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E-INVERSIVE ∗-SEMIGROUPS

Shoufeng Wang and Yinghui Li

Abstract. (S, ∗) is a semigroup S equipped with a unary operation
“ ∗ ”. This work is devoted to a class of unary semigroups, namely E-

inversive ∗-semigroups. A unary semigroup (S, ∗) is called an E-inversive
∗-semigroup if the following identities hold:

x∗xx∗ = x∗, (x∗)∗ = xx∗x, (xy)∗ = y∗x∗.

In this paper, E-inversive ∗-semigroups are characterized by several meth-
ods. Furthermore, congruences on these semigroups are also studied.

1. Introduction and preliminaries

A semigroup is a nonempty set S with an associative binary operation “·”
on S. A unary semigroup (S, ∗) is a semigroup S equipped with a unary
operation “∗” on S. A class of unary semigroups U is called a variety of unary

semigroups if there exists a family J of identities such that U consists of all
semigroups which satisfy each identities in J . A variety of unary semigroups
V is a subvariety of the variety U of unary semigroups if U and V are varieties
of unary semigroups of the same type unary semigroups and V ⊆ U . In this
case, we denote V ≤ U .

An element e in a semigroup S is called idempotent if e2 = e, and the set
of idempotents in S is denoted by E(S) as usual. For a semigroup S and an
element x in S,

V (x) = {a ∈ S | axa = a, xax = x}

and

W (x) = {a ∈ S | axa = a},

are called the set of weak inverses and the set of inverses of x, respectively.
A semigroup S is regular if V (x) 6= ∅ for all x in S. On the other hand,
from Weipoltshammer [10], a semigroup S is called an E-inversive semigroup

ifW (x) 6= ∅ for all x in S. Thus, regular semigroups areE-inversive semigroups.
Some important classes of regular semigroups, such as inverse semigroups

and completely regular semigroups, can be regarded as varieties of regular unary
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semigroups. Inverse semigroups and completely regular semigroups are inves-
tigated extensively and a lot of remarkable results are obtained, see the books
Howie [4], Petrich [7] and Petrich-Reilly [8].

As a generalization of inverse semigroups, Nordahl-Scheiblich [6] introduced
regular ∗-semigroups in 1978. From Nordahl-Scheiblich [6], a unary semigroup
(S, ∗) is called a regular ∗-semigroup if the following identities hold:

x∗xx∗ = x∗, (x∗)∗ = x, (xy)∗ = y∗x∗.

Thus, regular ∗-semigroups are regular and the class of regular ∗-semigroups
forms a variety of unary semigroups, denoted by R

∗.
Regular ∗-semigroups are studied by several researchers. In particular, Ya-

mada [9] characterized regular ∗-semigroups by using p-systems, and Chae-Lee-
Park [1] and Imaoka [5] considered the congruences on regular ∗-semigroups.

On the other hand, many papers are also devoted to E-inversive semigroups,
such as Fan-Chen [2], Gao-Yu [3] and Weipoltshammer [10]. Observe that E-
inversive semigroups are generalizations of regular semigroups. Naturally, one
would ask: can we define a class of unary semigroups in the class of E-inversive
semigroups and establish some analogous results of regular ∗-semigroups? The
present work is an attempt in this line.

In this paper, we introduce E-inversive ∗-semigroups in E-inversive semi-
groups which are unary semigroups analogous to regular ∗-semigroups in reg-
ular semigroups, and characterize these semigroups by several methods. Fur-
thermore, the lattices of congruences on E-inversive ∗-semigroups are also in-
vestigated. Our results enrich some results of regular ∗-semigroups in Chae-
Lee-Park [1], Imaoka [5], Nordahl-Scheiblich [6] and Yamada [9].

2. Some characterizations of E-inversive ∗-semigroups

In this section, we introduce E-inversive ∗-semigroups and give some char-
acterizations of these semigroups.

Definition 2.1. A unary semigroup (S, ∗) is called an E-inversive ∗-semigroup

if the following identities hold:

x∗xx∗ = x∗, x∗∗ = xx∗x, (xy)∗ = y∗x∗,

where x∗∗ = (x∗)
∗
.

