FUZZY p-IDEALS OF BCI-ALGEBRAS WITH DEGREES IN THE INTERVAL (0, 1]

YUN SUN HWANG AND SUN SHIN AHN

ABSTRACT. The notion of an enlarged p-ideal and a fuzzy p-ideal in BCI-algebras with degree are introduced. Related properties of them are investigated.

1. Introduction

The concept of a fuzzy set is applied to generalize some of the basic concepts of general topology ([1]). Rosenfeld ([6]) constituted a similar application to the elementary theory of groupoids and groups. Xi ([7]) applied to the concept of fuzzy set to BCK-algebras. Y. B. Jun and J. Meng ([4]) introduced of fuzzy *p*-ideals in BCI-algebras and studied their properties.

In this paper, we introduce the notion of an enlarged p-ideal and a fuzzy p-ideal in BCI-algebras with degree. We study related properties of them.

2. Preliminaries

We review some definitions and properties that will be useful in our results. By a *BCI-algebra* we mean an algebra (X, *, 0) of type (2,0) satisfying the following conditions:

(a1) $(\forall x, y, z \in X)(((x * y) * (x * z)) * (z * y) = 0),$

(a2) $(\forall x, y \in X)((x * (x * y)) * y = 0),$

(a3) $(\forall x \in X)(x * x = 0),$

(a4) $(\forall x, y \in X)(x * y = 0, y * x = 0 \Rightarrow x = y).$

If a BCI-algebra X satisfies the following identity:

(a5) $(\forall x \in X)(0 * x = 0),$

then X is called a BCK-algebra.

In any *BCI*-algebra X one can define a partial order " \leq " by putting $x \leq y$ if and only if x * y = 0.

A BCI-algebra X has the following properties:

 $\bigodot 2012$ The Korean Mathematical Society

Received December 26, 2011.

 $^{2010\} Mathematics\ Subject\ Classification.\ 03G25,\ 06F35,\ 08A72.$

Key words and phrases. enlarged p-ideal, fuzzy p-ideal with degree.

(b1) $(\forall x \in X)(x * 0 = x).$

- (b2) $(\forall x, y, z \in X)((x * y) * z = (x * z) * y).$
- (b3) $(\forall x, y \in X)(0 * (x * y) = (0 * x) * (0 * y)).$
- (b4) $(\forall x, y \in X)(x * (x * (x * y)) = x * y).$
- $(\mathrm{b5}) \ (\forall x,y,z\in X)(x\leq y \ \Rightarrow \ x*z\leq y*z, \ z*y\leq z*x).$
- (b6) $(\forall x, y, z \in X)((x * z) * (y * z) \le x * y).$
- (b7) $(\forall x, y, z \in X)(0 * (0 * ((x * z) * (y * z))) = (0 * y) * (0 * x)).$
- (b8) $(\forall x, y \in X)(0 * (0 * (x * y)) = (0 * y) * (0 * x)).$

A non-empty subset S of a BCI-algebra X is called a *subalgebra* of X if $x * y \in S$ whenever $x, y \in S$. A non-empty subset A of a BCI-algebra X is called an *ideal* of X if it satisfies:

(c1) $0 \in A$,

(c2)
$$(\forall x \in A)(\forall y \in X)(x * y \in A \Rightarrow x \in A).$$

Note that every ideal A of a BCI-algebra X satisfies:

$$(\forall x \in A) \ (\forall y \in X) \ (x \le y \implies x \in A)$$

A non-empty subset A of a *BCI*-algebra X is called a *p-ideal* ([9]) of X if it satisfies (c1) and

(c3) $(\forall x, y, z \in X)((x * z) * (y * z) \in A \text{ and } y \in A \Rightarrow x \in A).$

Note that any *p*-ideal is an ideal, but the converse is not true in general.

We refer the reader to the book [2] for further information regarding BCI-algebras.

A fuzzy subset μ of a *BCK/BCI*-algebra X is called a *fuzzy ideal* ([4]) of X if it satisfies:

(d1) $(\forall x \in X)(\mu(0) \ge \mu(x)),$

(d2) $(\forall x, y \in X)(\mu(x) \ge \min\{\mu(x * y), \mu(y)\}).$

A fuzzy subset μ of a *BCI*-algebra X is called a *fuzzy p-ideal* ([4]) of X if it satisfies (d1) and

(d3) $(\forall x, y, z \in X)(\mu(x) \ge \min\{\mu((x * z) * (y * z)), \mu(y)\}.$

3. Fuzzy p-ideals of BCI-algebras with degrees in the interval (0, 1]

In what follows let X denote a BCI-algebra unless specified otherwise.

