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COINCIDENCES AND FIXED POINT THEOREMS FOR

MAPPINGS SATISFYING CONTRACTIVE CONDITION OF

INTEGRAL TYPE ON d-COMPLETE TOPOLOGICAL

SPACES

Ramesh Chandra Dimri and Amit Singh

Abstract. In this paper, we prove some fixed point theorems for some
weaker forms of compatibility satisfying a contractive condition of integral
type on d-complete Hausdorff topological spaces. Our results extend and
generalize some well known previous results.

1. Introduction

Branciari [7] obtained a fixed point result for a single mapping satisfying
an analogue of Banach’s contraction principle for an integral type inequality.
The authors in [3], [4], [6], [22], [28] and [30] proved some fixed point theorems
involving more general contractive conditions. Recently ([10]) some fixed point
theorems have been proved in non-metric setting wherein the distance function
used need not satisfy triangle inequality. The purpose of this paper is to inves-
tigate some new result of fixed points in non-metric settings. In the sequel, we
use contractive condition of integral type on d-complete Hausdorff topological
spaces.

Sessa [24] generalized the concept of commuting mappings by calling self-
mappings A and S on metric space (X, d) a weakly commuting pair if and only
if d(ASx, SAx) ≤ d(Ax, Sx) for all x ∈ X . He and others proved some com-
mon fixed point theorems of weakly commuting mappings [24, 25, 26]. Then,
Jungck [13] introduced the concept of compatibility and he and others proved
some common fixed point theorems using this concept [13, 14, 15, 29]. Clearly,
commuting mappings are weakly commuting and weakly commuting mappings
are compatible. Examples in [13, 24] show that neither converse is true. Re-
cently, Jungck and Rhoades [15] defined the concept of weak compatibility.
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Definition 1.1 (see [15, 27]). Two maps A,S : X → X are said to be weakly
compatible if they commute at their coincidence points.

Again, it is obvious that compatible mappings are weakly compatible. Ex-
amples in [15, 27] show that the converse is not true. Many fixed point results
have been obtained for weakly compatible mappings (see [1], [9], [8], [15], [21],
[27]).

Let (X, τ) be a topological space and d : X × X → [0,∞) be such that
d(x, y) = 0 if and only if x = y. Then X is said to be d-complete if

∑∞
n=1

d(xn, xn+1) < ∞ implies that the sequence {xn} is convergent inX . A mapping
T : X → X is w-continuous at x if xn → x implies Txn → Tx. For details on
d-complete topological spaces, we refer to Iseki [11] and Kasahara [17]-[19].

In the sequel, we shall use the following:
A symmetric function on a set X is a real valued d on X ×X such that for

all x, y ∈ X ,
(i) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x).
Let d be a symmetric function on a set X , and for any ǫ > 0 and any x ∈ X ,

let S(x, ǫ) = {y ∈ X : d(x, y) < ǫ}. From [10], we can define a topology τd on
X by U ∈ τd if and only if for each x ∈ U , some S(x, ǫ) ⊂ U . A symmetric
function d is a semi-metric if for each x ∈ X and for each ǫ > 0, S(x, ǫ) is
a neighborhood of x in the topology τd. A topological space X is said to be
symmetrizable (resp. semi-metrizable) if its topology is induced by a symmetric
function (resp. semi-metric) on X . The d-complete symmetrizable spaces form
an important class of d-complete topological spaces. Other examples of d-
complete topological spaces may be found in Hicks and Rhoades [10].

Hicks and Rhoades [10] proved the following theorem.

Theorem 1.1. Let (X, τ) be a Hausdorff d-complete topological space and f,

h be w-continuous self mappings on X satisfying

d(hx, hy) ≤ G(M∗(x, y))

for x, y ∈ X, where

M∗(x, y) = max{d(fx, fy), d(fx, hx), d(fy, hy)}

and G is a real-valued function satisfying the following:
(a) 0 < G(y) < y for each y > 0; G(0) = 0,
(b) g(y) = y

y−G(y) is a non-increasing function on (0,∞),

(c)
∫ y1

0
g(y)dy < ∞ for each y1 > 0,

(d) G(y) is non-decreasing.

