DOI QR코드

DOI QR Code

Pro-apoptotic Effect of Pifithrin-α on Preimplantation Porcine In vitro Fertilized Embryo Development

  • Mulligan, Brendan (Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Hwang, Jae-Yeon (Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Kim, Hyung-Min (Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Oh, Jong-Nam (Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Choi, Kwang-Hwan (Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Lee, Chang-Kyu (Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute for Agriculture and Life Science, Seoul National University)
  • Received : 2012.07.25
  • Accepted : 2012.09.13
  • Published : 2012.12.01

Abstract

The aim of this study was to investigate the impact of a reported p53 inhibitor, pifithrin-${\alpha}$ (PFT-${\alpha}$), on preimplantation porcine in vitro fertilized (IVF) embryo development in culture. Treatment of PFT-${\alpha}$ was administered at both early (0 to 48 hpi), and later stages (48 to 168 hpi) of preimplantation development, and its impact upon the expression of five genes related to apoptosis (p53, bak, bcl-xL, p66Shc and caspase3), was assessed in resulting d 7 blastocysts, using real-time quantitative PCR. Total cell numbers, along with the number of apoptotic nuclei, as detected by the in situ cell death detection assay, were also calculated on d 7 in treated and non-treated control embryos. The results indicate that PFT-${\alpha}$, when administered at both early and later stages of porcine IVF embryo development, increases the incidence of apoptosis in resulting blastocysts. When administered at early cleavage stages, PFT-${\alpha}$ treatment was shown to reduce the developmental competence of porcine IVF embryos, as well as reducing the quality of resulting blastocysts in terms of overall cell numbers. In contrast, at later stages, PFT-${\alpha}$ administration resulted in marginally increased blastocyst development rates amongst treated embryos, but did not affect cell numbers. However, PFT-${\alpha}$ treatment induced apoptosis and apoptotic related gene expression, in all treated embryos, irrespective of the timing of treatment. Our results indicate that PFT-${\alpha}$ may severely compromise the developmental potential of porcine IVF embryos, and is a potent apoptotic agent when placed into porcine embryo culture media. Thus, caution should be exercised when using PFT-${\alpha}$ as a specific inhibitor of p53 mediated apoptosis, in the context of porcine IVF embryo culture systems.