Definition 3.1 ([5]). Let I be a non-empty subset of a BCK/BCI-algebra X which is not necessary an ideal of X. We say that a subset J of X is an *enlarged ideal* of X related to I if it satisfies:

- (1) I is a subset of J,
- (2) $0 \in J$,
- (3) $(\forall x \in X)(\forall y \in I)(x * y \in I \Rightarrow x \in J).$

Definition 3.2. Let I be a non-empty subset of a BCI-algebra X which is not necessary a p-ideal of X. We say that a subset J of X is an *enlarged* p-ideal of X related to I if it satisfies:

FUZZY p-IDEALS OF BCI-ALGEBRAS WITH DEGREES IN THE INTERVAL (0,1] 703

- (1) I is a subset of J,
- $(2) \ 0 \in J,$
- $(3) \ (\forall x,y,z\in X)((x\ast z)\ast (y\ast z)\in I \text{ and } y\in I\Rightarrow x\in J).$

Obviously, every *p*-ideal is an enlarged *p*-ideal of X related to itself. Note that there exists an enlarged *p*-ideal of X related to any non-empty subset I of a *BCI*-algebra X.

Example 3.3. Let $X := \{0, a, b, c\}$ be a *BCI*-algebra ([4]) in which the *- operation is given by the following table:

*	0	a	b	c
0	0	a	b	с
$a \\ b$	a	0	c	b
		c	0	a
c	c	b	a	0

Then $\{0, a, b\}$ is an enlarged *p*-ideal of *X* related to $\{0\}$. But $\{0, a, b\}$ is not a *p*-ideal since $(c * a) * (b * a) = b * c = a, b \in \{0, a, b\}$, and $c \notin \{0, a, b\}$.

Theorem 3.4. Let I be a non-empty subset of a BCI-algebra X. Every enlarged p-ideal of X related to I is an enlarged ideal of X related to I.

Proof. Let J be an enlarged p-ideal of X related to I. Putting z := 0 in Definition 3.2(3), we have

$$(\forall x, y \in X)((x * 0) * (y * 0) = x * y \in I \text{ and } y \in I \Rightarrow x \in J).$$

Hence J is an enlarged ideal of X related to I.

The converse of Theorem 3.4 does not true in general as seen in the following example.

 \square

Example 3.5. Let $X := \{0, 1, 2, 3, 4\}$ be a *BCI*-algebra ([4]) in which the *-operation is given by the following table:

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	0	0
2	2	1	0	0	1
3	3	2	1	0	2
4	4	4	4	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 4 \end{array} $	0

Note that $\{0, 1, 3\}$ is not both an ideal and a *p*-ideal of *X*. Then $\{0, 1, 2, 3\}$ is an enlarged ideal of *X* related to $\{0, 1, 3\}$ but not an enlarged *p*-ideal of *X* related to $\{0, 1, 3\}$ since $(4 * 4) * (3 * 4) = 0, 3 \in \{0, 1, 3\}$ and $4 \notin \{0, 1, 3\}$.

In what follows let λ and κ be members of (0, 1], and let n and k denote a natural number and a real number, respectively, such that k < n unless otherwise specified.

Definition 3.6 ([5]). A fuzzy subset μ of a *BCK/BCI*-algebra X is called a *fuzzy ideal* of X with degree (λ, κ) if it satisfies:

- (1) $(\forall x \in X)(\mu(0) \ge \lambda \mu(x)),$
- (2) $(\forall x, y \in X)(\mu(x) \ge \kappa \min\{\mu(x * y), \mu(y)\}).$

Definition 3.7. A fuzzy subset μ of a *BCI*-algebra X is called a *fuzzy p-ideal* of X with degree (λ, κ) if it satisfies:

- (1) $(\forall x \in X)(\mu(0) \ge \lambda \mu(x)),$
- (2) $(\forall x, y \in X)(\mu(x) \ge \kappa \min\{\mu((x * z) * (y * z)), \mu(y)\}).$

Note that if $\lambda \neq \kappa$, then a fuzzy *p*-ideal with degree (λ, κ) may not be a fuzzy *p*-ideal with degree (κ, λ) , and vice versa.