Suppose also that

(i) f and h commute,

(ii) h(X) ⊆ f(X). Then f and h have a unique common fixed point in X.
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2. Main results

Theorem 2.1. Let A, B, S and T be w-continuous self-maps defined on a

Hausdorff topological space (X, τ) satisfying the following conditions:

(1) S(X) ⊆ B(X), T (X) ⊆ A(X),

(2)

∫ d(Sx,Ty)

0

ϕ(t)dt ≤ G

(

∫ M(x,y)

0

ϕ(t)dt

)

for all x, y ∈ X, where ϕ : R+ → R
+ is a Lebesgue integrable mapping which

is summable on each compact subset of R+, non-negative and such that

(3) ǫ ≤

∫ ǫ

0

ϕ(t)dt for each ǫ > 0,

(4) M(x, y) = max {d(Ax,By), d(Sx,Ax), d(Ty,By)}

and G is a real valued function satisfying the condition (a)-(d). If one of A(X),
B(X), S(X) and T(X) is a d-complete topological subspace of X, then

(i) A and S have a coincidence point,

(ii) B and T have a coincidence point.

Further if the pairs {A,S} and {B, T } are weakly compatible, then

(iii) A, B, S and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point ofX . From (1), we can construct a sequence
{yn} in X as follows:

(5) y2n+1 = Sx2n = Bx2n+1, y2n+2 = Tx2n+1 = Ax2n+2

for all n = 0, 1, 2,. . . . Define dn = d(yn, yn+1). Suppose that d2n = 0 for some
n. Then y2n = y2n+1, i.e., Tx2n−1 = Ax2n = Sx2n = Bx2n+1, hence A and S
have a coincidence point.

Similarly if d2n+1 = 0, then B and T have a coincidence point. Assume that
dn 6= 0 for each n. Then by (2)

(6)

∫ d(Sx2n,Tx2n+1)

0

ϕ(t)dt ≤ G

(

∫ M(x2n,x2n+1)

0

ϕ(t)dt

)

,

where

M(x2n, x2n+1)

= max{d(Ax2n, Bx2n+1), d(Sx2n, Ax2n), d(Tx2n+1, Bx2n+1)}

= max{d(y2n, y2n+1), d(y2n+1, y2n), d(y2n+2, y2n+1)}

= max{d2n, d2n+1}.

Thus from (6), we have

(7)

∫ d2n+1

0

ϕ(t)dt ≤ G

(

∫ max{d2n,d2n+1}

0

ϕ(t)dt

)

.
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Now, if d2n+1 ≥ d2n for some n, then from (7), we have

∫ d2n+1

0

ϕ(t)dt ≤ G

(

∫ d2n+1

0

ϕ(t)dt

)

<

∫ d2n+1

0

ϕ(t)dt,

which is a contradiction. Thus d2n > d2n+1 for all n. Therefore from (7), we
have

(8)

∫ d2n+1

0

ϕ(t)dt ≤ G

(

∫ d2n

0

ϕ(t)dt

)

.

Similarly

(9)

∫ d2n

0

ϕ(t)dt ≤ G

(

∫ d2n−1

0

ϕ(t)dt

)

.

In general, we have for all n = 1, 2, 3,. . . ,

(10)

∫ dn

0

ϕ(t)dt ≤ G

(

∫ dn−1

0

ϕ(t)dt

)

.

Next we define a sequence {Sn} of real numbers by Sn+1 = G(Sn) with S1 =
∫ d(Sx0,Tx1)

0 ϕ(t)dt > 0, then by (a), we have 0 < Sn+1 < Sn < S1 for n ≥ 1.

Moreover by (b) and (c), the series
∑∞

n=1 Sn converges (see [1]). We shall

show that
∫ dn

0
ϕ(t)dt ≤ Sn+1 for n ≥ 1.

