\mathcal{N}-SUBALGEBRAS AND \mathcal{N}-IDEALS BASED ON A SUB-BCK-ALGEBRA OF A BCI-ALGEBRA

Kyoung Ja Lee and Young Bae Jun

Abstract

Based on a sub- $B C K$-algebra K of a $B C I$-algebra X, the notions of \mathcal{N}-subalgebras and \mathcal{N}-ideals of X are introduced, and their relations/properties are investigated.

1. Introduction

A (crisp) set A in a universe X can be defined in the form of its characteristic function $\mu_{A}: X \rightarrow\{0,1\}$ yielding the value 1 for elements belonging to the set A and the value 0 for elements excluded from the set A. So far most of the generalization of the crisp set have been conducted on the unit interval $[0,1]$ and they are consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point $\{1\}$ into the interval $[0,1]$. Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tool. To attain such object, Jun et al. [2] introduced a new function which is called negative-valued function, and constructed \mathcal{N}-structures. They discussed \mathcal{N}-subalgebras and \mathcal{N}-ideals in $B C K / B C I$-algebras.

In this paper, by using a sub- $B C K$-algebra K of a $B C I$-algebra X and a number $\varrho \in[-1,0]$, we introduce the notions of $\mathcal{N}(K, \varrho)$-subalgebras and $\mathcal{N}(K, \varrho)$-ideals in $B C I$-algebras. We investigate their properties, and show that these two notions are independent each other by providing examples.

2. Preliminaries

Let $K(\tau)$ be the class of all algebras with type $\tau=(2,0)$. By a $B C I$-algebra we mean a system $X:=(X, *, 0) \in K(\tau)$ in which the following axioms hold:
(a1) $((x * y) *(x * z)) *(z * y)=0$,
(a2) $(x *(x * y)) * y=0$,

[^0](a3) $x * x=0$,
(a4) $x * y=y * x=0 \Longrightarrow x=y$,
where x, y and z are elements of X. If a $B C I$-algebra X satisfies $0 * x=0$ for all $x \in X$, then we say that X is a $B C K$-algebra. We can define a partial ordering \preceq by
$$
(\forall x, y \in X)(x \preceq y \Longleftrightarrow x * y=0) .
$$

In a $B C K / B C I$-algebra X, the following hold:
(b1) $x * 0=x$,
(b2) $(x * y) * z=(x * z) * y$,
where x, y and z are elements of X.
A non-empty subset S of a $B C K / B C I$-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$. A subset A of a $B C K / B C I$-algebra X is called an ideal of X if it satisfies:

$$
\begin{align*}
& 0 \in A \tag{2.1}\\
& x * y \in A, y \in A \Rightarrow x \in A \tag{2.2}
\end{align*}
$$

where x and y are elements of X.
We refer the reader to the books [1] and [3] for further information regarding $B C K / B C I$-algebras.

For any family $\left\{a_{i} \mid i \in \Lambda\right\}$ of real numbers, we define

$$
\begin{aligned}
& \vee\left\{a_{i} \mid i \in \Lambda\right\}:= \begin{cases}\max \left\{a_{i} \mid i \in \Lambda\right\} & \text { if } \Lambda \text { is finite }, \\
\sup \left\{a_{i} \mid i \in \Lambda\right\} & \text { otherwise },\end{cases} \\
& \wedge\left\{a_{i} \mid i \in \Lambda\right\}:= \begin{cases}\min \left\{a_{i} \mid i \in \Lambda\right\} & \text { if } \Lambda \text { is finite }, \\
\inf \left\{a_{i} \mid i \in \Lambda\right\} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Denote by $\mathcal{F}(X,[-1,0])$ the collection of functions from a set X to $[-1,0]$. We say that an element of $\mathcal{F}(X,[-1,0])$ is a negative-valued function from X to $[-1,0]$ (briefly, \mathcal{N}-function on X). By an \mathcal{N}-structure we mean an ordered pair (X, f) of X and an \mathcal{N}-function f on X.