Example 3.8. Let $X := \{0, a, 1, 2, 3\}$ be a *BCI*-algebra ([4]) in which the *-operation is given by the following table:

Define a fuzzy subset $\mu: X \to [0, 1]$ by

$$\mu = \begin{pmatrix} 0 & a & 1 & 2 & 3 \\ 0.8 & 0.6 & 0.5 & 0.5 & 0.5 \end{pmatrix}.$$

Then μ is a fuzzy *p*-ideal of X with degree $(\frac{4}{7}, \frac{4}{7})$, but it is neither a fuzzy *p*-ideal of X nor a fuzzy *p*-ideal of X with degree $(\frac{4}{5}, \frac{4}{5})$ since

$$\mu(a) = 0.6 \ngeq \min\{\mu((a*1)*(0*1)), \mu(0)\}$$

and

$$\mu(a) = 0.6 \ngeq \frac{4}{5} \times 0.8 = \frac{4}{5} \min\{\mu((a*1)*(0*1)), \mu(0)\}.$$

Obviously, every fuzzy *p*-ideal is a fuzzy *p*-ideal with degree (λ, κ) , but the converse may not be true. In fact, the fuzzy *p*-ideal μ with degree $(\frac{5}{7}, \frac{4}{7})$ in Example 3.8 is not a fuzzy *p*-ideal of *X*. Note that a fuzzy *p*-ideal with degree (λ, κ) is a fuzzy *p*-ideal if and only if $(\lambda, \kappa) = (1, 1)$. If $\lambda_1 \geq \lambda_2$ and $\kappa_1 \geq \kappa_2$, then every fuzzy *p*-ideal with degree (λ_1, κ_1) is a fuzzy *p*-ideal with (λ_2, κ_2) , but the converse is not true as shown by Example 3.8.

Proposition 3.9. If μ is a fuzzy *p*-ideal of a BCI-algebra X with degree (λ, κ) , then μ is a fuzzy ideal of X with degree (λ, κ) .

Proof. Put z := 0 in Definition 3.7(2).

The converse of Proposition 3.9 is not true in general as seen the following example.

Example 3.10. Consider a *BCI*-algebra X and a fuzzy subset μ as in Example 3.8. It is routine to check that μ is a fuzzy ideal of X with degree $(\frac{4}{7}, \frac{4}{5})$. But it is not a fuzzy *p*-ideal of X with degree $(\frac{4}{7}, \frac{4}{5})$ since

$$\mu(a) = 0.6 \ngeq 0.64 = \frac{4}{5} \times 0.8 = \frac{4}{5} \min\{\mu((a*1)*(0*1)), \mu(0)\}.$$

Proposition 3.11. If μ is a fuzzy p-ideal of a BCI-algebra X with degree (λ, κ) , then the following hold:

- (1) $(\forall x, y \in X)(x \le y \Rightarrow \mu(x) \ge \lambda \kappa \mu(y)),$
- $(2) \ (\forall x\in X)(\mu(x)\geq\lambda\kappa\min\{\mu(0*(0*x)),\mu(x)\}).$

Proof. (1) Let $x, y \in X$ be such that $x \leq y$. Then x * y = 0. Putting z := 0 in Definition 3.7(2) and using (b1), we have

$$\begin{split} \mu(x) &\geq \kappa \min\{\mu((x*0)*(y*0)), \mu(y)\} \\ &= \kappa \min\{\mu(x*y), \mu(y)\} \\ &= \kappa \min\{\mu(0), \mu(y)\} \\ &\geq \kappa \min\{\lambda \mu(y), \mu(y)\} \\ &= \lambda \kappa \mu(y). \end{split}$$

(2) For any $x \in X$, we have

$$\mu(x) \ge \kappa \min\{\mu((x * x) * (0 * x)), \mu(0)\} = \kappa \min\{\mu((0 * (0 * x)), \mu(0)\} \ge \kappa \min\{\mu((0 * (0 * x)), \lambda\mu(x)\} \ge \kappa \min\{\lambda\mu((0 * (0 * x)), \lambda\mu(x)\} = \lambda \kappa \min\{\mu((0 * (0 * x)), \mu(x)\}.$$

Theorem 3.12. If μ is a fuzzy p-ideal of a BCI-algebra X with degree (λ, κ) , then the following hold:

$$(\forall x, y, z \in X)(\mu((x * z) * (y * z)) \ge \kappa \lambda \mu(x * y)).$$

Proof. Let $x, y, z \in X$. Using (a1) and (b2), the inequality $(x*z)*(y*z) \le x*y$ holds. By Proposition 3.11(1), we have $\mu((x*z)*(y*z)) \ge \lambda \kappa \mu(x*y)$. This completes the proof.

Theorem 3.13. Let μ be a fuzzy ideal of a BCI-algebra X with degree (λ, κ) . If μ satisfies $\mu(x * y) \ge \mu((x * z) * (y * z))$ for all $x, y, z \in X$, then μ is a fuzzy *p*-ideal of X with degree (λ, κ) .

