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AUTOMORPHISM GROUP OF THE TERNARY SELF-DUAL

CODE OF LENGTH 8

Hyun Jin Kim and June Bok Lee

Abstract. We study the abstract structure of the automorphism group
of the ternary self-dual code of length 8 and give its convenient presenta-
tion by generators.

1. Introduction

An [n, k] linear code C over the finite field F3 is a k-dimensional subspace of
F
n
3 . The Hamming weight of a vector in F

n
3 is the number of its nonzero coordi-

nates. The minimum weight d of C is the minimum weight of its nonzero code-
words and in this case C is called an [n, k, d] code. For every u = (u1, u2, . . . , un)
and v = (v1, v2, . . . , vn) from F

n
3 , u · v = u1 · v1 + u2 · v2 + · · · + un · vn de-

fines the Euclidean inner product in F
n
3 . The dual code of C is defined by

C⊥ = {u ∈ F
n
2 : u · v = 0 for all v ∈ C}, and C⊥ is a linear [n, n − k] code. If

C ⊆ C⊥, then C is called self-orthogonal, and if C = C⊥, then we call it self-

dual. Self-dual codes over F3 exist only for lengths a multiple of 4 and have
codewords of Hamming weight a multiple of 3. Self-dual codes with the largest
minimum weight of given length are called optimal. Extremal self-dual codes
have minimum distance 3[n/12]+3 ([3]). The largest possible minimum weight
of the self-dual codes of lengths n = 4 and 8 is 3.

When we consider code classification, a notion of equivalence is necessary.
An n × n matrix with coefficients in F3 is called monomial if there is exactly
one nonzero entry in each row and column. Such a matrix is invertible since
all nonzero elements of F3 are invertible. If all nonzero entries of the monomial
are 1, then it is said to be a permutation matrix. Any monomial matrix can be
uniquely written as the product of a permutation matrix and diagonal matrix.
A monomial matrix M acts on the elements x ∈ F

n
3 as M ·x = xM . Two codes

C1 and C2 are permutation equivalent if there exists a permutation matrix P
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such that C1 = C2P . More generally, if there is a monomial matrix M such
that C1 = C2M , the codes C1 and C2 are equivalent. The automorphism group
of a ternary code C is the set of all monomial matrices M such that C = CM .
Characteristics for ternary self-dual codes were given in [2, 5].

Classification of self-dual codes over a ring requires not only the size of au-
tomorphism groups of codes over a field as well as properties of their subgroups
and their relationshilp. Recently, the automorphism group of the ternary tetra-
code is presented in detail by the author in [4]. In this present paper, we extend
the automorphism group in the case of the extremal self-dual code of length 8
over F3.

2. Preliminaries

The classification of self-dual codes relies on the knowledge of the so-called
counting formula for self-dual codes, and the size of automorphism groups. The
following counting formula for ternary codes of length n is well-known in [5].

Lemma 2.1 ([5]). There exists a ternary self-dual code of length n if and only

if n is divisible by 4. In this case, the number of self-dual code of length n is

given by

2

n

2
−1
∏

i=1

(3i + 1).

Suppose that C1,C2,. . . ,Cm are all inequivalent ternary self-dual codes of
length n. Then

(1) 2

n

2
−1
∏

i=1

(3i + 1) =

m
∑

j=1

|Mn(Z3)|

|Aut(Cj)|
.

The tetracode is a ternary code T with generator matrix
(

1 0 1 1
0 1 1 2

)

.

Any self-dual code of length 4 is equivalent to T . From (1), Aut(T ) has order
48.

Lemma 2.2 ([4, Theorem 2.1]). The automorphism group of T can be gener-

ated by two elements b and c, where

b =









0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0









, c =









0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0









.

This lemma is used to identify all elements of Aut(T ). We can see them on the
Table 1 in [4].
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Let

i =









0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0









, j =









0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0









,

d =









−1 0 0 0
0 0 0 −1
0 0 1 0
0 −1 0 0









.

These generate the unique normal subgroup of Aut(T ), and i, j, c, and d give
a presentation of Aut(T ) [4].