Keywords

References

  1. Abdelrazik, H., R. Sharma, R. Mahfouz and A. Agarwal. 2009. L-carnitine decreases DNA damage and improves the in vitro blastocyst development rate in mouse embryos. Fertil. Steril. 91:589-596. https://doi.org/10.1016/j.fertnstert.2007.11.067
  2. Betts, D. H. and W. A. King. 2001. Genetic regulation of embryo death and senescence. Theriogenology 55:171-191. https://doi.org/10.1016/S0093-691X(00)00453-2
  3. Boise, L. H., M. Gonzalez-Garcia, C. E. Postema, L. Ding, T. Lindsten, L. A. Turka, X. Mao, G. Nunez and C. B. Thompson. 1993. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597-608. https://doi.org/10.1016/0092-8674(93)90508-N
  4. Brison, D. R. 2000. Apoptosis in mammalian preimplantation embryos: regulation by survival factors. Hum. Fertil. (Camb) 3:36-47. https://doi.org/10.1080/1464727002000198671
  5. Chandrakanthan, V., O Chami, T Stojanov and C O'Neill. 2007. Variable expressivity of the tumour suppressor protein TRP53 in cryopreserved human blastocysts. Reprod. Biol. Endocrinol. 5:39. https://doi.org/10.1186/1477-7827-5-39
  6. Chandrakanthan, V., A. Li, O. Chami and C. O'Neill. 2006. Effects of in vitro fertilization and embryo culture on TRP53 and Bax expression in B6 mouse embryos. Reprod. Biol. Endocrinol. 4:61. https://doi.org/10.1186/1477-7827-4-61
  7. Choi, J., S. M. Park, E. Lee, J. H. Kim, Y. I. Jeong, J. Y. Lee, S. W. Park, H. S. Kim, M. S. Hossein and Y. W. Jeong et al. 2008. Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Mol. Reprod. Dev. 75:1127-1135. https://doi.org/10.1002/mrd.20861
  8. Cory, S. and J. M. Adams. 1998. Matters of life and death: programmed cell death at Cold Spring Harbor. Biochim. Biophys. Acta 1377:R25-44.
  9. Davidson, W., Q. Ren, G. Kari, O. Kashi, A. P. Dicker and U. Rodeck. 2008. Inhibition of p73 function by Pifithrin-alpha as revealed by studies in zebrafish embryos. Cell Cycle 7:1224-1230. https://doi.org/10.4161/cc.7.9.5786
  10. Duffy, K. T. and E. Wickstrom. 2007. Zebrafish tp53 knockdown extends the survival of irradiated zebrafish embryos more effectively than the p53 inhibitor pifithrin-alpha. Cancer Biol. Ther. 6:675-678.
  11. Eipel, C., H. Schuett, C. Glawe, R. Bordel, M. D. Menger and B. Vollmar. 2005. Pifithrin-alpha induced p53 inhibition does not affect liver regeneration after partial hepatectomy in mice. J. Hepatol. 43:829-835. https://doi.org/10.1016/j.jhep.2005.04.018
  12. Esteves, T. C., S. T. Balbach, M. J. Pfeiffer, M. J. Arauzo-Bravo, D. C. Klein, M. Sinn and M. Boiani. 2011. Somatic cell nuclear reprogramming of mouse oocytes endures beyond reproductive decline. Aging Cell 10:80-95. https://doi.org/10.1111/j.1474-9726.2010.00644.x
  13. Favetta, L. A., P. Madan, G. F. Mastromonaco, E. J. St John, W. A. King and D. H. Betts. 2007. The oxidative stress adaptor p66Shc is required for permanent embryo arrest in vitro. BMC Dev. Biol. 7:132. https://doi.org/10.1186/1471-213X-7-132
  14. Gary, R. K. and D. A. Jensen. 2005. The p53 inhibitor pifithrin-alpha forms a sparingly soluble derivative via intramolecular cyclization under physiological conditions. Mol. Pharm. 2:462-74. https://doi.org/10.1021/mp050055d
  15. Gupta. S., Y. K. Gupta and S. S. Sharma. 2007. Protective effect of pifithrin-alpha on brain ischemic reperfusion injury induced by bilateral common carotid arteries occlusion in gerbils. Indian J. Physiol. Pharmacol. 51:62-68.
  16. Hao, Y., L. Lai, J. Mao, G. S. Im, A. Bonk and R. S. Prather. 2003. Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear transfer. Biol. Reprod. 69:501-507. https://doi.org/10.1095/biolreprod.103.016170
  17. Hao, Y., C. N. Murphy, L. Spate, D. Wax, Z. Zhong, M. Samuel, N. Mathialagan, H. Schatten and R. S. Prather. 2008. Osteopontin improves in vitro development of porcine embryos and decreases apoptosis. Mol. Reprod. Dev. 75:291-198. https://doi.org/10.1002/mrd.20794
  18. Hardy, K., A. H. Handyside and R. M. Winston. 1989. The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development 107:597-604.
  19. Isom, S. C., R. S. Prather and E. B. Rucker, 3rd. 2007. Heat stress-induced apoptosis in porcine in vitro fertilized and parthenogenetic preimplantation-stage embryos. Mol. Reprod. Dev. 74:574-581. https://doi.org/10.1002/mrd.20620
  20. Jin, X. L., V. Chandrakanthan, H. D. Morgan and C. O'Neill. 2009. Preimplantation embryo development in the mouse requires the latency of TRP53 expression, which is induced by a ligand-activated PI3 kinase/AKT/MDM2-mediated signaling pathway. Biol. Reprod. 81:234-242. https://doi.org/10.1093/biolreprod/81.s1.234
  21. Jones, S. N., A. E. Roe, L. A. Donehower and A. Bradley. 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206-208. https://doi.org/10.1038/378206a0
  22. Jurisicova, A., K. E. Latham, R. F. Casper and S. L. Varmuza. 1998. Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol. Reprod. Dev. 51:243-253. https://doi.org/10.1002/(SICI)1098-2795(199811)51:3<243::AID-MRD3>3.0.CO;2-P
  23. Kaji, A., Y. Zhang, M. Nomura, A. M. Bode, W. Y. Ma, Q. B. She and Z. Dong. 2003. Pifithrin-alpha promotes p53-mediated apoptosis in JB6 cells. Mol. Carcinog 37:138-148. https://doi.org/10.1002/mc.10130
