초록
Recently, many photovoltaic systems (PV systems) including solar parks and PV farms have been built to prepare for the post fossil fuel era. To investigate the degradation process of the PV systems and thus, efficiently operate PV systems, there is a need to visually monitor PV systems in the range of infrared ray through the Internet. For efficient visual monitoring, this paper explores a multithreaded implementation of a recently developed HEVC standard whose compression efficiency is almost two times higher than H.264. For an efficient parallel implementation under a meshbased 64 multicore system, this work takes into account various design choices which can solve potential problems of a two-dimensional interconnects-based 64 multicore system. These problems may have not occurred in a small-scale multicore system based on a simple bus network. Through extensive evaluation, this paper shows that, for an efficient multithreaded implementation of HEVC intra prediction in a mesh-based multicore system, much effort needs to be made to optimize communications among processing cores. Thus, this work provides three design choices regarding communications, i.e., main thread core location, cache home policy, and maximum coding unit size. These design choices are shown to improve the overall parallel performance of the HEVC intra prediction algorithm by up to 42%, achieving a 7 times higher speed-up.