Remark 2.2. E-inversive ∗-semigroups are E-inversive from the first identity
above. On the other hand, E-inversive ∗-semigroups form a variety of unary
semigroups, denoted by E

∗. It is easy to see that R
∗ ≤ E

∗. Furthermore, if
(S, ∗) ∈ E

∗ and S∗ = {x∗ | x ∈ S}, then (S∗, ∗) ∈ R
∗.

The following examples show that there existE-inversive ∗-semigroups which
are not regular semigroups.

Example 2.3. Let N be the semigroup of non-negative integers under the
usual multiplication of integers. Define a unary operation “ ∗ ” on S by x∗ = 0
for all x ∈ N. Then (N, ∗) ∈ E

∗.
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Example 2.4. Let S be a semigroup with Cayley table:

S a e f b
a e a a e
e a e e a
f a e f a
b e a b e

Define ∗ : S → S, a 7→ a, b 7→ a, e 7→ e, f 7→ f. Then (S, ∗) ∈ E
∗ and S is

non-regular.

The example below shows that there exists an E-inversive (regular) semi-
group S such that (S, ∗) 6∈ E

∗ for any unary operation “ ∗ ” on S.

Example 2.5. Let S = {e, f} be a left zero semigroup, i.e., ab = a for any
a, b in S. If (S, ∗) ∈ E

∗ for some unary operation “ ∗ ” on S, then we have
e∗ = (ef)∗ = f∗e∗ = f∗. Without loss of generality, suppose that e∗ = f∗ = e.
Then we have e = (f∗)∗ = ff∗f = f , which is a contradiction.

The following basic facts will be used frequently without mention in the
sequel.

Proposition 2.6. Let (S, ∗) ∈ E
∗. Then x∗∗∗ = x∗, xx∗ = x∗∗x∗ and x∗x =

x∗x∗∗ for any x in S.

Proof. For x ∈ S, we have

x∗∗∗ = (xx∗x)∗ = x∗x∗∗x∗ = x∗(xx∗x)x∗ = (x∗xx∗)xx∗ = x∗xx∗ = x∗.

On the other hand,

x∗∗x∗ = (xx∗x)x∗ = x(x∗xx∗) = xx∗, x∗x∗∗ = x∗(xx∗x) = (x∗xx∗)x = x∗x,

as required. �

We now give a characterization of E-inversive ∗-semigroups by using regular
∗-semigroups. Recall that an equivalence relation ρ on a semigroup S is called
a congruence on S if ρ is compatible with the multiplication of S. In such a
case, xρ denotes the ρ-class containing x for any x in S.

Theorem 2.7. Let S be a semigroup. Then (S, ∗) ∈ E
∗ for some unary opera-

tion “∗” on S if and only if there exist a subsemigroup T of S and a congruence

ρ on S such that (T, †) ∈ R
∗ for some unary operation “†” on T and

(1) there is exactly one element x◦ in xρ ∩ T for any x in S;
(2) x(x◦)†, (x◦)†x ∈ T for any x in S.

Proof. Let (S, ∗) ∈ E
∗ and T = S∗. Then (T, ∗) ∈ R

∗. Define ρ = {(x, y) ∈
S×S | x∗ = y∗}. It is easy to see that ρ is a congruence on S and xρ∩T = {x∗∗}
for every x in S. Furthermore, it follows that

x(x∗∗)∗ = xx∗ = x∗∗x∗ ∈ T, (x∗∗)∗x = x∗x∗∗ ∈ T

for any x in S.
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Conversely, suppose that the given conditions are satisfied. We define a
unary operation “∗” on S as follows:

∗ : S → S, x 7→ x∗ = (x◦)†.

We assert that (S, ∗) ∈ E
∗. In fact, if x ∈ S, then xx∗ ∈ T by (2), whence

x∗xx∗ ∈ T . This implies that

(x∗xx∗)ρ = (x∗x◦x∗)ρ = ((x◦)†x◦(x◦)†)ρ = (x◦)†ρ = x∗ρ.

Observe that x∗, x∗xx∗ ∈ T , x∗xx∗ = x∗ by (1). On the other hand, let x ∈ S.
Since (x◦)† ∈ T , we have ((x◦)†)◦ = (x◦)† by (1). This implies that

(x∗)∗ = ((x◦)†)∗ = (((x◦)†)◦)† = ((x◦)†)† = x◦.

