an even function.

Theorem 3.1. Let γ(s) be a Frenet curve in Euclidean plane R
2. Then γ

is biminimal if and only if it is determined by one of the following natural

equations.

(1)

κ(s) = ∓
√
2

s− s0
.

In this case γ is a logarithmic spiral.

(2)

κ(s) = ±
√
a

(

1 + cn(ν(s); 1/
√
2)

1− cn(ν(s); 1/
√
2)

)
1

2

,

with ν(s) = ∓
√
2a(s− s0) + 2K(1/

√
2), or

(3)

κ(s) =

√
a

cn
(√

a(s− s0); 1/
√
2
) .

4. Biminimal curves on the 2-sphere and the hyperbolic plane

In this section we study biminimal curves in space forms of curvature c 6= 0.
Multiplying 2κ′ to the biminimal equation

(4.1) κ′′(s)− κ(s)3 + cκ(s) = 0,

we obtain

(κ′)2 − 1

2
κ4 + cκ2 = d,

where d is a constant. From this equation, we have
∫

dκ√
κ4 − 2cκ2 + 2d

=

∫

ds√
2
=

1√
2
(s− s0).

The left hand side of this equation is an elliptic integral.

4.1. c2 − 2d > 0. In this case, we can put r =
√
c2 − 2d > 0. Then we have

∫

dκ√
κ4 − 2cκ+ 2d

=

∫

dκ
√

(κ2 − c+ r)(κ2 − c− r)
.

In this case, the positivity of (κ′)2 implies

(4.2) κ2 > c+ r or 0 < κ2 < c− r.

We have three possibilities.
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4.1.1. c < 0 and d > 0. Since d > 0, we can put

a2 = −c+ r > 0, b2 = −c− r > 0.

Equivalently, we have

a2 + b2 = −2c, a2b2 = 2d.

Hence we get

κ4 − 2cκ2 + 2d = (κ2 + a2)(κ2 + b2).

Note that, in this case, the positivity condition κ2 > c+ r is satisfied. By using
the following integral formula

(4.3)

∫ x

0

dx
√

(x2 + a2)(x2 + b2)
=

1

a
cn−1

(

b√
b2 + x2

;

√
a2 − b2

a

)

, b ≤ a,

we have

(4.4) κ(s) = b







1− cn2
(

a(s−s0)√
2

;
√
a2−b2

a

)

cn2
(

a(s−s0)√
2

;
√
a2−b2

a

)







1

2

.

4.1.2. c > 0 and d > 0. In this case, we can put

a2 = c+ r > 0, b2 = c− r > 0.

Equivalently, we have

a2 + b2 = 2c, a2b2 = 2d.

Hence we get

κ4 − 2cκ2 + 2d = (κ2 − a2)(κ2 − b2).

The positivity condition (3.4) is rewritten as

κ2 > a2 or 0 < κ2 < b2.

Comparing this condition with the following integral formulas.

(4.5)

∫ ∞

x

dx
√

(x2 − a2)(x2 − b2)
=

1

a
sn−1

(

a

x
;
b

a

)

, 0 < b < a ≤ x,

(4.6)

∫ x

0

dx
√

(a2 − x2)(b2 − x2)
=

1

a
sn−1

(

x

b
;
b

a

)

, 0 ≤ |x| ≤ b < a.

Then we obtain

κ(s) =
a

sn
(

a(s−s0)√
2

; b
a

) or(4.7)

κ(s) = b sn

(

a(s− s0)√
2

;
b

a

)

,(4.8)

respectively.
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4.1.3. d < 0. In this case, we can put

a2 = −c+ r, b2 = c+ r.

Equivalently,

a2 − b2 = −2c, a2b2 = −2d.

Thus we have

κ4 − 2cκ2 + 2d = (κ2 + a2)(κ2 − b2).

By using the integral formula

(4.9)

∫ x

b

dx
√

(x2 + a2)(x2 − b2)
=

1√
a2 + b2

cn−1

(

b

x
;

a√
a2 + b2

)

, b ≤ x,

we get

(4.10) κ(s) =
b

cn
(√

a2+b2√
2

(s− s0);
a√

a2+b2

) .

4.2. c2 − 2d = 0. In this case, the ordinary equation is reduced to
∫

dκ

κ2 − c
=

1√
2
(s− s0).

Thus we obtain

κ(s) = −
√
c tanh

{√
c(s− s0)/

√
2
}

, c > 0,(4.11)

κ(s) =
√
−c tan

{√
−c(s− s0)/

√
2
}

, c < 0.(4.12)

4.3. c2 − 2d < 0. Since 2d > c2 > 0, we may put 2d = α4 (α > 0). Then we
can express c as

c = −α2 cos(2θ).

Because |c/
√
2d| = |c/α2| ≤ 1. Then by using the integral formula

∫ x

0

dx
√

x4 + 2α2 cos(2θ)x2 + α4
=

1

2α
cn−1

(

α2 − x2

α2 + x2
; sin θ

)

,

we obtain

(4.13) κ(s) = α

(

1− cn
(√

2α(s− s0); sin θ
)

1 + cn
(√

2α(s− s0); sin θ
)

)
1

2

.

Theorem 4.1. Let γ(s) be a unit speed curve in a Riemannian 2-manifold

M2(c) of constant curvature c 6= 0. If γ is biminimal and not a geodesic. Then

the signed curvature κ of γ is given by (4.4), (4.7), (4.8), (4.10), (4.11), (4.12),
or (4.13).
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5. Concluding remarks

Submanifolds with harmonic mean curvature (△H = 0) or normal harmonic
mean curvature (△⊥

H = 0) have been studied extensively. Here ∆⊥ is the
rough Laplacian of the normal bundle (and called the normal Laplacian). More
generally, submanifolds with property △H = λH or △⊥

H = λH have been
studied extensively by many authors (See references in [2], [7]). Analogously,
we may generalize the notion of biminimal immersion to the following one:

Definition 5.1 ([10]). An isometric immersion φ : M → N is called a λ-
biminimal immersion if it is a critical point of the functional:

E2,λ(φ) = E2(φ) + λE(φ), λ ∈ R.

The Euler-Lagrange equation for λ-biminimal immersions is

τ2(φ)
⊥ = λτ(φ).

More explicitly,
{△̄φH−Rφ(H)}⊥ = −λH

or equivalently
Jφ(H)⊥ = −λH.

Corollary 5.1. A non-geodesic curve γ in a Riemannian 2-manifold is λ-
biminimal if and only if

κ′′ − κ3 + κ (K − λ) = 0.

Thus, by replacing K by c−λ in (2.1), one can obtain natural equations for
λ-biminimal curves in the space form of curvature c.
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