Commun. Korean Math. Soc. **27** (2012), No. 4, pp. 645–651 http://dx.doi.org/10.4134/CKMS.2012.27.4.645

\mathcal{N} -SUBALGEBRAS AND \mathcal{N} -IDEALS BASED ON A SUB-BCK-ALGEBRA OF A BCI-ALGEBRA

Kyoung Ja Lee and Young Bae Jun

ABSTRACT. Based on a sub-BCK-algebra K of a BCI-algebra X, the notions of \mathcal{N} -subalgebras and \mathcal{N} -ideals of X are introduced, and their relations/properties are investigated.

1. Introduction

A (crisp) set A in a universe X can be defined in the form of its characteristic function $\mu_A : X \to \{0, 1\}$ yielding the value 1 for elements belonging to the set A and the value 0 for elements excluded from the set A. So far most of the generalization of the crisp set have been conducted on the unit interval [0, 1] and they are consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point $\{1\}$ into the interval [0, 1]. Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tool. To attain such object, Jun et al. [2] introduced a new function which is called negative-valued function, and constructed \mathcal{N} -structures. They discussed \mathcal{N} -subalgebras and \mathcal{N} -ideals in BCK/BCI-algebras.

In this paper, by using a sub-*BCK*-algebra *K* of a *BCI*-algebra *X* and a number $\varrho \in [-1,0]$, we introduce the notions of $\mathcal{N}(K,\varrho)$ -subalgebras and $\mathcal{N}(K,\varrho)$ -ideals in *BCI*-algebras. We investigate their properties, and show that these two notions are independent each other by providing examples.

2. Preliminaries

Let $K(\tau)$ be the class of all algebras with type $\tau = (2, 0)$. By a *BCI-algebra* we mean a system $X := (X, *, 0) \in K(\tau)$ in which the following axioms hold:

(a1) ((x * y) * (x * z)) * (z * y) = 0,

 $\bigodot 2012$ The Korean Mathematical Society

⁽a2) (x * (x * y)) * y = 0,

Received January 5, 2011.

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. sub-BCK-algebra, \mathcal{N} -subalgebra (ideal), $\mathcal{N}(K, \varrho)$ -subalgebra (ideal).

(a3) x * x = 0,

(a4) $x * y = y * x = 0 \implies x = y$,

where x, y and z are elements of X. If a *BCI*-algebra X satisfies 0 * x = 0 for all $x \in X$, then we say that X is a *BCK*-algebra. We can define a partial ordering \leq by

$$(\forall x, y \in X) \ (x \preceq y \iff x * y = 0).$$

In a BCK/BCI-algebra X, the following hold:

(b1) x * 0 = x,

(b2) (x * y) * z = (x * z) * y,

where x, y and z are elements of X.

A non-empty subset S of a BCK/BCI-algebra X is called a *subalgebra* of X if $x * y \in S$ for all $x, y \in S$. A subset A of a BCK/BCI-algebra X is called an *ideal* of X if it satisfies:

$$(2.1) 0 \in A,$$

(2.2) $x * y \in A, y \in A \Rightarrow x \in A,$

where x and y are elements of X.

We refer the reader to the books [1] and [3] for further information regarding BCK/BCI-algebras.

For any family $\{a_i \mid i \in \Lambda\}$ of real numbers, we define

$$\forall \{a_i \mid i \in \Lambda\} := \begin{cases} \max\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \sup\{a_i \mid i \in \Lambda\} & \text{otherwise,} \end{cases} \\ \land \{a_i \mid i \in \Lambda\} := \begin{cases} \min\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \inf\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{cases}$$

Denote by $\mathcal{F}(X, [-1, 0])$ the collection of functions from a set X to [-1, 0]. We say that an element of $\mathcal{F}(X, [-1, 0])$ is a *negative-valued function* from X to [-1, 0] (briefly, \mathcal{N} -function on X). By an \mathcal{N} -structure we mean an ordered pair (X, f) of X and an \mathcal{N} -function f on X.