Lemma 2.3 ([4, Theorem 3.6]). The automorphism group of T can be ex-

pressed by:

Aut(T ) = {iijjccdd | 0 ≤ i ≤ 3, 0 ≤ j ≤ 1, 0 ≤ c ≤ 2, 0 ≤ d ≤ 1}.

Let G be a group and A be a subgroup of G. The normalizer of A in G is
denoted by NG(A). In [4], we see three Sylow 2-subgroups of order 16

P1 = NAut(T )

















0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

















,

P2 = NAut(T )

















0 0 1 0
1 0 0 0
0 0 0 −1
0 1 0 0

















,

P3 = NAut(T )

















0 0 0 −1
0 0 −1 0
1 0 0 0
0 −1 0 0

















,

and four Sylow 3-subgroups of order 3

Q1 = NAut(T )

















1 0 0 0
0 0 1 0
0 0 0 −1
0 −1 0 0

















, Q2 = NAut(T )

















0 1 0 0
0 0 −1 0
−1 0 0 0
0 0 0 1

















,

Q3 = NAut(T )

















0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

















, Q4 = NAut(T )

















0 0 0 −1
−1 0 0 0
0 0 1 0
0 1 0 0

















.
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2.1. Automorphism on ternary [8,4,3] code

Let C be a ternary [8, 4, 3] code with the following generator matrix








1 0 1 1 0 0 0 0
0 1 1 2 0 0 0 0
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 2









,

and let us define G = Aut(C). Then this is a unique self-dual code of length 8
up to equivalence. From (1), we know that

2× (3 + 1)× (9 + 1)× (27 + 1) =
28 · 8!

|G|
.

In this case, the order of G is 4608. We define the maps

φ1 : Aut(T ) → G and φ2 : Aut(T ) → G

by φ1(σ) =
(

σ 0

0 I4

)

and φ2(σ) =
(

I4 0

0 σ

)

for σ ∈ Aut(T ), where I4 is the 4 × 4
identity matrix and 0 is the 4 × 4 zero matrix. Obviously, φ1(Aut(T )) and
φ2(Aut(T )) are subgroups of G. For any subgroup A of G, the centralizer of
A in G is denoted by CG(A). Let G1 = φ1(Aut(T )) and G2 = φ2(Aut(T )).
Then G1 ≤ CG(G2) and G2 ≤ CG(G1), that is, σ1σ2 = σ2σ1 for any σ1 ∈ G1,
σ2 ∈ G2.

Lemma 2.4. Let Z be a group. If X and Y are subgroups of Z, then XY is

a subgroup of Z if and only if XY = Y X.

Proof. Suppose XY is a subgroup of Z. Then for any x ∈ X, y ∈ Y ,

yxXY = yXY = xx−1yXY = xXY = XY ⇒ yx ∈ XY.

Since the order of XY is equal to the number of elements of Y X , we have
XY = Y X .

For the other direction, now suppose XY = Y X . For any z, z′ ∈ Y X ,
z = x1y1 and z′ = x2y2 for some x1, x2 ∈ X and y1, y2 ∈ Y .

z−1z′ = (x1y1)
−1x2y2 = y−1

1 x−1
1 x2y2.

Since X is a group, x−1
1 x2 ∈ X . Let x3 = x−1

1 x2. Then we have

y−1
1 x−1

1 x2y2 = y−1
1 x3y2.

From the hypothesis, y−1
1 x3 = x4y3 for some x4 ∈ X, y3 ∈ Y , and so

y−1
1 x3y2 = x4y3y2.

Since Y is a group, y3y2 ∈ Y . Let y4 = y3y2. Then we have

x4y3y2 = x4y4 ∈ XY.

Therefore XY is a subgroup of Z. �

The following theorem shows the abstract structure of G.
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Theorem 2.5. The automorphism group of C can be expressed by the product

of G1,G2, and G3, where G3 = {I8, γ} with γ =
(

0 I4
I4 0

)

.

Proof. It is known that G1 ≤ CG(G2) implies G1G2 = G2G1. From Lemma
2.4, G1G2 is a subgroup of G. Since the index of G1G2 in G is 2, G1G2 is
a normal subgroup of G. Let γ =

(

0 I4
I4 0

)

. It is easy to check that γ ∈ G.