Definition 2.1 ([2]). By a subalgebra of a $B C K / B C I$-algebra X based on \mathcal{N}-function f (briefly, \mathcal{N}-subalgebra of X), we mean an \mathcal{N}-structure (X, f) in which f satisfies the following condition: for any $x, y \in X$,

$$
\begin{equation*}
f(x * y) \leq \vee\{f(x), f(y)\} \tag{2.3}
\end{equation*}
$$

Definition 2.2 ([2]). By an ideal of a $B C K / B C I$-algebra X based on \mathcal{N} function f (briefly, \mathcal{N}-ideal of X), we mean an \mathcal{N}-structure (X, f) in which f satisfies the following condition: for any $x, y \in X$,

$$
\begin{equation*}
f(0) \leq f(x) \leq \vee\{f(x * y), f(y)\} \tag{2.4}
\end{equation*}
$$

For any \mathcal{N}-structure (X, f) and $\alpha \in[-1,0]$, the set

$$
C(f ; \alpha):=\{x \in X \mid f(x) \leq \alpha\}
$$

TABLE 1. *-operation

$*$	0	1	2	a	b
0	0	0	0	a	a
1	1	0	0	a	a
2	2	2	0	b	a
a	a	a	a	0	0
b	b	b	a	2	0

is called the closed support of (X, f) related to α, and the set

$$
O(f ; \alpha):=\{x \in X \mid f(x)<\alpha\}
$$

is called the open support of (X, f) related to α.
Proposition 2.3 ([2]). An \mathcal{N}-structure (X, f) is an \mathcal{N}-subalgebra (resp. ideal) of a $B C K / B C I$-algebra X if and only if every closed support of (X, f) related to α is a subalgebra (resp. ideal) of X for all $\alpha \in[-1,0]$.

For our convenience, the empty set \emptyset is regarded as a subalgebra (resp. ideal) of X.

3. \mathcal{N}-subalgebras based on a sub- $B C K$-algebra

Definition 3.1. Let $(X ; *, 0)$ be a $B C I$-algebra. By a sub-BCK-algebra of X we mean a subset K of X such that $0 \in K$ and $(K ; *, 0)$ is a $B C K$-algebra.

Example 3.2. Let $X=\{0,1,2, a, b\}$ be a set with the $*$-operation given by Table 1. Then $(X ; *, 0)$ is a $B C I$-algebra and ($K=\{0,1,2\} ; *, 0)$ is a sub$B C K$-algebra of X.

Definition 3.3. Let K be a sub- $B C K$-algebra of a $B C I$-algebra X and let $\varrho \in[-1,0]$. An \mathcal{N}-structure (X, f) is called an \mathcal{N}-subalgebra of X based on K and ϱ (briefly, $\mathcal{N}(K, \varrho)$-subalgebra of $X)$ if it is an \mathcal{N}-subalgebra of X that satisfies the following condition:

$$
\begin{equation*}
(\forall x \in K)(\forall y \in X \backslash K)(f(x) \leq \varrho \leq f(y)) \tag{3.1}
\end{equation*}
$$

Example 3.4. Let X and K be as in Example 3.2.
(1) An \mathcal{N}-structure (X, f) in which f is given by

$$
f=\left(\begin{array}{ccccc}
0 & 1 & 2 & a & b \\
-0.7 & -0.6 & -0.5 & -0.3 & -0.3
\end{array}\right)
$$

is an $\mathcal{N}(K, \varrho)$-subalgebra of X for $\varrho \in[-0.5,-0.3]$.
(2) Let (X, g) be an \mathcal{N}-structure in which g is given by

$$
g=\left(\begin{array}{ccccc}
0 & 1 & 2 & a & b \\
-0.7 & -0.5 & -0.2 & -0.4 & -0.2
\end{array}\right) .
$$

TABLE 2. *-operation

$*$	0	1	a	b	c
0	0	0	a	b	c
1	1	0	a	b	c
a	a	a	0	c	b
b	b	b	c	0	a
c	c	c	b	a	0

Then (X, g) is an \mathcal{N}-subalgebra of X, but it does not satisfy (3.1) since $g(2)=$ $-0.2>-0.4=g(a)$.