Moreover, xx∗x = x(x∗x◦x∗)x = (xx∗)x◦(x∗x) ∈ T by (2). Observe that
xρ = x◦ρ, it follows that (xx∗x)ρ = (x◦x∗x◦)ρ = x◦ρ. Since x◦, xx∗x ∈ T ,
x◦ = xx∗x by (1). This yields that (x∗)∗ = x◦ = xx∗x. Finally, let x, y ∈ S.
Then xyρx◦y◦, whence (xy)◦ = x◦y◦. Thus, (xy)∗ = ((xy)◦)† = (x◦y◦)† =
(y◦)†(x◦)† = y∗x∗. �

In the following, we characterize E-inversive ∗-semigroup by so-called wp-

systems. To this aim, we need some basic concepts and results. Recall from
Weipoltshammer [10] that the natural partial order “ ≤ ” on a semigroup S is
defined by

a ≤ b if a = xb = by, xa = a = ay for some x, y ∈ S1,

the restriction of which to E(S) is the usual order on E(S), where S1 is the
semigroup obtained from S by adjoining an identity if necessary. In particular,
if a, b are regular elements (i.e., both V (a) and V (b) are nonempty) of S, a ≤ b
if and only if a = eb = bf for some e and f in E(S).

Let S be an E-inversive semigroup. From Fan-Chen [2] and Gao-Yu [3], a
subset P of E(S) is called a characteristic set of S if

(1) P 2 ⊆ E(S);
(2) (∀q ∈ P ) qPq ⊆ P ;
(3) (∀a ∈ S)(∃a+ ∈ W (a)) aP 1a+ ⊆ P, a+P 1a ⊆ P,

where P 1 is the semigroup obtained from P by adjoining an identity if neces-
sary. In such a case, a+ is called a weakly P -inverse of a in S and the set of
all weakly P -inverses of a is denoted by WP (a). Observe that WP (a)WP (b) ⊆
WP (ba) for all a, b ∈ S. In fact, for a, b ∈ S and a+ ∈ WP (a), b

+ ∈ WP (b), we
have

a+b+baa+b+ = a+(aa+b+baa+b+b)b+ = a+aa+b+bb+ = a+b+,

and
a+b+P 1ba = a+(b+P 1b)a ⊆ a+Pa ⊆ P,

baP 1a+b+ = b(aP 1a+)b+ ⊆ bPb+ ⊆ P.
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Definition 2.8. A characteristic set P of an E-inversive semigroup S is called
a wp-system if

(1) WP (x) contains the greatest element x∗ for every x ∈ S;
(2) ((xy)∗)∗ = (xy)∗∗ ∈ WP (y

∗x∗) for all x, y ∈ S.

Proposition 2.9. In Definition 2.8, WP (x) contains the greatest element if

and only if there is x∗ ∈ WP (x) such that x+ = x+xx∗ = x∗xx+ for every

x+ ∈ WP (x).

Proof. Let x∗ be the greatest element in WP (x). Then for every x+ ∈ WP (x),
x+ ≤ x∗. Since x+ and x∗ are regular, there exist two idempotents e and f
such that x+ = ex∗ = x∗f . This implies that

x∗xx+x = x∗x(x∗f)x = (x∗xx∗)fx = x∗fx = x+x

and

xx+xx∗ = x(ex∗)xx∗ = xe(x∗xx∗) = xex∗ = xx+.

Thus, x+ = (x+x)x+ = (x∗xx+x)x+ = x∗xx+. Dually, x+ = x+xx∗.
Conversely, let x∗ ∈ WP (x) such that x+ = x+xx∗ = x∗xx+ for every

x+ ∈ WP (x). Observe that xx+, x+x ∈ E(S) and x+, x∗ are regular, x+ ≤ x∗.
This implies that x∗ is the greatest element in WP (x). ✷

Theorem 2.10. Let S be an E-inversive semigroup. Then (S, ∗) ∈ E
∗ for

some unary operation “ ∗ ” on S if and only if it contains a wp-system.