Let G3 = {I8, γ}. Then G3 ≤ NG(G1G2), and by the result of Lemma 2.4,
we know that G1G2G3 is a subgroup of G. Each order of G1 and G2 is 48,
and G1 ∩ G2 = {I8}. The order G3 is 2, and G1G2 ∩ G3 = {I8}. Since
|G1G2G3| = 4608, we get the desired result: G = G1G2G3. �

The group G1G2 is isomorphic to Aut(T )× Aut(T ). Lemma 2.2 gives the
following corollary. This corollary identifies all elements of G.

Corollary 2.6. The automorphism group of C is generated by φ1(b), φ1(c),
and γ.

Proof. From Lemma 2.2 and Theorem 2.5, φ1(b), φ1(c), φ2(b), φ2(c), and γ
generate G. Clearly,

φ2(b) = φ1(b)γ, φ2(c) = φ1(c)γ.

Therefore, φ1(b), φ1(c), and γ generate G. �

From Lemma 2.3 we can obtain the following corollary.

Corollary 2.7. The automorphism group of C can be presented by:

G = {φ1(i
ijjccdd)φ2(i

i′jj
′

cc
′

dd′

)γk | 0 ≤ i, i′ ≤ 3, 0 ≤ j, j′ ≤ 1, 0 ≤ c, c′ ≤ 2,
0 ≤ d, d′ ≤ 1, 0 ≤ k ≤ 1, }.

Let g, g′ ∈ G with g =
(

σ1 0

0 σ2

)

, g′ =
(

0 σ1

σ2 0

)

for σ1, σ2 ∈ Aut(T ). Then

γgγ−1 =

(

σ2 0
0 σ1

)

, γg′γ−1 =

(

0 σ2

σ1 0

)

.

Proposition 2.8. Let A be a subgroup of G with γ ∈ A. If g, g′ ∈ A, where g =
(

σ1 0

0 σ2

)

and g′ =
(

0 σ1

σ2 0

)

, then A contains
(

σ2 0

0 σ1

)

and
(

0 σ2

σ1 0

)

. In particular,

if A = A1A2G3 for some A1 ≤ G1, A2 ≤ G2, then φ−1
1 (A1) = φ−1

2 (A2).

We compute the conjugacy classes of G. First we consider the conjugacy
classes of elements of G1G2.

Proposition 2.9. If g ∈ G1G2, then the conjugates of g belongs to G1G2.

Proof. For any a ∈ G1G2, aga
−1 ∈ G1G2 since G1G2 is a subgroup of G,

and in addition

(aγ)g(aγ)−1 = aγgγ−1a−1 = a(γgγ−1)a−1.

Since (γgγ−1) ∈ G1G2 from Proposition 2.8, (aγ)g(aγ)−1 belongs to G1G2.
�
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This shows that the conjugacy classes of elements of G1G2 are closed in G1G2.
The following proposition gives the property which the conjugacy classes of
elements of G1G2 have.

Proposition 2.10. For σ1, σ2 ∈ Aut(T ), φ1(σ1)φ2(σ2) and φ1(σ2)φ2(σ1) are

affiliated to same conjugacy class.

Proof. From Proposition 2.8, we have

γφ1(σ1)φ2(σ2)γ
−1 = φ1(σ2)φ2(σ1).

Therefore, φ1(σ2)φ2(σ1) is a conjugate of φ1(σ1)φ2(σ2). �

The following theorem presents the conjugacy classes of elements of G1G2

clearly. We can see conjugacy classes of Aut(T ) in [Table 2, [4]].

Theorem 2.11. For σi, σj ∈ Aut(T ), the conjugacy class of φ1(σi)φ2(σj)
is the union of φ1(Ci)φ2(Cj) and φ1(Cj)φ2(Ci) where Ci and Cj are the

conjugacy classes of σi and σj in Aut(T ), respectively.

Proof. Let a =
(

x 0
0 y

)

with x, y ∈ Aut(T ). Then since a−1 =
(

x−1 0
0 y−1

)

,

a

(

σi 0
0 σj

)

a−1 =

(

xσix
−1 0

0 yσjy
−1

)

∈ φ1(Ci)φ2(Cj),

and

rl(aγ)

(

σi 0
0 σj

)

(aγ)−1 = a(γ

(

σi 0
0 σj

)

γ−1)a−1

= a

(

σj 0
0 σi

)

a−1 ∈ φ1(Cj)φ2(Ci).