  24. Keim, A. L., M. M. Chi and K. H. Moley. 2001. Hyperglycemia-induced apoptotic cell death in the mouse blastocyst is dependent on expression of p53. Mol. Reprod. Dev. 60:214-224. https://doi.org/10.1002/mrd.1080
  25. Kelly, K. J., Z. Plotkin, S. L. Vulgamott and P. C. Dagher. 2003. P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor. J. Am. Soc. Nephrol. 14:128-138. https://doi.org/10.1097/01.ASN.0000040596.23073.01
  26. Komarov, P. G., E. A. Komarova, R. V. Kondratov, K. Christov-Tselkov, J. S. Coon, M. V. Chernov and A. V. Gudkov. 1999. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733-1737. https://doi.org/10.1126/science.285.5434.1733
  27. Komarova, E. A., N. Neznanov, P. G. Komarov, M. V. Chernov, K. Wang and A. V. Gudkov. 2003. p53 inhibitor pifithrin alpha can suppress heat shock and glucocorticoid signaling pathways. J. Biol. Chem. 278:15465-15468. https://doi.org/10.1074/jbc.C300011200
  28. Lee, K., C. Wang, J. M. Chaille and Z. Machaty. 2010. Effect of resveratrol on the development of porcine embryos produced in vitro. J. Reprod. Dev. 56:330-335. https://doi.org/10.1262/jrd.09-174K
  29. Levy, R. 2005. Apoptosis in oocyte. Gynecol. Obstet. Fertil. 33:645-652. https://doi.org/10.1016/j.gyobfe.2005.07.006
  30. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  31. Luna, R. M. D., D. S. Wagner and G. Lozano. 1995. Rescue of early embryonic lethality in Mdm2-Deficient mice by deletion of P53. Nature 378:203-206. https://doi.org/10.1038/378203a0
  32. Luo, Y., C. C. Kuo, H. Shen, J. Chou, N. H. Greig, B. J. Hoffer and Y. Wang. 2009. Delayed treatment with a p53 inhibitor enhances recovery in stroke brain. Ann. Neurol. 65:520-530. https://doi.org/10.1002/ana.21592
  33. Mateusen, B., A. Van Soom, D. G. Maes, I. Donnay, L. Duchateau and A. S. Lequarre. 2005. Porcine embryo development and fragmentation and their relation to apoptotic markers: a cinematographic and confocal laser scanning microscopic study. Reproduction 129:443-452. https://doi.org/10.1530/rep.1.00533
  34. Miyamoto, K., K. Nagai, N. Kitamura, T. Nishikawa, H. Ikegami, N. T. Binh, S. Tsukamoto, M. Matsumoto, T. Tsukiyama, N. Minami et al. . 2011. Identification and characterization of an oocyte factor required for development of porcine nuclear transfer embryos. Proc. Natl. Acad. Sci. USA108:7040-7045. https://doi.org/10.1073/pnas.1013634108
  35. Murphy, P. J., M. D. Galigniana, Y. Morishima, J. M. Harrell, R. P. Kwok, M. Ljungman and W. B. Pratt. 2004. Pifithrin-alpha inhibits p53 signaling after interaction of the tumor suppressor protein with hsp90 and its nuclear translocation. J. Biol. Chem. 279:30195-30201. https://doi.org/10.1074/jbc.M403539200
  36. Orsini, F., E. Migliaccio, M. Moroni, C. Contursi, V. A. Raker, D. Piccini, I. Martin-Padura, G. Pelliccia, M. Trinei, M. Bono et al. 2004. The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J. Biol. Chem. 279:25689-25695. https://doi.org/10.1074/jbc.M401844200
  37. Petters, R. M. and K. D. Wells. 1993. Culture of pig embryos. J. Reprod. Fertil. Suppl. 48:61-73.
  38. Proietti De Santis, L., A. S. Balajee, C. Lorenti Garcia, G. Pepe, A. M .Worboys and F. Palitti. 2003. Inhibition of p53, p21 and Bax by pifithrin-alpha does not affect UV induced apoptotic response in CS-B cells. DNA Repair (Amst) 2(8):891-900. https://doi.org/10.1016/S1568-7864(03)00088-0
  39. Sohn, D., V. Graupner, D. Neise, F. Essmann, K. Schulze-Osthoff and R. U. Janicke. 2009. Pifithrin-alpha protects against DNA damage-induced apoptosis downstream of mitochondria independent of p53. Cell Death Differ. 16:869-878. https://doi.org/10.1038/cdd.2009.17
  40. Van Soom, A., B. Mateusen, J. Leroy and A De Kruif. 2003. Assessment of mammalian embryo quality: what can we learn from embryo morphology? Reprod. Biomed. Online 7:664-670. https://doi.org/10.1016/S1472-6483(10)62089-5
  41. Vasey, D. B., C. R. Wolf, K. Brown and C. B. Whitelaw. 2011. Spatial p21 expression profile in the mid-term mouse embryo. Transgenic Res. 20:23-28. https://doi.org/10.1007/s11248-010-9385-6
  42. Walton, M. I., S. C. Wilson, I. R. Hardcastle, A. R. Mirza and P. Workman. 2005. An evaluation of the ability of pifithrin-alpha and -beta to inhibit p53 function in two wild-type p53 human tumor cell lines. Mol. Cancer Ther. 4:1369-1377. https://doi.org/10.1158/1535-7163.MCT-04-0341
  43. Waters, F. J., T. Shavlakadze, M. J. McIldowie, M. J. Piggott and M. D. Grounds. 2010. Use of pifithrin to inhibit p53-mediated signalling of TNF in dystrophic muscles of mdx mice. Mol. Cell Biochem. 337:119-131. https://doi.org/10.1007/s11010-009-0291-2
  44. Zhang, C., C. Liu, D. Li, N. Yao, X. Yuan, A. Yu, C. Lu and X. Ma. 2010. Intracellular redox imbalance and extracellular amino acid metabolic abnormality contribute to arsenic-induced developmental retardation in mouse preimplantation embryos. J. Cell Physiol. 222:444-455. https://doi.org/10.1002/jcp.21966

Cited by

  1. Utilization of Rosmarinic and Ascorbic Acids for Maturation Culture Media in Order to Increase Sow Oocyte Quality Prior to IVF vol.26, pp.23, 2021, https://doi.org/10.3390/molecules26237215