The following example shows that there exists an \mathcal{N}-structure (X, f) in a $B C I$-algebra X such that it satisfies the condition (3.1), but it is not an \mathcal{N} subalgebra of X.
Example 3.5. Let $X=\{0,1, a, b, c\}$ be a set with the $*$-operation given by Table 2. Then $(X ; *, 0)$ is a $B C I$-algebra and $(K=\{0,1\} ; *, 0)$ is only a sub$B C K$-algebra of X. Let (X, f) be an \mathcal{N}-structure in which f is given by

$$
f=\left(\begin{array}{ccccc}
0 & 1 & a & b & c \\
-0.5 & -0.6 & -0.2 & -0.4 & -0.3
\end{array}\right) .
$$

Then (X, f) satisfies the condition (3.1) for $\varrho \in[-0.5,-0.4]$, but it is not an \mathcal{N}-subalgebra of X since $f(b * c)=f(a)=-0.2>-0.3=\vee\{f(b), f(c)\}$.
Theorem 3.6. Let K be a sub-BCK-algebra of a BCI-algebra X. If an \mathcal{N} structure (X, f) satisfies the following condition:

$$
\begin{equation*}
(\forall x \in K)(\forall y \in X \backslash K)(f(x) \leq f(y)), \tag{3.2}
\end{equation*}
$$

then (X, f) is an $\mathcal{N}(K, \varrho)$-subalgebra of X for every $\varrho \in\left[\wedge_{y \in X \backslash K} f(y), \underset{x \in K}{\vee} f(x)\right]$.
Proof. Straightforward.
Obviously, a restriction of an $\mathcal{N}(K, \varrho)$-subalgebra of a $B C I$-algebra X to a sub- $B C K$-algebra K of X is a \mathcal{N}-subalgebra of $(K ; *, 0)$.
Theorem 3.7. Let $\varrho \in[-1,0]$ and let K be a sub-BCK-algebra of a BCIalgebra X. Then every $\mathcal{N}(K, \varrho)$-subalgebra (X, f) of X satisfies the following assertions:
(1) $K \subseteq C(f ; \varrho)$.
(2) $(\forall \beta \in[-1,0])(\beta<\varrho \Rightarrow C(f ; \beta)$ is a subalgebra of $K)$.

Proof. Assume that (X, f) is an $\mathcal{N}(K, \varrho)$-subalgebra of X. Obviously, $K \subseteq$ $C(f ; \varrho)$. Let $\beta \in[-1,0]$ be such that $\beta<\varrho$. Then $C(f ; \beta) \subseteq K$. Let $x, y \in$ $C(f ; \beta)$. Then $f(x) \leq \beta$ and $f(y) \leq \beta$. Thus $f(x * y) \leq \vee\{f(x), f(y)\} \leq \beta$, and so $x * y \in C(f ; \beta)$. Therefore $C(f ; \beta)$ is a subalgebra of K.

TABLE 3. *-operation

$*$	0	1	2	a	b
0	0	0	0	a	a
1	1	0	1	b	a
2	2	2	0	a	a
a	a	a	a	0	0
b	b	a	b	1	0

We give conditions for an \mathcal{N}-subalgebra to be an $\mathcal{N}(K, \varrho)$-subalgebra.
Theorem 3.8. Let $\varrho \in[-1,0]$ and let K be a sub-BCK-algebra of a BCIalgebra X. If (X, f) is an \mathcal{N}-subalgebra of X satisfying two conditions (1) and (2) in Theorem 3.7, then (X, f) is an $\mathcal{N}(K, \varrho)$-subalgebra of X.

Proof. Let $x \in K$ and $y \in X \backslash K$. Then $x \in C(f ; \varrho)$ by (1) in Theorem 3.7, and so $f(x) \leq \varrho$. Let $f(y)=\beta$. If $\beta<\varrho$, then $y \in C(f ; \beta) \subseteq K$ by (2) in Theorem 3.7. This is a contradiction, and thus $f(x) \leq \varrho \leq \beta=f(y)$. Consequently, (X, f) is an $\mathcal{N}(K, \varrho)$-subalgebra of X.

