DOI QR코드

DOI QR Code

Conducting Polymer Material Characterization Using High Frequency Planar Transmission Line Measurement

  • Cho, Young-Seek (Division of Electrical Information Communication Engineering, Wonkwang University) ;
  • Franklin, Rhonda R. (Department of Electrical and Computer Engineering, University of Minnesota)
  • Received : 2012.06.18
  • Accepted : 2012.07.31
  • Published : 2012.10.25

Abstract

A conducting polymer, poly 3-hexylthiophene (P3HT) is characterized with the metal-insulator-semiconductor (MIS) measurement method and the high frequency planar circuit method. From the MIS measurement method, the relative dielectric constant of the P3HT film is estimated to be 4.4. For the high frequency planar circuit method, a coplanar waveguide is fabricated on the P3HT film. When applying +20 V to the CPW on P3HT film, the P3HT film is in accumulation mode and becomes lossy. The CPW on P3HT film is 1.5 dB lossier than the CPW on $SiO_2$ film without P3HT film at 50 GHz.

Keywords

References

  1. M. J. Panzer and C. D. Frisbie, Adv. Funct. Mater. 16, 1051 (2006) [DOI: 10.1002/adfm.200600111].
  2. A. Assadi, C. Svensson, M. Willander, and O. Inganas, Appl. Phys. Lett. 53, 195 (1988) [DOI: 10.1063/1.100171].
  3. G. Wang, J. Swensen, D. Moses, and J. A. Heeger, J. Appl. Phys. 93, 6137 (2003) [DOI: 10.1063/1.1568526].
  4. M. Estrada, I. Mejia, A. Cerdeira, and B. Iniguez, Solid-State Electron. 52, 53 (2008) [DOI: 10.1016/j.sse.2007.07.007].
  5. N. Oyama, S. Kaneko, K. Momiyama, and F. Hirose, IEICE Trans. Electron. E94-C, 1838 (2011) [DOI: 10.1587/transele.E94.C.1838].
  6. M. H. Kwon, Trans. Electri. Electron. Mater. 13, 98 (2012) [DOI: 10.4313/TEEM.2012.13.2.98]
  7. R. F. Pierret et al., Semiconductor Device Fundamentals (Addison-Wesley Publishing Company, New York, 1996) p. 778.
  8. R. B. Marks and D. F. Williams, MultiCalTM Software, Gaithersburg, MD: National Institute of Standards and Technology, 1995.

Cited by

  1. Bilayer Interdiffused Heterojunction Organic Photodiodes Fabricated by Double Transfer Stamping vol.5, pp.3, 2017, https://doi.org/10.1002/adom.201600784
  2. Study of charge carriers’ transport in organic solar cells by illumination area shifting vol.160, 2017, https://doi.org/10.1016/j.solmat.2016.11.011
  3. Fabrication, electrical characterization and device simulation of vertical P3HT field-effect transistors vol.2, pp.4, 2017, https://doi.org/10.1016/j.jsamd.2017.11.003
  4. Reorganization energy for hole and electron transfer of poly(3-hexylthiophene) derivatives vol.99, 2016, https://doi.org/10.1016/j.polymer.2016.07.003
  5. Charge transport in quantum dot organic solar cells with Si quantum dots sandwiched between poly(3-hexylthiophene) (P3HT) absorber and bathocuproine (BCP) transport layers vol.122, pp.15, 2017, https://doi.org/10.1063/1.4996845
  6. Ultrafast Charge and Triplet State Formation in Diketopyrrolopyrrole Low Band Gap Polymer/Fullerene Blends: Influence of Nanoscale Morphology of Organic Photovoltaic Materials on Charge Recombination to the Triplet State vol.2017, 2017, https://doi.org/10.1155/2017/6867507
  7. An insight into non-emissive excited states in conjugated polymers vol.6, pp.1, 2015, https://doi.org/10.1038/ncomms9246
  8. Effect of Coulomb correlation on charge transport in disordered organic semiconductors vol.96, pp.20, 2017, https://doi.org/10.1103/PhysRevB.96.205203
  9. Dynamics of photogenerated polarons and polaron pairs in P3HT thin films vol.677, 2017, https://doi.org/10.1016/j.cplett.2017.03.082
  10. The Electrical Properties of Au/P3HT/n-GaAs Schottky Barrier Diode vol.128, pp.2B, 2015, https://doi.org/10.12693/APhysPolA.128.B-170
  11. An Effective Area Approach to Model Lateral Degradation in Organic Solar Cells vol.5, pp.20, 2015, https://doi.org/10.1002/aenm.201500835
  12. Study of the Hole Transport Processes in Solution-Processed Layers of the Wide Bandgap Semiconductor Copper(I) Thiocyanate (CuSCN) vol.25, pp.43, 2015, https://doi.org/10.1002/adfm.201502953
  13. Molecular design of new P3HT derivatives: Adjusting electronic energy levels for blends with PCBM vol.148, pp.3, 2014, https://doi.org/10.1016/j.matchemphys.2014.09.002