Proof. For any $x, y, z \in X$, we have

$$\mu(x) \ge \kappa \min\{\mu(x*y), \mu(y)\}$$
$$\ge \kappa \min\{\mu((x*z)*(y*z)), \mu(y)\}.$$

Thus μ is a fuzzy *p*-ideal of X with degree (λ, κ) .

Lemma 3.14. Let μ be a fuzzy ideal of a BCI-algebra X with degree (λ, κ) . Then

$$\mu(0*(0*x)) \ge \kappa \lambda \mu(x), \forall x \in X$$

Proof. For any $x \in X$, we have

$$\mu(0*(0*x)) \ge \kappa \min\{\mu((0*(0*x))*x), \mu(x)\}$$

= $\kappa \min\{\mu(0), \mu(x)\}$
$$\ge \kappa \min\{\lambda\mu(x), \mu(x)\}$$

$$\ge \kappa \lambda \min\{\mu(x), \mu(x)\}$$

= $\kappa \lambda \mu(x).$

Theorem 3.15. Let μ be a fuzzy ideal of a BCI-algebra X with degree (λ, κ) satisfying

$$\mu(0*(0*x)) \le \kappa \lambda \mu(x) \text{ for all } x \in X$$

Then μ is a fuzzy p-ideal of a BCI-algebra X with degree (λ, κ) .

Proof. Let $x, y, z \in X$. Using Lemma 3.14, (b7) and (b8), we have

$$\mu((x * z) * (y * z)) \leq \frac{1}{\kappa\lambda} \mu(0 * (0 * ((x * z) * (y * z))))$$

= $\frac{1}{\kappa\lambda} \mu((0 * y) * (0 * x))$
= $\frac{1}{\kappa\lambda} \mu(0 * (0 * (x * y)))$
 $\leq \frac{1}{\kappa\lambda} \kappa\lambda \mu(x * y)$
= $\mu(x * y).$

By Theorem 3.13, μ is a fuzzy *p*-ideal of X with degree (λ, κ) .

Denote by $\mathcal{I}(X)$ and $\mathcal{I}_p(X)$ the set of all ideals and *p*-ideals of a *BCI*-algebra X, respectively. Note that a fuzzy subset μ of a *BCI*-algebra X is a fuzzy *p*-ideal of X if and only if

$$(\forall t \in [0,1])(U(\mu;t) \in \mathcal{I}_p(X) \cup \{\emptyset\}).$$

But we know that for any fuzzy subset μ of a BCI algebra X there exist $\lambda,\kappa\in(0,1)$ and $t\in[0,1]$ such that

(1) μ is a fuzzy *p*-ideal of X with degree (λ, κ) , (2) $U(\mu; t) \notin \mathcal{I}_p(X) \cup \{\emptyset\}.$

Example 3.16. Consider a *BCI*-algebra $X = \{0, a, 1, 2, 3\}$ as in Example 3.8. Define a fuzzy subset $\mu : X \to [0, 1]$ by

$$\mu = \begin{pmatrix} 0 & a & 1 & 2 & 3 \\ 0.7 & 0.6 & 0.7 & 0.5 & 0.5 \end{pmatrix}.$$

706

Then μ is a fuzzy *p*-ideal of *X* with degree (0.6, 0.7). If $t \in (0.6, 0.7]$, then $U(\mu; t) = \{0, 1\}$ is not a *p*-ideal of *X* since $(a * 1) * (0 * 1) = 0 \in \{0, 1\}$ and $a \notin \{0, 1\}$.

Theorem 3.17. Let μ be a fuzzy subset of a BCI-algebra X. For any $t \in [0,1]$ with $t \leq \max\{\lambda,\kappa\}$, if $U(\mu;t)$ is an enlarged p-ideal of X related to $U(\mu; \frac{t}{\max\{\lambda,\kappa\}})$, then μ is a fuzzy p-ideal of X with degree (λ,κ) .

Proof. Assume that $\mu(0) < t \leq \lambda\mu(x)$ for some $x \in X$ and $t \in (0, \lambda]$. Then $\mu(x) \geq \frac{t}{\lambda} \geq \frac{t}{\max\{\lambda,\kappa\}}$ and so $x \in U(\mu; \frac{t}{\max\{\lambda,\kappa\}})$, i.e., $U(\mu; \frac{t}{\max\{\lambda,\kappa\}}) \neq \emptyset$. Since $U(\mu; t)$ is an enlarged *p*-ideal of X related to $U(\mu; \frac{t}{\max\{\lambda,\kappa\}})$, we have $0 \in U(\mu; t)$, i.e., $\mu(0) \geq t$. This is a contradiction, and thus $\mu(0) \geq \lambda\mu(x)$ for all $x \in X$.