Definition 2.1 ([2]). By a *subalgebra* of a *BCK/BCI*-algebra X based on \mathcal{N} -function f (briefly, \mathcal{N} -subalgebra of X), we mean an \mathcal{N} -structure (X, f) in which f satisfies the following condition: for any $x, y \in X$,

$$(2.3) f(x*y) \le \lor \{f(x), f(y)\}.$$

Definition 2.2 ([2]). By an *ideal* of a BCK/BCI-algebra X based on \mathcal{N} -function f (briefly, \mathcal{N} -*ideal* of X), we mean an \mathcal{N} -structure (X, f) in which f satisfies the following condition: for any $x, y \in X$,

(2.4)
$$f(0) \le f(x) \le \lor \{f(x * y), f(y)\}$$

For any \mathcal{N} -structure (X, f) and $\alpha \in [-1, 0]$, the set

$$C(f;\alpha) := \{ x \in X \mid f(x) \le \alpha \}$$

646

TABLE 1. *-operation

*	0	1	2	a	b
0	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	0	0	a	a
$\begin{array}{c} 0 \\ 1 \\ 2 \\ a \end{array}$	1	0	0	a	a
2	2	2	0	b	a
a	$a \\ b$	a	a	0	0
b	b	b	a	2	0

is called the *closed support* of (X, f) related to α , and the set

$$O(f;\alpha) := \{ x \in X \mid f(x) < \alpha \}$$

is called the *open support* of (X, f) related to α .

Proposition 2.3 ([2]). An \mathcal{N} -structure (X, f) is an \mathcal{N} -subalgebra (resp. ideal) of a BCK/BCI-algebra X if and only if every closed support of (X, f) related to α is a subalgebra (resp. ideal) of X for all $\alpha \in [-1, 0]$.

For our convenience, the empty set \emptyset is regarded as a subalgebra (resp. ideal) of X.

3. \mathcal{N} -subalgebras based on a sub-BCK-algebra

Definition 3.1. Let (X; *, 0) be a *BCI*-algebra. By a *sub-BCK*-algebra of X we mean a subset K of X such that $0 \in K$ and (K; *, 0) is a *BCK*-algebra.

Example 3.2. Let $X = \{0, 1, 2, a, b\}$ be a set with the *-operation given by Table 1. Then (X; *, 0) is a *BCI*-algebra and $(K = \{0, 1, 2\}; *, 0)$ is a sub-*BCK*-algebra of X.

Definition 3.3. Let K be a sub-*BCK*-algebra of a *BCI*-algebra X and let $\varrho \in [-1, 0]$. An \mathcal{N} -structure (X, f) is called an \mathcal{N} -subalgebra of X based on K and ϱ (briefly, $\mathcal{N}(K, \varrho)$ -subalgebra of X) if it is an \mathcal{N} -subalgebra of X that satisfies the following condition:

$$(3.1) \qquad (\forall x \in K) \ (\forall y \in X \setminus K) \ (f(x) \le \varrho \le f(y)).$$

Example 3.4. Let X and K be as in Example 3.2.

(1) An \mathcal{N} -structure (X, f) in which f is given by

$$f = \begin{pmatrix} 0 & 1 & 2 & a & b \\ -0.7 & -0.6 & -0.5 & -0.3 & -0.3 \end{pmatrix}$$

is an $\mathcal{N}(K, \varrho)$ -subalgebra of X for $\varrho \in [-0.5, -0.3]$.

(2) Let (X, g) be an \mathcal{N} -structure in which g is given by

$$g = \begin{pmatrix} 0 & 1 & 2 & a & b \\ -0.7 & -0.5 & -0.2 & -0.4 & -0.2 \end{pmatrix}.$$

TABLE 2. *-operation

*	0	1	a	b	С
0	0 1	0	a	b	с
1		0	a	b	c
a	a	a	0	c	b
b	b	b	c	0	a
c	c	С	b	a	0

Then (X, g) is an \mathcal{N} -subalgebra of X, but it does not satisfy (3.1) since g(2) = -0.2 > -0.4 = g(a).