From (10), we have

∫ d1

0

ϕ(t)dt ≤ G

(

∫ d(Sx0,Tx1)

0

ϕ(t)dt

)

= G(S1) = S2

and the desired inequality is valid for n = 1. So, assume that it is true for some
n > 1. From (10) again, we have

∫ dn

0

ϕ(t)dt ≤ G

(

∫ dn−1

0

ϕ(t)dt

)

≤ G(Sn) = Sn+1.

Since
∑∞

n=1 Sn is convergent, it follows that
∑∞

n=1

∫ dn

0
ϕ(t)dt is also convergent.

By (3), the series
∑∞

n=1 dn converges.
Since A(X) is d-complete, then the sequence {yn} converges to some u in

X . Hence, the subsequences {Ax2n}, {Bx2n+1}, {Sx2n}, {Tx2n+1} of {yn}
also converge to u.

Let Av = u for some v in X . Putting x = v and y = x2n−1 in (2), we have

(11)

∫ d(Sv,y2n)

0

ϕ(t)dt =

∫ d(Sv,Tx2n−1)

0

ϕ(t)dt ≤ G

(

∫ M(v,x2n−1)

0

ϕ(t)dt

)

,
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where

M(v, x2n−1) = max{d(Av,Bx2n−1), d(Sv,Av), d(Tx2n−1, Bx2n−1)}

= max{d(u, y2n−1), d(Sv, u), d(y2n, y2n−1)}.

Using above inequality in (11) and letting n → ∞, we have
∫ d(Sv,u)

0

ϕ(t)dt ≤ G

(

∫ max{d(u,u),d(Sv,u),d(u,u)}

0

ϕ(t)dt

)

which implies that
∫ d(Sv,u)

0

ϕ(t)dt ≤ G

(

∫ d(Sv,u)

0

ϕ(t)dt

)

<

∫ d(Sv,u)

0

ϕ(t)dt,

which is a contradiction. Hence from (3), Sv = u. This proves (i)
Since S(X) ⊆ B(X), Sv = u implies that u ∈ B(X). Let w ∈ B−1u. Then

Bw = u. By using the argument of previous part of the proof, it can be easily
verified that Tw = u. This proves (ii).

The same result holds if we assume that B(X) is d-complete instead of A(X).
Now, if T (X) is d-complete, then by (1), u ∈ T (X) ⊆ A(X).

Similarly, if S(X) is d-complete, then u ∈ S(X) ⊆ B(X).
Thus (i) and (ii) are completely established.

To prove (iii), suppose that the pairs {A,S}, {B, T } are weakly compatible
and

(12) u = Sv = Av = Tw = Bw,

then

(13)

{

Au = ASv = SAv = Su
Bu = BTw = TBw = Tu.

If Tw 6= w, then from (2), (12) and (13), we have
∫ d(u,Tu)

0

ϕ(t)dt =

∫ d(Sv,Tu)

0

ϕ(t)dt ≤ G

(

∫ M(v,u)

ϕ(t)dt

)

= G

(

∫ d(u,Tu)

0

ϕ(t)dt

)

<

∫ d(u,Tu)

0

ϕ(t)dt,

which is a contradiction. Hence Tu = u. Similarly Su = u. Then, evidently
from (13), u is a common fixed point of A,B, S and T .

To prove its uniqueness, let us suppose that z is another common fixed point
of A,B, S and T . Then by (2), we have

∫ d(u,z)

0

ϕ(t)dt =

∫ d(Su,Tz)

0

ϕ(t)dt ≤ G

(

∫ d(u,z)

0

ϕ(t)dt

)

which implies that
∫ d(u,z)

0
ϕ(t)dt = 0, which from (3) implies that d(u, z) = 0

or u = z. Therefore u is a unique common fixed point of A,B, S and T . �
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Theorem 2.2. Let (X, τ) be a Hausdorff topological space, A, B, S and T be

w-continuous self-mappings of X satisfying the following conditions:

(14) S(X) ⊆ B(X), T (X) ⊆ A(X),

(15)

∫ d(Sx,Ty)

0

ϕ(t)dt ≤ G

(

∫ M(x,y)

0

ϕ(t)dt

)

for all x, y ∈ X, where ϕ and G are as in Theorem 2.1 and

(16)

M(x, y) = max

{

d(Ax,By), d(Sx,Ax), d(Ty,By),
d(Sx,By) + d(Ty,Ax)

2

}

.