4. \mathcal{N}-ideals based on a sub- $B C K$-algebra

Definition 4.1. Let $\varrho \in[-1,0]$ and let K be a sub- $B C K$-algebra of a $B C I$ algebra X. An \mathcal{N}-structure (X, f) is called an \mathcal{N}-ideal of X based on K and ϱ (briefly, $\mathcal{N}(K, \varrho)$-ideal of $X)$ if it satisfies:

$$
\begin{align*}
& (\forall x \in K)(\forall y \in X \backslash K)(f(0) \leq f(x) \leq \varrho \leq f(y)) . \tag{4.1}\\
& (\forall x, y \in K)(f(x) \leq \vee\{f(x * y), f(y)\}) . \tag{4.2}
\end{align*}
$$

Example 4.2. Let $X=\{0,1,2, a, b\}$ be a set with the $*$-operation given by Table 3. Then $(X ; *, 0)$ is a $B C I$-algebra and ($K=\{0,1,2\} ; *, 0$) is a sub$B C K$-algebra of X. Let (X, f) be an \mathcal{N}-structure in which f is given by

$$
f=\left(\begin{array}{ccccc}
0 & 1 & 2 & a & b \\
-0.8 & -0.5 & -0.7 & -0.1 & -0.2
\end{array}\right) .
$$

Then (X, f) is an $\mathcal{N}(K, \varrho)$-ideal of X. But it is not an \mathcal{N}-ideal of X since $f(a)=-0.1 \not \leq-0.2=\vee\{f(a * b), f(b)\}$.

Theorem 4.3. Let $\varrho \in[0,1]$ and let K be a sub-BCK-algebra of a BCI-algebra X. If (X, f) is an $\mathcal{N}(K, \varrho)$-ideal of X, then
(1) $K \subseteq C(f ; \varrho)$.
(2) $(\forall \beta \in[-1,0])(\beta<\varrho \Rightarrow C(f ; \varrho)$ is an ideal of $K)$.

Proof. Let $x \in K$. Then $f(x) \leq \varrho$ by (4.1), and so $x \in C(f ; \varrho)$. Hence $K \subseteq$ $C(f ; \varrho)$. Let $\beta \in[-1,0]$ be such that $\beta<\varrho$. If $x \in C(f ; \beta)$, then $f(x) \leq \beta<\varrho$ and thus $x \in K$. Hence $C(f ; \beta) \subseteq K$. From (4.1), we know that $f(0) \leq f(x)$
for all $x \in X$. Hence $f(0) \leq f(x) \leq \beta$ for $x \in C(f ; \beta)$, and so $0 \in C(f ; \beta)$. Let $x, y \in K$ be such that $x * y \in C(f ; \beta)$ and $y \in C(f ; \beta)$. Then $f(x * y) \leq \beta$ and $f(y) \leq \beta$. It follows from (4.2) that $f(x) \leq \vee\{f(x * y), f(y)\} \leq \beta$ so that $x \in C(f ; \beta)$. Hence $C(f ; \beta)$ is an ideal of K.

For a sub- $B C K$-algebra K of a $B C I$-algebra X and $\varrho \in[-1,0]$, the following example shows that an \mathcal{N}-ideal (X, f) of X may not be an $\mathcal{N}(K, \varrho)$-ideal of X.

Example 4.4. Let X and K be as in Example 4.2. Consider an \mathcal{N}-structure (X, f) in which f is given by

$$
f=\left(\begin{array}{ccccc}
0 & 1 & 2 & a & b \\
-0.8 & -0.3 & -0.7 & -0.5 & -0.3
\end{array}\right) .
$$

Then

$$
C(f ; \beta)= \begin{cases}X & \text { if } \beta \in[-0.3,0], \\ \{0,2, a\} & \text { if } \beta \in[-0.5,-0.3), \\ \{0,2\} & \text { if } \beta \in[-0.7,-0.5), \\ \{0\} & \text { if } \beta \in[-0.8,-0.7), \\ \emptyset & \text { if } \beta \in[-1,-0.8)\end{cases}
$$

and so $C(f ; \beta)$ is an ideal of X for all $\beta \in[-1,0]$. Hence (X, f) is an \mathcal{N} ideal of X by Proposition 2.3. But (X, f) is not an $\mathcal{N}(K, \varrho)$-ideal of X for $\varrho \in[-0.5,-0.3)$ because $f(1)=-0.3>\varrho \geq-0.5=f(a)$.