Therefore, the union of φ1(Ci)φ2(Cj) and φ1(Cj)φ2(Ci) contains the conju-
gacy class of φ1(σi)φ2(σj). On the other hand, since the conjugacy class of
φ1(σi)φ2(σj) contains φ1(Ci)φ2(Cj), the conjugacy class of φ1(σi)φ2(σj) in-
cludes φ1(Cj)φ2(Ci) from Proposition 2.10. We get the desired result: the
conjugacy class of φ1(σi)φ2(σj) is equal to the union of φ1(Ci)φ2(Cj) and
φ1(Cj)φ2(Ci). �

We consider the conjugacy class of aγ where a is any element of G1G2.

Theorem 2.12. The conjugacy class of γ is the set

(2)

{(

0 σ
σ−1 0

)

| σ ∈ Aut(T )

}

.

Proof. Let aγ be any element of G with a ∈ G1G2. Then one has

(aγ)γ(aγ)−1 = (aγ)γ(γ−1a−1) = a(γγγ−1)a−1 = aγa−1.
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For any x, y ∈ Aut(T ),

rl

(

x 0
0 y

)

γ

(

x−1 0
0 y−1

)

=

(

x 0
0 y

)(

0 1
1 0

)(

x−1 0
0 y−1

)

=

(

0 xy−1

yx−1 0

)

=

(

0 xy−1

(xy−1)−1 0

)

.

Since all elements of Aut(T ) can be presented as the form of xy−1, this proof
is complete. �

From this, we know that the length of the conjugacy class of γ is 48.

Proposition 2.13. Let γ̄ = y−1γy where y is any element of G. Then the

conjugates of aγ are equal to the conjugates of y−1ayγ̄.

Proof. For any x ∈ G,

xaγx−1 = xa(yγ̄y−1)x−1

= x(yy−1)a(yγ̄y−1)x−1

= (xy)(y−1ay)γ̄(y−1x−1)

= (xy)(y−1ay)γ̄(xy)−1.

This proves that the conjugates of aγ and y−1ayγ̄ are the same. �

Proposition 2.14. The conjugacy class of aγ is contained in the set CaCγ

where Ca is the conjugacy class of a and Cγ is the conjugacy class of γ.

Proof. Let Caγ be the conjugacy class of aγ. Then any element g of Caγ is
representative as b(aγ)b−1 for some b ∈ G.

g = b(aγ)b−1

= b{a(b−1b)γ}b−1

= (bab−1)(bγb−1).

Consequently, g ∈ CaCγ since bab−1 ∈ Ca and bγb−1 ∈ Cγ . �

These two propositions characterize conditions the conjugacy classes of ele-
ments which have γ as the factor should satisfy.

If h is an element in CaCγ , then there are some b and d in G such that
h = (bab−1)(dγd−1).

Proposition 2.15. If h ∈ CaCγ , then h = d{(d−1b)a(d−1b)−1}γd−1. If d−1b
belongs to centralizer of a, then the element h of CaCγ is contained in Caγ .
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Proof. By the property of identity and the association law, one has

h = (bab−1)(dγd−1)

= (dd−1)(bab−1)(dγd−1)

= d(d−1bab−1d)γd−1

= d{(d−1b)a(b−1d)}γd−1

= d{(d−1b)a(d−1b)−1}γd−1.
�

Let us consider the conjugacy classes of special elements of G.

Theorem 2.16. The conjugacy class of φ1(σ)φ2(I4)γ is equal to CσCγ , where

Cσ is the conjugacy class of φ1(σ)φ2(I4) and Cγ is the conjugacy class of γ.