Suppose if one of A(X), B(X), S(X) and T(X) is a d-complete topological

subspace of X, then

(i) A and S have a coincidence point,

(ii) B and T have a coincidence point.

Further if the pairs {A,S} and {B, T } are weakly compatible, then

(iii) A, B, S and T have a unique common fixed point.

Proof. It follows easily from the basis of Theorem 2.1. �

Theorem 2.3. Let (X, τ) be a Hausdorff topological space, A, B, S and T be

w-continuous self-maps defined on X satisfying the following conditions:

(17) S(X) ⊆ B(X), T (X) ⊆ A(X),

(18)

∫ d(Sx,Ty)

0

ϕ(t)dt ≤ G

(

∫ M(x,y)

0

ϕ(t)dt

)

for all x, y ∈ X, where ϕ and G as in Theorem 2.1 and

(19) M(x, y) = max {d(Ax,By), d(Sx,Ax), d(Ty,By)} .

Suppose if one of A(X), B(X), S(X) and T(X) is a d-complete topological

subspace of X and the pairs {A,S} and {B, T } are semi-compatible, then A,

B, S and T have a unique common fixed point.

Proof. It follows easily if we take semi-compatible mappings instead of weakly
compatible mappings in Theorem 2.1. �

Theorem 2.4. Let A, B, S and T be self-maps defined on a Hausdorff topo-

logical space (X, τ) satisfying the following conditions:

(20) S(X) ⊆ B(X), T (X) ⊆ A(X),

(21)

∫ d(Sx,Ty)

0

ϕ(t)dt ≤ G

(

∫ M(x,y)

0

ϕ(t)dt

)
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for all x, y ∈ X, where ϕ and G are as in Theorem 2.1 and

(22)

M(x, y) = max

{

d(Ax,By), d(Sx,Ax), d(Ty,By),
d(Sx,By) + d(Ty,Ax)

2

}

.

Suppose if one of A(X), B(X), S(X) and T(X) is a d-complete topological sub-

space of X and the pairs {A,S} and {B, T } are semi-compatible, then A, B, S

and T have a unique common fixed point.

Proof. It follows easily if we take semi-compatible mappings instead of weakly
compatible mappings in Theorem 2.2. �

Corollary 2.1. Let A and S be w-continuous self-maps defined on a Hausdorff

topological space (X, τ) satisfying the following conditions:

(23) S(X) ⊆ A(X),

(24)

∫ d(Sx,Sy)

0

ϕ(t)dt ≤ G

(

∫ M(x,y)

0

ϕ(t)dt

)

for all x, y ∈ X, where ϕ and G are as in Theorem 2.1 and

(25)

M(x, y) = max

{

d(Ax,Ay), d(Ax, Sx), d(Ay, Sy),
d(Ax, Sy) + d(Ay, Sx)

2

}

.

Suppose if A(X) or S(X) is a d-complete topological subspace of X, then

(i) A and S have a coincidence point.

Further if the pair {A,S} is weakly compatible, then

(iii) A and S have a unique common fixed point.

Proof. It follows from Theorem 2.2 when B and T are identity maps on X . �

Corollary 2.2. Let A and S be w-continuous self-maps defined on a Hausdorff

topological space (X, τ) satisfying the following conditions:

(26) S(X) ⊆ A(X),

(27)

∫ d(Sx,Sy)

0

ϕ(t)dt ≤ G

(

∫ M(x,y)

0

ϕ(t)dt

)

for all x, y ∈ X, where ϕ and G are as in Theorem 2.1 and

(28)

M(x, y) = max

{

d(Ax,Ay), d(Ax, Sx), d(Ay, Sy),
d(Ax, Sy) + d(Ay, Sx)

2

}

.