The following example shows that there exists an \mathcal{N} -structure (X, f) in a *BCI*-algebra X such that it satisfies the condition (3.1), but it is not an \mathcal{N} -subalgebra of X.

Example 3.5. Let $X = \{0, 1, a, b, c\}$ be a set with the *-operation given by Table 2. Then (X; *, 0) is a *BCI*-algebra and $(K = \{0, 1\}; *, 0)$ is only a sub-*BCK*-algebra of X. Let (X, f) be an \mathcal{N} -structure in which f is given by

$$f = \begin{pmatrix} 0 & 1 & a & b & c \\ -0.5 & -0.6 & -0.2 & -0.4 & -0.3 \end{pmatrix}.$$

Then (X, f) satisfies the condition (3.1) for $\rho \in [-0.5, -0.4]$, but it is not an \mathcal{N} -subalgebra of X since $f(b * c) = f(a) = -0.2 > -0.3 = \lor \{f(b), f(c)\}$.

Theorem 3.6. Let K be a sub-BCK-algebra of a BCI-algebra X. If an \mathcal{N} -structure (X, f) satisfies the following condition:

$$(3.2) \qquad (\forall x \in K) \ (\forall y \in X \setminus K) \ (f(x) \le f(y)),$$

then (X, f) is an $\mathcal{N}(K, \varrho)$ -subalgebra of X for every $\varrho \in \left[\bigwedge_{y \in X \setminus K} f(y), \bigvee_{x \in K} f(x)\right]$.

Proof. Straightforward.

Obviously, a restriction of an $\mathcal{N}(K, \varrho)$ -subalgebra of a *BCI*-algebra X to a sub-*BCK*-algebra K of X is a \mathcal{N} -subalgebra of (K; *, 0).

 \square

Theorem 3.7. Let $\varrho \in [-1,0]$ and let K be a sub-BCK-algebra of a BCIalgebra X. Then every $\mathcal{N}(K,\varrho)$ -subalgebra (X,f) of X satisfies the following assertions:

- (1) $K \subseteq C(f; \varrho)$.
- (2) $(\forall \beta \in [-1,0]) \ (\beta < \varrho \implies C(f;\beta) \text{ is a subalgebra of } K).$

Proof. Assume that (X, f) is an $\mathcal{N}(K, \varrho)$ -subalgebra of X. Obviously, $K \subseteq C(f; \varrho)$. Let $\beta \in [-1, 0]$ be such that $\beta < \varrho$. Then $C(f; \beta) \subseteq K$. Let $x, y \in C(f; \beta)$. Then $f(x) \leq \beta$ and $f(y) \leq \beta$. Thus $f(x * y) \leq \vee \{f(x), f(y)\} \leq \beta$, and so $x * y \in C(f; \beta)$. Therefore $C(f; \beta)$ is a subalgebra of K.

TABLE 3. *-operation

*	0	1	2	a	b
0	0	0	0	a	a
$\frac{1}{2}$	1	0	1	b	a
2	2	2	0	a	a
a	a	a	a	0	0
b	b	a	b	1	0

We give conditions for an \mathcal{N} -subalgebra to be an $\mathcal{N}(K, \varrho)$ -subalgebra.

Theorem 3.8. Let $\varrho \in [-1, 0]$ and let K be a sub-BCK-algebra of a BCIalgebra X. If (X, f) is an \mathcal{N} -subalgebra of X satisfying two conditions (1) and (2) in Theorem 3.7, then (X, f) is an $\mathcal{N}(K, \varrho)$ -subalgebra of X.