Proof. From Proposition 2.14 the conjugacy class of φ1(σ)φ2(I4)γ is contained
in CσCγ . Let a be an element of CσCγ . Then

a =

(

xσx−1 0
0 I4

)(

0 y
y−1 0

)

or

(

I4 0
0 xσx−1

)(

0 y
y−1 0

)

for some x and y in Aut(T ) from Proposition 2.10. In the first case we can
choose an element z in Aut(T ) such that z = y−1x. Then

rla =

(

xσx−1 0
0 I4

)(

0 y
y−1 0

)

=

[(

x 0
0 z

)(

σ 0
0 I4

)(

x−1 0
0 z−1

)](

0 y
y−1 0

)

=

[(

x 0
0 z

)(

σ 0
0 I4

)(

x−1 0
0 z−1

)][(

x 0
0 z

)(

0 I4
I4 0

)(

x−1 0
0 z−1

)]

=

(

x 0
0 z

)(

σ 0
0 I4

)(

0 I4
I4 0

)(

x−1 0
0 z−1

)

.

Since
(

σ 0
0 I4

) (

0 I4
I4 0

)

= φ1(σ)φ2(I)γ, a is contained in the conjugacy class of

φ1(σ)φ2(I)γ. For the second case, we take z in Aut(T ) such that z = yx.
Then

rla =

(

I4 0
0 xσx−1

)(

0 y
y−1 0

)

=

[(

z 0
0 x

)(

I4 0
0 σ

)(

z−1 0
0 x−1

)](

0 y
y−1 0

)

=

[(

z 0
0 x

)(

I4 0
0 σ

)(

z−1 0
0 x−1

)][(

z 0
0 x

)(

0 I4
I4 0

)(

z−1 0
0 x−1

)]

=

(

z 0
0 x

)(

I4 0
0 σ

)(

0 I4
I4 0

)(

z−1 0
0 x−1

)

.
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Since
(

I4 0
0 σ

) (

0 I4
I4 0

)

= φ2(σ)φ1(I)γ, and φ2(σ)φ1(I) = φ1(I)φ2(σ), from Propo-

sition 2.10, a is contained in the conjugacy class of φ1(σ)φ2(I)γ. Therefore the
conjugacy class of φ1(σ)φ2(I4)γ and CσCγ are the same. �

If we apply the same argument in Theorem 2.16, the following corollarly is
true.

Corollary 2.17. The conjugacy class of φ1(σ)φ2(−I4)γ is equal to CσCγ ,

where Cσ is the conjugacy class of φ1(σ)φ2(−I4) and Cγ is the conjugacy class

of γ.

The following proposition gives the number of elements of conjugacy class
of φ1(σ)φ2(I4)γ.

Proposition 2.18. The number of elements of CσCγ is equal to 1
2 | Cσ || Cγ |,

where Cσ is the conjugacy class of φ1(σ)φ2(I4) and Cγ is the conjugacy class

of γ.

Proof. For any
(

I4 0
0 σ′

)

∈ Cσ and x ∈ Aut(T )
(

I4 0
0 σ′

)(

0 x
x−1 0

)

=

(

0 x
σ′x−1 0

)

.

We can choose
(

σ′′ 0
0 I4

)

∈ Cσ and y ∈ Aut(T ) such that

σ′′ = xσ′x−1 and y = xσ′−1
,

since xσ′x−1 is a conjugate of σ. Then

rl

(

σ′′ 0
0 I4

)(

0 y
y−1 0

)

=

(

0 σ′′y
y−1 0

)

=

(

0 (xσ′x−1)(xσ′−1
)

(xσ′−1
)−1 0

)

=

(

0 x
σ′x−1 0

)

.

Hence we obtain the products of the form of
(

I4 0
0 σ

) (

0 x
x−1 0

)

by the products of

the form of
(

σ 0
0 I4

) (

0 x
x−1 0

)

.
Suppose that

(

σ1 0
0 I4

)(

0 x
x−1 0

)

=

(

σ2 0
0 I4

)(

0 y
y−1 0

)

.

Then we should have x = y and σ1 = σ2. Therefore we get the desired result
| CσCγ |= 1

2 | Cσ || Cγ |. �

We can compute the number of elements of conjugacy class of φ1(σ)φ2(−I4)γ
using the same argument in Proposition 2.18.
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Corollary 2.19. The number of elements of CσCγ is equal to 1
2 | Cσ || Cγ |,

where Cσ is the conjugacy class of φ1(σ)φ2(−I4) and Cγ is the conjugacy class

of γ.

Proof. For any
(

−I4 0
0 σ′

)

∈ Cσ and x ∈ Aut(T ), we have
(

−I4 0
0 σ′

)(

0 x
x−1 0

)

=

(

0 −x
σ′x−1 0

)

.