Suppose if A(X) or S(X) is a d-complete topological subspace of X and the pair

{A,S} is semi-compatible, then A and S have a unique common fixed point.

Proof. It follows from Theorem 2.4 when B and T are identity maps on X . �
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Remark 2.1. If we take S = T and A = B in Theorem 2.1, then we have
Theorem 3 of [5].

Remark 2.2. If we take A = B = S = T in Theorem 2.1, then we have Theorem
2 of [5].

Remark 2.3. If we take ϕ(t) = 1 and A = B = S = T in Theorem 2.1, then we
have Theorem 1.1.

Remark 2.4. If we take a complete metric space instead of Hausdorff d-complete
topological space in Theorem 2.1, Theorem 2.2, Theorem 2.3 and Theorem 2.4,
we have the following theorems. Note that the condition (3) has been weakened
in these theorems, but we have changed the conditions of the function G.

We need the following lemma for the proofs of these theorems.

Lemma 2.1. Let G : R
+ → R

+ be a right continuous function such that

G(t) < t for every t > 0. Then limn→∞ Gn(t) = 0.

Theorem 2.5. Let A, B, S and T be self-maps defined on a metric space (X, d)
satisfying the following conditions:

(29) S(X) ⊆ B(X), T (X) ⊆ A(X),

(30)

∫ d(Sx,Ty)

0

ϕ(t)dt ≤ G

(

∫ M(x,y)

0

ϕ(t)dt

)

for all x, y ∈ X, where ϕ : R+ → R
+ is a Lebesgue integrable mapping which

is summable on each compact subset of R+, non-negative and such that

(31)

∫ ǫ

0

ϕ(t)dt > 0 for each ǫ > 0,

(32) M(x, y) = max {d(Ax,By), d(Sx,Ax), d(Ty,By)}

and G : R+ → R
+ is a right continuous and nondecreasing function such that

G(0) = 0 and G(t) < t for each t > 0. If one of A(X), B(X), S(X) and T(X)
is a complete subspace of X, then

(i) A and S have a coincidence point,

(ii) B and T have a coincidence point.

Further if the pairs {A,S} and {B, T } are weakly compatible, then

(iii) A, B, S and T have a unique common fixed point.

Theorem 2.6. Let (X, d) be a metric space, A, B, S and T be self-mappings

of X satisfying the following conditions:

(33) S(X) ⊆ B(X), T (X) ⊆ A(X),

(34)

∫ d(Sx,Ty)

0

ϕ(t)dt ≤ G

(

∫ M(x,y)

0

ϕ(t)dt

)
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for all x, y ∈ X, where ϕ and G are as in Theorem 2.5 and

(35)

M(x, y) = max

{

d(Ax,By), d(Sx,Ax), d(Ty,By),
d(Sx,By) + d(Ty,Ax)

2

}

.

Suppose if one of A(X), B(X), S(X) and T(X) is a complete subspace of X,

then

(i) A and S have a coincidence point,

(ii) B and T have a coincidence point.

Further if the pairs {A,S} and {B, T } are weakly compatible, then

(iii) A, B, S and T have a unique common fixed point.

Theorem 2.7. Let (X, d) be a metric space, A, B, S and T be self-maps defined

on X satisfying the following conditions:

(36) S(X) ⊆ B(X), T (X) ⊆ A(X),

(37)

∫ d(Sx,Ty)

0

ϕ(t)dt ≤ G

(

∫ M(x,y)

0

ϕ(t)dt

)

for all x, y ∈ X, where ϕ and G are as in Theorem 2.5 and

(38) M(x, y) = max {d(Ax,By), d(Sx,Ax), d(Ty,By)} .

Suppose if one of A(X), B(X), S(X) and T(X) is a d-complete topological

subspace of X and the pairs {A,S} and {B, T } are semi-compatible, then A,

B, S and T have a unique common fixed point.