Proof. Let (S, ∗) ∈ E
∗ and P = {xx∗ | x ∈ S}. We assert that P is a character-

istic set of S. Observe that p∗ = p for any p ∈ P since (xx∗)∗ = x∗∗x∗ = xx∗

for any x in S. Now, let p, q ∈ P . Then

pq = p∗q∗ = (qp)∗ = (qp)∗qp(qp)∗ = p∗q∗qpp∗q∗ = pqqppq = pqpq,

which implies that pq ∈ E(S). Furthermore,

pqp = pqqp = pqq∗p∗ = (pq)(pq)∗ ∈ P.

Finally, for any x ∈ S, we have xx∗ = x∗∗x∗ ∈ P and x∗x = x∗x∗∗ ∈ P .
Moreover, for any p ∈ P ,

xpx∗ = xppx∗ = xpp∗x∗ = xp(xp)∗ ∈ P

and

x∗px = x∗ppx = x∗p∗px = (px)∗px = (px)∗(px)∗∗ ∈ P,

which yields that xpx∗, x∗px ∈ P . Thus, P is a characteristic set of S and
x∗ ∈ WP (x) for any x ∈ S.

Now, for any x+ ∈ WP (x), we have xx+, x+x ∈ P . This implies that
(xx∗xx+)∗ = (xx+)∗(xx∗)∗ = xx+xx∗ and

(xx∗xx+)∗ = (x+)∗x∗x∗∗x∗ = (x+)∗x∗xx∗xx∗ = (x+)∗x∗ = (xx+)∗ = xx+.

Therefore, xx+xx∗ = xx+. Dually, x∗xx+x = x+x. Hence,

x+ = x+(xx+) = x+(xx+xx∗) = (x+xx+)xx∗ = x+xx∗.
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Similarly, x+ = x∗xx+. By Proposition 2.9, x∗ is the greatest element inWP (x)
for every x ∈ S. On the other hand, for any x, y ∈ S, we have (xy)∗∗ = (y∗x∗)∗.
This shows that

(xy)∗∗y∗x∗(xy)∗∗ = (y∗x∗)∗y∗x∗(y∗x∗)∗ = (y∗x∗)∗ = (xy)∗∗.

Therefore, the condition (2) of Definition 2.8 holds. Thus, P is a wp-system
of S.

Conversely, suppose that S contains a wp-system P . Define a unary opera-
tion on S by

∗ : S → S, x 7→ x∗,

where x∗ is the greatest element of WP (x) for any x in S. We show that
(S, ∗) ∈ E

∗. Evidently, x∗ = x∗xx∗. For x ∈ S, let t = xx∗x. Then tx∗t =
xx∗xx∗xx∗x = t, whence t ∈ W (x∗). Furthermore,

tP 1x∗ = xx∗(xP 1x∗)xx∗ ⊆ xx∗Pxx∗ ⊆ P.

Dually, x∗P 1t ⊆ P. Thus, t ∈ WP (x
∗). By Definition 2.8 and Proposition 2.9,

we have

xx∗x = t = tx∗x∗∗ = (xx∗x)x∗x∗∗ = x(x∗xx∗)x∗∗ = xx∗x∗∗.

This means that

x∗x = (x∗xx∗)x = x∗(xx∗x) = x∗(xx∗x∗∗) = (x∗xx∗)x∗∗ = x∗x∗∗.

Dually, xx∗ = x∗∗x∗. Hence,

x∗∗ = x∗∗x∗x∗∗ = xx∗x∗∗ = xx∗x.

Now, for any x, y ∈ S, we have (xy)∗∗ = xy(xy)∗xy. By (2) of Definition 2.8,
it follows that

xy(xy)∗xyy∗x∗(xy)(xy)∗xy = xy(xy)∗xy.

Noticing that y∗x∗ ∈ WP (xy), by Proposition 2.9 and its proof, we have

(xy)∗xyy∗x∗xy(xy)∗ = [(xy)∗xyy∗x∗]xy(xy)∗ = y∗x∗xy(xy)∗ = y∗x∗

whence xy(xy)∗xy = xyy∗x∗xy. This implies that

(xy)∗ = (xy)∗xy(xy)∗xy(xy)∗ = (xy)∗xyy∗x∗xy(xy)∗ = y∗x∗.

