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ALGORITHMIC PROOF OF MaxMult(T ) = p(T )

In-Jae Kim

Abstract. For a given graph G we consider a set S(G) of all symmetric
matrices A = [aij ] whose nonzero entries are placed according to the
location of the edges of the graph, i.e., for i 6= j, aij 6= 0 if and only if
vertex i is adjacent to vertex j. The minimum rank mr(G) of the graph
G is defined to be the smallest rank of a matrix in S(G). In general the
computation of mr(G) is complicated, and so is that of the maximum
multiplicity MaxMult(G) of an eigenvalue of a matrix in S(G) which is
equal to n − mr(G) where n is the number of vertices in G. However,
for trees T , there is a recursive formula to compute MaxMult(T ). In this
note we show that this recursive formula for MaxMult(T ) also computes
the path cover number p(T ) of the tree T . This gives an alternative proof
of the interesting result, MaxMult(T ) = p(T ).

1. Introduction

Let G = (V,E) be a graph on n vertices. We define a set of symmetric
matrices associated with G as follows:

S(G) = {A ∈ R
n×n | A is symmetric, and aij 6= 0 (i 6= j) if and only if i ∼ j},

where i ∼ j means that vertex i is adjacent to vertex j. The minimum rank

mr(G) of G is the smallest rank of a matrix in S(G), i.e.,

mr(G) = min
A∈S(G)

rank(A).

Since the order of A ∈ S(G) is n, the maximum corank of G is equal to

n−mr(G).

Note that the main diagonal entries of A ∈ S(G) is not related to the topology
of the graph G, and hence A−λI is also in S(G). For an eigenvalue λ of A, the
corank of A − λI is equal to the multiplicity of λ as an eigenvalue of A. This
implies that the maximum corank of the graph G on n vertices is equal to the
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maximum of the multiplicities of eigenvalues of matrices in S(G), MaxMult(G)
(called the maximum multiplicity of G). Hence, we have

mr(G) = n−MaxMult(G).

For example, it can be shown by considering the all ones matrix that the
complete graph Kn on n vertices has mr(Kn) = 1, and hence MaxMult(Kn) =
n − 1. For path Pn on n vertices, the rank of a matrix A in S(Pn) is either
n− 1 or n since the (n− 1)× (n− 1) submatrix of A, obtained by deleting the
last row and the first column of A, is nonsingular. By choosing main diagonal
entries properly, we can construct a singular matrix in S(Pn) with each row
sum equal to zero. Hence, mr(Pn) = n− 1 and MaxMult(Pn) = 1.

In general the computation of the minimum rank of a graph is complicated
(For recent development in the computation of minimum ranks of graphs, see
[1]). For trees T , however, there is a recursive way to compute MaxMult(T )
and hence mr(T ), using the path cover number of T . The path cover number

p(T ) of a tree T is the minimum number of vertex disjoint paths, occurring as
induced subgraphs of T , that cover all the vertices of T . It was shown in [2]
that

MaxMult(T ) = ∆(T ) = p(T ),

where ∆(T ) = max[p − q] for p and q such that there exist q vertices of T
whose deletion leaves p paths. In this note we give an alternative proof for
MaxMult(T ) = p(T ), by showing that the recursive algorithm for MaxMult(T )
also computes p(T ).

2. Main result

Let T be a tree on n vertices and V (T ) be the vertex set of T . For a subset
U of V (T ), the graph T \U is the subgraph of T obtained by deleting vertices
in U and all edges incident to the vertices in U . In particular, for p ∈ V (T ),
we use Tp to denote the acyclic subgraph T \ {p}. If the degree of p is k, then
we call the k connected components T 1

p , . . . , T
k
p of Tp as the branches of T at p.

If at least two of branches at p are paths (on one or more vertices) which are
connected to p in T through an endpoint, then we call p an appropriate vertex

of T .

Proposition 2.1 ([4, Lemma 3.1]). Every tree T with at least three vertices

has an appropriate vertex.

We now give a recursive formula for mr(T ) in [4].

Theorem 2.2 ([4, Corollary 3.3]). Let T be a tree on n ≥ 3 vertices and p an

appropriate vertex of T , and let T 1
p , . . . , T

k
p be the branches of T at p. Then

(1) mr(T ) = mr(T 1
p ) + · · ·+mr(T k

p ) + 2.
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To write the result in Theorem 2.2 in terms of maximum multiplicities, we
use mr(G) = n −MaxMult(G). For a vertex p of degree k in T , let ni be the

number of vertices in T i
p for i = 1, . . . , k. Note that

∑k
i=1 ni = n− 1 where n

is the number of vertices in T . From (1) we get

n−MaxMult(T ) = (n1 −MaxMult(T 1
p )) + · · ·+ (nk −MaxMult(T k

p )) + 2

=

([

k
∑

i=1

ni

]

+ 2

)

− (MaxMult(T 1
p ) + · · ·+MaxMult(T k

p )),

and hence

MaxMult(T ) = MaxMult(T 1
p ) + · · ·+MaxMult(T k

p )− 1.

Since at least two of the branches at p are paths which are connected to p in T

through an endpoint, without loss of generality, we may assume that T 1
p and

T 2
p are such paths. Since the maximum multiplicity of a path is 1, we have

MaxMult(T ) = MaxMult(T 3
p ) + · · ·+MaxMult(T k

p ) + 1

= MaxMult(T \ (V (T 1
p ) ∪ V (T 2

p ) ∪ {p})) + 1.

Let P be the induced subgraph (that is a path) of T with the vertex set
V (T 1

p ) ∪ V (T 2
p ) ∪ {p}. Then

(2) MaxMult(T ) = MaxMult(T \ V (P )) + 1.

Note that P is a path in T such that the its end vertices are pendant vertices
of T , and at most one vertex (if any, that is p) of the path P has degree 3 or
more in T . The existence of such a path P in T is guaranteed by the existence
of an appropriate vertex (see Proposition 2.1).

The following result shows that the computation of p(T ) can be done by the
same recursive formula as in (2).

Lemma 2.3 ([3, Proposition 13]). Let T be a tree that is not a path. Suppose

that P is a path in T such that P ’s end vertices are pendant vertices of T and

P has exactly one vertex p of degree 3 or more in T . Then

p(T ) = p(T \ V (P )) + 1.

Therefore, we have proved the following result.

Theorem 2.4. Let T be a tree. Then

MaxMult(T ) = p(T ).

Example 2.5. Consider the tree T in Figure 1. To compute MaxMult(T ) we
compute its path cover number p(T ) recursively by deleting the following paths
sequentially:

(i) 1− 2− 3
(ii) 4− 5− 6
(iii) 7− 8− 9
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Figure 1. Tree T

(iv) 10− 11− 12
(v) 13

After deleting the five paths, there is no vertex left. Hence p(T ) = MaxMult(T )
= 5.
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