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ALGORITHMIC PROOF OF MaxMult(T) = p(T)

IN-JAE KM

ABSTRACT. For a given graph G we consider a set S(G) of all symmetric
matrices A = [a;;] whose nonzero entries are placed according to the
location of the edges of the graph, i.e., for i # j, a;; # 0 if and only if
vertex ¢ is adjacent to vertex j. The minimum rank mr(G) of the graph
G is defined to be the smallest rank of a matrix in S(G). In general the
computation of mr(G) is complicated, and so is that of the maximum
multiplicity MaxMult(G) of an eigenvalue of a matrix in S(G) which is
equal to n — mr(G) where n is the number of vertices in G. However,
for trees T, there is a recursive formula to compute MaxMult(7"). In this
note we show that this recursive formula for MaxMult(T") also computes
the path cover number p(T') of the tree T. This gives an alternative proof
of the interesting result, MaxMult(T) = p(T).

1. Introduction

Let G = (V, E) be a graph on n vertices. We define a set of symmetric
matrices associated with G as follows:

S(G) ={A e R™™" | Ais symmetric, and a;; # 0 (i # j) if and only if ¢ ~ j},

where ¢ ~ j means that vertex ¢ is adjacent to vertex j. The minimum rank
mr(G) of G is the smallest rank of a matrix in S(G), i.e.,

mr(G) = Areigi(nc) rank(A).

Since the order of A € S(G) is n, the maximum corank of G is equal to
n —mr(G).

Note that the main diagonal entries of A € S(G) is not related to the topology
of the graph G, and hence A — AI is also in S(G). For an eigenvalue A of A, the
corank of A — Al is equal to the multiplicity of A as an eigenvalue of A. This
implies that the maximum corank of the graph G on n vertices is equal to the
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maximum of the multiplicities of eigenvalues of matrices in S(G), MaxMult(G)
(called the mazimum multiplicity of G). Hence, we have

mr(G) = n — MaxMult(G).

For example, it can be shown by considering the all ones matrix that the
complete graph K, on n vertices has mr(K,) = 1, and hence MaxMult(K,,) =
n — 1. For path P, on n vertices, the rank of a matrix A in S(P,) is either
n—1 or n since the (n — 1) x (n — 1) submatrix of A, obtained by deleting the
last row and the first column of A, is nonsingular. By choosing main diagonal
entries properly, we can construct a singular matrix in S(P,) with each row
sum equal to zero. Hence, mr(P,) = n — 1 and MaxMult(P,) = 1.

In general the computation of the minimum rank of a graph is complicated
(For recent development in the computation of minimum ranks of graphs, see
[1]). For trees T, however, there is a recursive way to compute MaxMult(T")
and hence mr(T"), using the path cover number of T. The path cover number
p(T) of a tree T is the minimum number of vertex disjoint paths, occurring as
induced subgraphs of T', that cover all the vertices of T'. It was shown in [2]
that

MaxMult(T') = A(T) = p(T),

where A(T) = max[p — ¢g| for p and ¢ such that there exist ¢ vertices of T
whose deletion leaves p paths. In this note we give an alternative proof for
MaxMult(T") = p(T'), by showing that the recursive algorithm for MaxMult(T')
also computes p(T).

2. Main result

Let T be a tree on n vertices and V(T') be the vertex set of T'. For a subset
U of V(T), the graph T'\ U is the subgraph of T' obtained by deleting vertices
in U and all edges incident to the vertices in U. In particular, for p € V(T),
we use T}, to denote the acyclic subgraph T'\ {p}. If the degree of p is k, then
we call the k£ connected components TT}, . ,T; of T}, as the branches of T at p.
If at least two of branches at p are paths (on one or more vertices) which are

connected to p in T' through an endpoint, then we call p an appropriate vertex
of T.

Proposition 2.1 ([4, Lemma 3.1]). Every tree T with at least three vertices
has an appropriate vertex.

We now give a recursive formula for mr(7") in [4].

Theorem 2.2 ([4, Corollary 3.3]). Let T be a tree on n > 3 vertices and p an
appropriate vertex of T', and let Tpl, ceey T: be the branches of T at p. Then

(1) mr(7T) = mr(Tpl) +- 4 mr(TIf) + 2.
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To write the result in Theorem 2.2 in terms of maximum multiplicities, we
use mr(G) = n — MaxMult(G). For a vertex p of degree k in T, let n; be the
number of vertices in Tg fori=1,...,k. Note that Zle n; =n — 1 where n
is the number of vertices in T. From (1) we get

n — MaxMult(T) = (n1 — MaxMult(T}))) + - - - + (ny — MaxMult(7}))) + 2

k
([
i=1
and hence

MaxMult(T) = MaxMult(T}}) + - - - + MaxMult(TF) — 1.

+ 2) - (MaXMult(Tpl) +--+ MaXMult(ij)),

Since at least two of the branches at p are paths which are connected to p in T’
through an endpoint, without loss of generality, we may assume that TI} and
T; are such paths. Since the maximum multiplicity of a path is 1, we have

MaxMult(T") = MaxMult(75) + - - - + MaxMult(7)¥) + 1
= MaxMult(T \ (V(T,}) UV (T;) U {p})) + 1.
Let P be the induced subgraph (that is a path) of T" with the vertex set
V(Ty) UV (T2)U{p}. Then
(2) MaxMult(7T') = MaxMult(T \ V(P)) + 1.

Note that P is a path in 7" such that the its end vertices are pendant vertices
of T, and at most one vertex (if any, that is p) of the path P has degree 3 or
more in T'. The existence of such a path P in T is guaranteed by the existence
of an appropriate vertex (see Proposition 2.1).

The following result shows that the computation of p(T) can be done by the
same recursive formula as in (2).

Lemma 2.3 ([3, Proposition 13]). Let T be a tree that is not a path. Suppose
that P is a path in T such that P’s end vertices are pendant vertices of T and
P has exactly one vertex p of degree 3 or more in T'. Then

p(T) =p(T\V(P)) + 1.
Therefore, we have proved the following result.
Theorem 2.4. Let T be a tree. Then
MaxMult(T) = p(T).

Example 2.5. Consider the tree T in Figure 1. To compute MaxMult(T") we
compute its path cover number p(T') recursively by deleting the following paths
sequentially:
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1 4 7 12
AN ] /
2 — 5 — 8 — 10 — 11
A .
3 6 9 13

Figure 1. Tree T

(iv) 10 — 11 — 12

(v) 13
After deleting the five paths, there is no vertex left. Hence p(T') = MaxMult(T)
= 5.
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