Thus, (S, ∗) ∈ E
∗. �

In the end of this section, we characterize E-inversive semigroups with a wp-
system P such that |WP (x)| = 1 for all x in S. Such semigroups are special
E-inversive ∗-semigroups by Theorem 2.10. The following result is useful.

Proposition 2.11. Let S be an E-inversive semigroup with wp-system P .

Then WP (p) is a commutative sub-semigroup of S contained in P with greatest

element p for each p ∈ P .
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Proof. In view of the proof of Theorem 2.10, (S, ∗) ∈ E
∗ with respect to the

unary operation on S defined by

∗ : S → S, x 7→ x∗,

where x∗ is the greatest element of WP (x) for any x in S.
We first assert that p∗ = p for any p ∈ P . In fact, since

p∗ = p∗pp∗ = (p∗p)(pp∗) ∈ PP ⊆ E(S)

and p ∈ WP (p), we have p ≤ p∗ and so pp∗ = p∗p = p. This implies that

p∗ = p∗pp∗ = pp∗ = p.

Now, let p ∈ P and s ∈ WP (p). Then s ≤ p∗ = p and s = sps = spps ∈
PP ⊆ E(S). This implies that s = ps = sp ∈ P. Thus WP (p) ⊆ P . If
s1, s2 ∈ WP (p), then s1, s2 ∈ P and s1s2 ∈ WP (p)WP (p) ⊆ WP (p

2) = WP (p)
whence s1s2 ∈ P . This implies that

s1s2 = (s1s2)
∗ = s∗2s

∗
1 = s2s1.

Thus, WP (p) is a commutative sub-semigroup of S contained in P with greatest
element p for each p ∈ P . �

Example 2.12. In Example 2.4, S has a wp-system P = {e, f} and WP (e) =
{e},WP (f) = {e, f}. Clearly, WP (e) and WP (f) are commutative sub-semi-
groups of S contained in P with greatest elements e and f , respectively.

Theorem 2.13. Let S be an E-inversive semigroup with a wp-system P . Then

the followings are equivalent:
(1) |WP (x)| = 1 for all x ∈ S;
(2) |WP (p)| = 1 for all p ∈ P ;
(3) WP (p) ∩WP (q) 6= ∅ implies that WP (p) = WP (q) for all p, q ∈ P .

Proof. In view of the proof of Theorem 2.10, (S, ∗) ∈ E
∗ with respect to the

unary operation on S defined by

∗ : S → S, x 7→ x∗,

where x∗ is the greatest element of WP (x) for any x in S.
Clearly, (1) ⇒ (3) is obvious. We need to prove (3) ⇒ (2) and (2) ⇒ (1).

Assume (3) holds. Let p ∈ P and x ∈ WP (p). Then by Proposition 2.11 and
its proof, we have p∗ = p ∈ WP (p) and x ∈ P , x = px = xp. Since

(pxp)x(pxp) = pxp, pxpP 1x = pxpP 1xpx = px(pP 1x)px ⊆ pxPpx ⊆ P

and xP 1pxp ⊆ P, we have pxp ∈ WP (x). Moreover,

pxp ∈ WP (p)WP (p)WP (p) ⊆ WP (ppp) = WP (p).

Thus, pxp ∈ WP (x)∩WP (p). It follows that WP (x) = WP (p) from (3) whence
x = x∗ = p∗ = p by the proof of Proposition 2.11. This shows that WP (p) =
{p}, (2) holds.



696 SHOUFENG WANG AND YINGHUI LI

Suppose that (2) holds and x+ ∈ WP (x). By Proposition 2.9, we have

xx+(xx∗)xx+ = xx+x(x∗xx+) = x(x+xx+) = xx+,

which shows that xx+ ∈ W (xx∗). Moreover, xx+P 1xx∗, xx∗P 1xx+ ⊆ P
whence xx+ ∈ WP (xx

∗). Observe that xx∗ ∈ P and xx+, xx∗ ∈ WP (xx
∗),

it follows that xx∗ = xx+ from (2). Similarly, we obtain x+x = x∗x. Thus,
x+ = x+xx+ = x∗xx+ = x∗xx∗ = x∗. �

Example 2.14. The semigroup in Example 2.3 is an E-inversive semigroup
with a wp-system P = {0}. Clearly, this semigroup satisfies the conditions in
Theorem 2.13.