Now suppose that there exist $a, b, c \in X$ such that $\mu(a) < \kappa \min\{\mu((a * c) * (b * c)), \mu(b)\}$. If we take $t := \kappa \min\{\mu((a * c) * (b * c)), \mu(b)\}$, then $t \in (0, \kappa] \subseteq (0, \max\{\lambda, \kappa\}]$. Hence $(a * c) * (b * c) \in U(\mu; \frac{t}{\kappa}) \subseteq U(\mu; \frac{t}{\max\{\lambda, \kappa\}})$ and $b \in U(\mu; \frac{t}{\kappa}) \subseteq U(\mu; \frac{t}{\max\{\lambda, \kappa\}})$. It follows from Definition 3.2(3) that $a \in U(\mu; t)$ so that $\mu(a) \geq t$, which is impossible. Therefore

$$\mu(x) \ge \kappa \min\{\mu((x * z) * (y * z)), \mu(y)\}$$

for all $x, y, z \in X$. Thus μ is a fuzzy *p*-ideal of X with degree (λ, κ) .

Corollary 3.18. Let μ be a fuzzy subset of a BCI-algebra X. For any $t \in [0, 1]$ with $t \leq \frac{k}{n}$, if $U(\mu; t)$ is an enlarged p-ideal of X related to $U(\mu; \frac{n}{k}t)$, then μ is a fuzzy p-ideal of X with degree $(\frac{k}{n}, \frac{k}{n})$.

Theorem 3.19. Let $t \in [0,1]$ be such that $U(\mu;t) \neq \emptyset$ is not necessary a *p*-ideal of a BCI-algebra X. If μ is a fuzzy *p*-ideal of X with degree (λ, κ) , then $U(\mu; \min\{\lambda, \kappa\})$ is an enlarged *p*-ideal of X related to $U(\mu;t)$.

Proof. Since $t\min\{\lambda, \kappa\} \leq t$, we have $U(\mu; t) \subseteq U(\mu; t\min\{\lambda, \kappa\})$. Since $U(\mu; t) \neq \emptyset$, there exists $x \in U(\mu; t)$ and so $\mu(x) \geq t$. By Definition 3.7(1), we obtain $\mu(0) \geq \lambda \mu(x) \geq \lambda t \geq t\min\{\lambda, \kappa\}$. Therefore $0 \in U(\mu; t\min\{\lambda, \kappa\})$.

Let $x, y, z \in X$ be such that $(x * z) * (y * z) \in U(\mu; t)$ and $y \in U(\mu; t)$. Then $\mu((x * z) * (y * z)) \ge t$ and $\mu(y) \ge t$. It follows from Definition 3.7(2) that

$$\mu(x) \ge \kappa \min\{\mu((x * z) * (y * z)), \mu(y)\}$$
$$\ge \kappa t \ge t \min\{\lambda, \kappa\},$$

so that $x \in U(\mu; t\min\{\lambda, \kappa\})$. Thus $U(\mu; t\min\{\lambda, \kappa\})$ is an enlarged *p*-ideal of X related to $U(\mu; t)$.

References

- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- [2] Y. Huang, BCI-Algebras, Science Press, Beijing, 2006.
- [3] K. Iśeki, On BCI-algebras, Math. Math. Sem. Notes Kobe Univ. 8 (1980), 125-130.

- [4] Y. B. Jun and J. Meng, Fuzzy p-ideals in BCI-algebras, Math. Japon. 40 (1994), no. 2, 271–282.
- [5] Y. B. Jun, E. H. Roh, and K. J. Lee, Fuzzy subalgebras and ideals of BCK/BCI-algebras with degree in the interval (0, 1], Fuzzy Sets and Systems, submitted.
- [6] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512–517.
- [7] O. G. Xi, Fuzzy BCK-algebras, Math. Japon. 36 (1991), no. 5, 935–942.
- [8] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.
- X. Zhang, J. Hao, and S. A. Bhatti, On p-ideals of a BCI-algebra, Punjab Univ. J. Math. 27 (1994), 121–128.

Yun Sun Hwang Department of Mathematics Education Dongguk University Seoul 100-715, Korea *E-mail address*: hwangyunsun@nate.com

SUN SHIN AHN DEPARTMENT OF MATHEMATICS EDUCATION DONGGUK UNIVERSITY SEOUL 100-715, KOREA *E-mail address*: sunshine@dongguk.edu