We can choose
(

σ′′ 0
0 −I4

)

∈ Cσ and y ∈ Aut(T ) such that

σ′′ = −xσ′x−1 and y = xσ′−1
,

since xσ′x−1 is a conjugate of σ. Then we have

rl

(

σ′′ 0
0 I4

)(

0 y
y−1 0

)

=

(

0 σ′′y
y−1 0

)

=

(

0 (−xσ′x−1)(xσ′−1
)

(xσ′−1
)−1 0

)

=

(

0 −x
σ′x−1 0

)

.

This completes the statement. �

Let us show the result in Table 1, where Ci is in [Table 2, [4]]. From this
Table 1, we obtain the class equation for G:

44
∑

i=1

Ci = 4608.

Lemma 2.20 ([4, Theorems 3.3 and 3.4]). The automorphism group of T has

four Sylow 3-subgroups of order 3 and three Sylow 2-subgroups of order 16.
Thus no Sylow subgroups are normal.

We consider the Sylow subgroups of C. The results about Sylow subgroups
are the following.

Theorem 2.21. The automorphism group of C has 9 Sylow 2-subgroups of

order 512 and 16 Sylow 3-subgroups of order 9.

Proof. Let S be a Sylow 2-subgroup of G. It is obvious that the order of S is
512. Since 512 does not divide the order ofG1G2, S can not be the form of XY
for some X ≤ G1, Y ≤ G2. Now, we consider the normalizer of φ1(Pi)φ2(Pj)
for i, j = 1, 2, 3, where P1, P2, and P3 are Sylow 2-subgroups of Aut(T ) in [4].
Since |φ1(Pi)φ2(Pj)| is 256, its normalizer must contain some Sylow 2-subgroup
from the first Sylow theorem in [3]. Since P1, P2 and P3 are distinct Sylow 2-
subgroups of Aut(T ) and |Aut(T )| = 48, one should have NAut(T )(Pi) = Pi

for i = 1, 2, 3. Therefore, φ1(Pi)φ2(Pj) is not a normal subgroup of G1G2,
and hence its normalizer does’t have an element of order 3. Consequently, the
normalizer of φ1(Pi)φ2(Pj) has order 512 from the first Sylow theorem in [3].
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Since NAut(T )(Pi) is not equal to NAut(T )(Pj) where i and j are distinct, we
obtain distinct 9 subgroups of order 512. They are Sylow 2-subgroups of G.
Let N2 be the number of Sylow 2-subgroups of G. By Sylow theorems, we
should have N2 ≡ 1(mod 2) and N2 | 9. However, the possible numbers for N2

are 1, 3, or 9 and we already show there exist only 9 Sylow 2-subgroups. Hence
G has only 9 Sylow 2-subgroups.

Each element ofG can be written uniquely as a product g1g2g3 for some g1 ∈
G1, g2 ∈ G2, and g3 ∈ G3. The fact that the order of g1g2g3 divides 9 implies
g3 = I8. Hence φ1(Qi)φ2(Qj) are Sylow 3-subgroups of G for i = 1, 2, 3, 4 and
j = 1, 2, 3, 4, where Q1, Q2, Q3, and Q4 in [4]. Since there is no element of
G1G2 whose its order is 9, only these 16 subgroups are Sylow 3-subgroups. �

TABLE 1. Conjugacy classes of G
Class Representative Elements Length Order
C1 φ1(1)φ2(1) φ1(C1)φ2(C1) 1 1
C2 φ1(48)φ2(48) φ1(C8)φ2(C8) 1 2
C3 φ1(48)φ2(1) φ1(C8)φ2(C1) ∪ φ1(C1)φ2(C8) 2 2
C4 φ1(48)φ2(6) φ1(C8)φ2(C3) ∪ φ1(C3)φ2(C8) 24 2
C5 φ1(1)φ2(43) φ1(C1)φ2(C3) ∪ φ1(C3)φ2(C1) 24 2
C6 γ (2) in Proposition 2.12 48 2
C7 φ1(3)φ2(3) φ1(C3)φ2(C3) 144 2
C8 φ1(1)φ2(4) φ1(C1)φ2(C2) ∪ φ1(C2)φ2(C1) 16 3
C9 φ1(2)φ2(4) φ1(C2)φ2(C2) 64 3
C10 φ1(1)φ2(27) φ1(C1)φ2(C7) ∪ φ1(C7)φ2(C1) 12 4
C11 φ1(48)φ2(22) φ1(C8)φ2(C7) ∪ φ1(C7)φ2(C8) 12 4
C12 φ1(37)φ2(27) φ1(C7)φ2(C7) 36 4
C13 φ1(48)φ2(1)γ C3C6 48 4
C14 φ1(37)φ2(6) φ1(C7)φ2(C3) ∪ φ1(C3)φ2(C7) 144 4
C15 φ1(1)φ2(43)γ C5C6 576 4
C16 φ1(48)φ2(4) φ1(C8)φ2(C2) ∪ φ1(C2)φ2(C8) 16 6
C17 φ1(48)φ2(45) φ1(C8)φ2(C6) ∪ φ1(C6)φ2(C8) 16 6
C18 φ1(1)φ2(45) φ1(C1)φ2(C6) ∪ φ1(C6)φ2(C1) 16 6
C19 φ1(47)φ2(45) φ1(C6)φ2(C6) 64 6
C20 φ1(47)φ2(4) φ1(C6)φ2(C2) ∪ φ1(C2)φ2(C6) 128 6
C21 φ1(2)φ2(44) φ1(C2)φ2(C3) ∪ φ1(C3)φ2(C2) 192 6
C22 φ1(47)φ2(5) φ1(C6)φ2(C3) ∪ φ1(C3)φ2(C6) 192 6
C23 φ1(1)φ2(4)γ C8C6 384 6
C24 φ1(1)φ2(33) φ1(C1)φ2(C4) ∪ φ1(C4)φ2(C1) 12 8
C25 φ1(48)φ2(16) φ1(C8)φ2(C5) ∪ φ1(C5)φ2(C8) 12 8
C26 φ1(1)φ2(16) φ1(C1)φ2(C5) ∪ φ1(C5)φ2(C1) 12 8
C27 φ1(48)φ2(33) φ1(C8)φ2(C4) ∪ φ1(C4)φ2(C8) 12 8
C28 φ1(25)φ2(41) φ1(C5)φ2(C5) 36 8
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TABLE 1. continued
C29 φ1(24)φ2(8) φ1(C4)φ2(C4) 36 8
C30 φ1(12)φ2(33) φ1(C7)φ2(C4) ∪ φ1(C4)φ2(C7) 72 8
C31 φ1(24)φ2(41) φ1(C4)φ2(C5) ∪ φ1(C5)φ2(C4) 72 8
C32 φ1(37)φ2(16) φ1(C7)φ2(C5) ∪ φ1(C5)φ2(C7) 72 8
C33 φ1(46)φ2(25) φ1(C3)φ2(C5) ∪ φ1(C5)φ2(C3) 144 8
C34 φ1(3)φ2(24) φ1(C3)φ2(C4) ∪ φ1(C4)φ2(C3) 144 8
C35 φ1(1)φ2(27)γ C10C6 288 8
C36 φ1(37)φ2(14) φ1(C7)φ2(C2) ∪ φ1(C2)φ2(C7) 96 12
C37 φ1(12)φ2(35) φ1(C7)φ2(C6) ∪ φ1(C6)φ2(C7) 96 12
C38 φ1(48)φ2(4)γ C16C6 384 12
C39 φ1(1)φ2(16)γ C26C6 288 16
C40 φ1(48)φ2(16)γ C25C6 288 16
C41 φ1(47)φ2(13) φ1(C6)φ2(C4) ∪ φ1(C4)φ2(C6) 96 24
C42 φ1(2)φ2(36) φ1(C2)φ2(C5) ∪ φ1(C5)φ2(C2) 96 24
C43 φ1(47)φ2(36) φ1(C6)φ2(C5) ∪ φ1(C5)φ2(C6) 96 24
C44 φ1(2)φ2(13) φ1(C2)φ2(C4) ∪ φ1(C4)φ2(C2) 96 24

We define i and j of φ1(i)φ2(j) as j in [Table 1, [4]].
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