3. Congruences on E-inversive ∗-semigroups

In this section, we consider congruences on E-inversive ∗-semigroups. The
following definition is fundamental.

Definition 3.1. Let (S, ∗) ∈ E
∗ and ρ a congruence on the semigroup S. Then

ρ is called a unary congruence on S if aρb implies that a∗ρb∗ for all a, b ∈ S. A
unary congruence on S is called a strongly unary congruence on S if aρ aa∗a
for all a ∈ S.

Remark 3.2. If (S, ∗) ∈ R
∗, then a unary congruence on S is always a strongly

unary congruence since in this case, the identity aa∗a = a always holds. How-
ever, in the case of E-inversive ∗-semigroups, the situation is different. For
example, let S = {e, f} be a chain such that e ≤ f . Define a unary operation
“ ∗ ” by e∗ = f∗ = e. Then (S, ∗) ∈ E

∗. Obviously, the equality relation on S is
a unary congruence on S. However, the equality relation on S is not a strongly
unary congruence, since f = f and f 6= fe∗f = e.

Let (S, ∗) ∈ E
∗. Then (S∗, ∗) ∈ R

∗. In the sequel, we denote the set of
strongly unary congruences on S and the set of (strongly) unary congruences
on S∗ by SC∗(S) and C∗(S∗), respectively. Clearly, for ρ ∈ SC∗(S), the
restriction ρ|S∗ of ρ to S∗ is a (strongly) unary congruences on S∗.

Proposition 3.3. Let (S, ∗) ∈ E
∗. Then SC∗(S) is a complete sublattice of the

lattice of congruences on S, and C∗(S∗) is a complete sublattice of the lattice

of congruences on S∗.

Proof. It is well known that the set of congruences on every semigroup forms a
complete lattice under set inclusion. Now, let I ⊆ SC∗(S). Clearly,

∧

ρ∈I ρ =
⋂

ρ∈I ρ ∈ SC∗(S). On the other hand, if a, b ∈ S and a
∨

ρ∈I ρb, then there
exist a positive integer n and

ρ1, ρ2, . . . , ρn+1 ∈ SC∗(S), x1, x2, . . . , xn ∈ S

such that

aρ1x1, x1ρ2x2, . . . , xn−1ρnxn, xnρn+1b.
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Observe that ρ1, ρ2, . . . , ρn+1 ∈ SC∗(S), it follows that

a∗ρ1x
∗
1, x

∗
1ρ2x

∗
2, . . . , x

∗
n−1ρnx

∗
n, x

∗
nρn+1b

∗,

whence a∗
∨

ρ∈I ρb
∗. Since aρaa∗a for any ρ ∈ SC∗(S), we have a

∨

ρ∈I ρ(aa
∗a).

Thus,
∨

ρ∈I ρ ∈ SC∗(S). �

The following result explores the relationship between SC∗(S) and C∗(S∗)
for (S, ∗) ∈ E

∗.

Theorem 3.4. Let (S, ∗) ∈ E
∗. Then SC∗(S) is isomorphic to C∗(S∗) as

complete lattice.

Proof. Let

ϕ : C∗(S∗) → SC∗(S), σ 7→ ϕ(σ),

where ϕ(σ) = {(a, b) | a∗σb∗}.
(i) ϕ(σ) ∈ SC∗(S) for each σ ∈ C∗(S∗). In fact, if aϕ(σ)b, then a∗σb∗ and

so (a∗)∗σ(b∗)∗. This shows that a∗ϕ(σ)b∗. Moreover, observe that (aa∗a)∗ =
a∗a∗∗a∗ = a∗, aϕ(σ)aa∗a.

(ii) ϕ is injective. In fact, let σ, τ ∈ C∗(S∗) and ϕ(σ) = ϕ(τ). If a, b ∈ S∗ and
aσb, then (a∗)∗ = aσb = (b∗)∗. This implies that a∗ϕ(σ)b∗ and so a∗ϕ(τ)b∗,
whence a = (a∗)∗τ(b∗)∗ = b. Therefore σ ⊆ τ . Dually, τ ⊆ σ.