Proof. Let $x \in K$ and $y \in X \setminus K$. Then $x \in C(f; \varrho)$ by (1) in Theorem 3.7, and so $f(x) \leq \varrho$. Let $f(y) = \beta$. If $\beta < \varrho$, then $y \in C(f; \beta) \subseteq K$ by (2) in Theorem 3.7. This is a contradiction, and thus $f(x) \leq \varrho \leq \beta = f(y)$. Consequently, (X, f) is an $\mathcal{N}(K, \varrho)$ -subalgebra of X. \Box

4. \mathcal{N} -ideals based on a sub-BCK-algebra

Definition 4.1. Let $\rho \in [-1,0]$ and let K be a sub-*BCK*-algebra of a *BCI*-algebra X. An \mathcal{N} -structure (X, f) is called an \mathcal{N} -*ideal* of X based on K and ρ (briefly, $\mathcal{N}(K, \rho)$ -*ideal* of X) if it satisfies:

(4.1)
$$(\forall x \in K) (\forall y \in X \setminus K) (f(0) \le f(x) \le \varrho \le f(y)).$$

(4.2) $(\forall x, y \in K) (f(x) \le \lor \{f(x * y), f(y)\}).$

Example 4.2. Let $X = \{0, 1, 2, a, b\}$ be a set with the *-operation given by Table 3. Then (X; *, 0) is a *BCI*-algebra and $(K = \{0, 1, 2\}; *, 0)$ is a sub-*BCK*-algebra of X. Let (X, f) be an \mathcal{N} -structure in which f is given by

$$f = \begin{pmatrix} 0 & 1 & 2 & a & b \\ -0.8 & -0.5 & -0.7 & -0.1 & -0.2 \end{pmatrix}.$$

Then (X, f) is an $\mathcal{N}(K, \varrho)$ -ideal of X. But it is not an \mathcal{N} -ideal of X since $f(a) = -0.1 \leq -0.2 = \lor \{f(a * b), f(b)\}.$

Theorem 4.3. Let $\rho \in [0, 1]$ and let K be a sub-BCK-algebra of a BCI-algebra X. If (X, f) is an $\mathcal{N}(K, \rho)$ -ideal of X, then

- (1) $K \subseteq C(f; \varrho)$.
- (2) $(\forall \beta \in [-1,0])(\beta < \varrho \Rightarrow C(f;\varrho) \text{ is an ideal of } K).$

Proof. Let $x \in K$. Then $f(x) \leq \varrho$ by (4.1), and so $x \in C(f; \varrho)$. Hence $K \subseteq C(f; \varrho)$. Let $\beta \in [-1, 0]$ be such that $\beta < \varrho$. If $x \in C(f; \beta)$, then $f(x) \leq \beta < \varrho$ and thus $x \in K$. Hence $C(f; \beta) \subseteq K$. From (4.1), we know that $f(0) \leq f(x)$

for all $x \in X$. Hence $f(0) \leq f(x) \leq \beta$ for $x \in C(f;\beta)$, and so $0 \in C(f;\beta)$. Let $x, y \in K$ be such that $x * y \in C(f;\beta)$ and $y \in C(f;\beta)$. Then $f(x * y) \leq \beta$ and $f(y) \leq \beta$. It follows from (4.2) that $f(x) \leq \vee \{f(x * y), f(y)\} \leq \beta$ so that $x \in C(f;\beta)$. Hence $C(f;\beta)$ is an ideal of K.

For a sub-*BCK*-algebra K of a *BCI*-algebra X and $\rho \in [-1, 0]$, the following example shows that an \mathcal{N} -ideal (X, f) of X may not be an $\mathcal{N}(K, \rho)$ -ideal of X.

Example 4.4. Let X and K be as in Example 4.2. Consider an \mathcal{N} -structure (X, f) in which f is given by

$$f = \begin{pmatrix} 0 & 1 & 2 & a & b \\ -0.8 & -0.3 & -0.7 & -0.5 & -0.3 \end{pmatrix}.$$

Then

$$C(f;\beta) = \begin{cases} X & \text{if } \beta \in [-0.3,0],\\ \{0,2,a\} & \text{if } \beta \in [-0.5,-0.3),\\ \{0,2\} & \text{if } \beta \in [-0.7,-0.5),\\ \{0\} & \text{if } \beta \in [-0.8,-0.7),\\ \emptyset & \text{if } \beta \in [-1,-0.8), \end{cases}$$

and so $C(f;\beta)$ is an ideal of X for all $\beta \in [-1,0]$. Hence (X,f) is an \mathcal{N} -ideal of X by Proposition 2.3. But (X,f) is not an $\mathcal{N}(K,\varrho)$ -ideal of X for $\varrho \in [-0.5, -0.3)$ because $f(1) = -0.3 > \varrho \ge -0.5 = f(a)$.