We provide conditions for an \mathcal{N}-ideal to be an $\mathcal{N}(K, \varrho)$-ideal.
Theorem 4.5. Let $\varrho \in[0,1]$ and let K be a sub-BCK-algebra of a BCI-algebra X. If an \mathcal{N}-ideal (X, f) of X satisfies conditions (1) and (2) in Theorem 4.3, then (X, f) is an $\mathcal{N}(K, \varrho)$-ideal of X.

Proof. Let $x \in K$ and $y \in X \backslash K$. Then $x \in C(f ; \varrho)$ by (1) of Theorem 4.3, which implies $f(x) \leq \varrho$. If $f(y)<\varrho$, then $y \in C(f ; f(y)) \subseteq K$ by (2) of Theorem 4.3. This is a contradiction, and so $f(y) \geq \varrho$. Since $f(0) \leq f(x)$ for all $x \in X$, it follows that $f(0) \leq f(x) \leq \varrho \leq f(y)$ so that (4.1) is valid. Since f is an \mathcal{N}-ideal of X, the condition (4.2) is obvious. Therefore (X, f) is an $\mathcal{N}(K, \varrho)$-ideal of X.

The following example shows that an $\mathcal{N}(K, \varrho)$-subalgebra may not be an $\mathcal{N}(K, \varrho)$-ideal, and vice versa.

Example 4.6. (1) Let X and K be as in Example 3.2. Let (X, g) be an \mathcal{N}-structure in which g is given by

$$
g=\left(\begin{array}{ccccc}
0 & 1 & 2 & a & b \\
-0.8 & -0.5 & -0.7 & -0.2 & -0.2
\end{array}\right) .
$$

Then (X, g) is an $\mathcal{N}(K, \varrho)$-subalgebra of X for $\varrho \in[-0.5,-0.2]$. But (X, g) is not an $\mathcal{N}(K, \varrho)$-ideal of X for $\varrho \in[-0.5,-0.2]$ since $g(1)=-0.5 \not \leq-0.7=$ $\vee\{f(1 * 2), f(2)\}$.
(2) Let X and K be as in Example 3.2. Consider an \mathcal{N}-structure (X, f) in which f is given by

$$
f=\left(\begin{array}{ccccc}
0 & 1 & 2 & a & b \\
-0.7 & -0.6 & -0.5 & -0.4 & -0.2
\end{array}\right)
$$

Then (X, f) is an $\mathcal{N}(K, \varrho)$-ideal of X for $\varrho \in[-0.5,-0.4]$. Since $f(2 * a)=$ $f(b)=-0.2 \not \leq-0.4=\vee\{f(2), f(a)\},(X, f)$ is not an \mathcal{N}-subalgebra of X. Therefore (X, f) is not an $\mathcal{N}(K, \varrho)$-subalgebra of X for $\varrho \in[-0.5,-0.4]$.

References

[1] Y. S. Huang, BCI-algebra, Science Press, Beijing, 2006.
[2] Y. B. Jun, K. J. Lee, and S. Z. Song, \mathcal{N}-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), no. 3, 417-437.
[3] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co., Seoul, 1994.
Kyoung Ja Lee
Department of Mathematics Education
Hannam University
Daejeon 306-791, Korea
E-mail address: kjlee@hnu.kr
Young Bae Jun
Department of Mathematics Education (and RINS)
Gyeongsang National University
Chinju 660-701, Korea
E-mail address: skywine@gmail.com

[^0]: Received January 5, 2011.
 2010 Mathematics Subject Classification. 06F35, 03G25.
 Key words and phrases. sub- $B C K$-algebra, \mathcal{N}-subalgebra (ideal), $\mathcal{N}(K, \varrho)$-subalgebra (ideal).