(iii) ϕ is surjective. In fact, let ρ ∈ SC∗(S). Clearly, ρ|S∗ ∈ C∗(S∗). We
assert that ϕ(ρ|S∗) = ρ. To see this, let a, b ∈ S. If aρb, then a∗ρ|S∗b∗ and so
aϕ(ρ|S∗)b. On the other hand, if aϕ(ρ|S∗)b, then a∗ρ|S∗b∗ and so a∗∗ρ|S∗b∗∗.
This implies aρaa∗a = a∗∗ρ|S∗b∗∗ρbb∗bρb whence aρb.

(iv) ϕ is a complete lattice isomorphism. In fact, for any J ⊆ C∗(S∗) and
a, b ∈ S, we have

aϕ





⋂

ρ∈J

ρ



 b if and only if a∗





⋂

ρ∈J

ρ



 b∗ if and only if a





⋂

ρ∈J

ϕ(ρ)



 b.

Moreover, aϕ(
∨

ρ∈J ρ)b if and only if a∗(
∨

ρ∈J ρ)b∗ if and only if

(∃n ∈ N)(∃ρ1, . . . , ρn+1 ∈ J)(∃x∗
1, . . . , x

∗
n ∈ S∗)

a∗ρ1x
∗
1, . . . , x

∗
n−1ρnx

∗
n, x

∗
nρn+1b

∗

if and only if

(∃n ∈ N)(∃ρ1, . . . , ρn+1 ∈ J)(∃x1, . . . , xn ∈ S)

aϕ(ρ1)x1, . . . , xn−1ϕ(ρn)xn, xnϕ(ρn+1)b

if and only if a(
∨

ρ∈J ϕ(ρ))b. �

Remark 3.5. For any (S, ∗) ∈ R
∗, the unary congruences on S are extensively

studied by Chae-Lee-Park [1], Imaoka [5], Nordahl-Scheiblich [6] and Yamada
[9]. Thus, the above Theorem 3.4 provides a characterization of the strongly
unary congruences on a member in E

∗.



698 SHOUFENG WANG AND YINGHUI LI

Example 3.6. In Example 2.4, S∗ = {a, e, f} and (S∗, ∗) ∈ R
∗. Observe that

S∗ has the following five partitions:

{{a, e, f}}, {{a}, {e}, {f}}, {{a}, {e, f}}, {{f}, {a, e}}, {{e}, {a, f}},

whose corresponding equivalences are:

• ωS∗ = S∗ × S∗;
• ǫS∗ = {(a, a), (e, e), (f, f)};
• ρ = {(a, a), (e, e), (f, f), (e, f), (f, e)};
• σ = {(a, a), (e, e), (f, f), (e, a), (a, e)};
• σ′ = {(a, a), (e, e), (f, f), (f, a), (a, f)}.

It is routine to check that ωS∗ , ǫS∗ , ρ, σ ∈ C∗(S∗) and σ′ is not a congruence on
S. By Theorem 3.4, the strong unary congruences are:

• ϕ(ωS∗) = S × S;
• ϕ(ǫS∗) = {(a, a), (e, e), (f, f), (b, b), (a, b), (b, a)};
• ϕ(ρ) = {(a, a), (e, e), (f, f), (b, b), (a, b), (b, a), (e, f), (f, e)};
• ϕ(σ) = {(a, a), (e, e), (f, f), (b, b), (a, b), (b, a), (e, a), (a, e), (e, b), (b, e)}.

On the other hand,

δ1 = {(a, a), (e, e), (f, f), (b, b)}

and
δ2 = {(a, a), (e, e), (f, f), (b, b), (e, a), (a, e)}

are unary congruences but not strongly unary congruences on S, since

(b, bb∗b) = (b, bab) = (b, a) /∈ δ1 ∪ δ2.

In fact,
ϕ(ωS∗), ϕ(ǫS∗), ϕ(ρ), ϕ(σ), δ1 , δ2

are the whole congruences on S.
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