We provide conditions for an \mathcal{N} -ideal to be an $\mathcal{N}(K, \varrho)$ -ideal.

Theorem 4.5. Let $\varrho \in [0, 1]$ and let K be a sub-BCK-algebra of a BCI-algebra X. If an \mathcal{N} -ideal (X, f) of X satisfies conditions (1) and (2) in Theorem 4.3, then (X, f) is an $\mathcal{N}(K, \varrho)$ -ideal of X.

Proof. Let $x \in K$ and $y \in X \setminus K$. Then $x \in C(f; \varrho)$ by (1) of Theorem 4.3, which implies $f(x) \leq \varrho$. If $f(y) < \varrho$, then $y \in C(f; f(y)) \subseteq K$ by (2) of Theorem 4.3. This is a contradiction, and so $f(y) \geq \varrho$. Since $f(0) \leq f(x)$ for all $x \in X$, it follows that $f(0) \leq f(x) \leq \varrho \leq f(y)$ so that (4.1) is valid. Since f is an \mathcal{N} -ideal of X, the condition (4.2) is obvious. Therefore (X, f) is an $\mathcal{N}(K, \varrho)$ -ideal of X.

The following example shows that an $\mathcal{N}(K, \varrho)$ -subalgebra may not be an $\mathcal{N}(K, \varrho)$ -ideal, and vice versa.

Example 4.6. (1) Let X and K be as in Example 3.2. Let (X, g) be an \mathcal{N} -structure in which g is given by

$$g = \begin{pmatrix} 0 & 1 & 2 & a & b \\ -0.8 & -0.5 & -0.7 & -0.2 & -0.2 \end{pmatrix}.$$

Then (X, g) is an $\mathcal{N}(K, \varrho)$ -subalgebra of X for $\varrho \in [-0.5, -0.2]$. But (X, g) is not an $\mathcal{N}(K, \varrho)$ -ideal of X for $\varrho \in [-0.5, -0.2]$ since $g(1) = -0.5 \leq -0.7 = \bigvee \{f(1 * 2), f(2)\}$.

(2) Let X and K be as in Example 3.2. Consider an \mathcal{N} -structure (X, f) in which f is given by

$$f = \begin{pmatrix} 0 & 1 & 2 & a & b \\ -0.7 & -0.6 & -0.5 & -0.4 & -0.2 \end{pmatrix}.$$

Then (X, f) is an $\mathcal{N}(K, \varrho)$ -ideal of X for $\varrho \in [-0.5, -0.4]$. Since $f(2 * a) = f(b) = -0.2 \leq -0.4 = \lor \{f(2), f(a)\}, (X, f)$ is not an \mathcal{N} -subalgebra of X. Therefore (X, f) is not an $\mathcal{N}(K, \varrho)$ -subalgebra of X for $\varrho \in [-0.5, -0.4]$.

References

- [1] Y. S. Huang, BCI-algebra, Science Press, Beijing, 2006.
- [2] Y. B. Jun, K. J. Lee, and S. Z. Song, *N*-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. **22** (2009), no. 3, 417–437.
- [3] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co., Seoul, 1994.

KYOUNG JA LEE DEPARTMENT OF MATHEMATICS EDUCATION HANNAM UNIVERSITY DAEJEON 306-791, KOREA *E-mail address*: kjle@hnu.kr

Young Bae Jun Department of Mathematics Education (and RINS) Gyeongsang National University Chinju 660-701, Korea *E-mail address:* skywine@gmail.com