Theorem 2.8. Let A, B, S and T be self-maps defined on a metric space (X, d)
satisfying the following conditions:

(39) S(X) ⊆ B(X), T (X) ⊆ A(X),

(40)

∫ d(Sx,Ty)

0

ϕ(t)dt ≤ G

(

∫ M(x,y)

0

ϕ(t)dt

)

for all x, y ∈ X, where ϕ and G are as in Theorem 2.5 and

(41)

M(x, y) = max

{

d(Ax,By), d(Sx,Ax), d(Ty,By),
d(Sx,By) + d(Ty,Ax)

2

}

.

Suppose if one of A(X), B(X), S(X) and T(X) is a complete subspace of X

and the pairs {A,S} and {B, T } are semi-compatible, then A, B, S and T have

a unique common fixed point.

Remark 2.5. If we take S = T and A = B in Theorem 2.5, then we have
Theorem 5 of [5].

Remark 2.6. If we take A = B = S = T in Theorem 2.5, then we have Theorem
4 of [5].
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Remark 2.7. If we take ϕ(t) = 1 and A = B = S = T in Theorem 2.5, then we
have a generalisation of the main theorem of [12].

Remark 2.8. Theorem 2.6 is a generalisation of the main theorem of [7], The-
orem 2 of [22] and Theorem 2 of [30].

Remark 2.9. If ϕ(t) ≡ 1, then Theorem 2.6 of this paper reduces to Theorem
2.1 of [27].

Remark 2.10. If ϕ(t) ≡ 1 and G = ht, 0 ≤ h < 1, then Theorem 2.6 of this
paper reduces to Corollary 3.1 of [8].

The following example shows that Theorem 2.6 is a generalisation of Corol-
lary 3.1 of [8].

Example 2.1. Let X = { 1
n
: n ∈ N} ∪ {0} with Euclidean metric and A,B, S

and T are self mappings on X defined by

S(
1

n
) =







1
n+1 if n is odd,
1

n+2 if n is even,

0 if n = ∞,

T (
1

n
) =







1
n+1 if n is even,
1

n+2 if n is odd,

0 if n = ∞,

A(
1

n
) = B(

1

n
) =

1

n
∀n ∈ N ∪ {∞}.

Clearly S(X) ⊆ B(X), T (X) ⊆ A(X), A(X) is a complete subspace of X and
the pairs {A,S} and {B, T } are weakly compatible.

Now suppose that the contractive condition of Corollary 3.1 of [8] is satis-
fying, that is, there exists h ∈ [0, 1) such that

(42) d(Sx, T y) ≤ hM(x, y)

for all x, y ∈ X . Therefore, for x 6= y, we have

d(Sx, T y)

M(x, y)
≤ h < 1,

but since supx 6=y(d(Sx, T y)/M(x, y)) = 1, one has a contradiction. Thus the
condition (42) is not satisfied.

Now we define ϕ(t) = max{0, t
1

t−2 [1 − log t]} for t > 0, ϕ(0) = 0. Then for
any τ ∈ (0, e),

∫ τ

0

ϕ(t)dt = τ
1
τ .

Thus we must show that there exists a right continuous function G : R+ →
R

+, G(s) < s for s > 0, G(0) = 0 such that

(43) (d(Sx, T y))
1

d(Sx,Ty) ≤ G(M(x, y)
1

M(x,y) )

for all x, y ∈ X . Now we claim that (43) is satisfying with G(s) = s
2 , that is,

(44) (d(Sx, T y))
1

d(Sx,Ty) ≤
1

2
(M(x, y)

1
M(x,y) )



COINCIDENCES AND FIXED POINT THEOREMS 719

for all x, y ∈ X . Since the function τ → τ
1
τ is nondecreasing, we show suffi-

ciently that

(45) (d(Sx, T y))
1

d(Sx,Ty) ≤
1

2
(d(x, y)

1
d(x,y) )

instead of (44). Now using Example 4 of [30], we have (45), thus the condition
(43) is satisfied.
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