DOI QR코드

DOI QR Code

A Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Blood Components (Immunity) in a Cross between Korean Native Pig and Yorkshire

  • Lee, Y.M. (School of Biotechnology, Yeungnam University) ;
  • Alam, M. (School of Biotechnology, Yeungnam University) ;
  • Choi, B.H. (Animal Genomics and Bioinformatics Division, National Institute of Animal Science) ;
  • Kim, K.S. (Department of Animal Science, Chungbuk National University) ;
  • Kim, Jong-Joo (School of Biotechnology, Yeungnam University)
  • 투고 : 2012.08.14
  • 심사 : 2012.09.19
  • 발행 : 2012.12.01

초록

The purpose of this study was to detect significant SNPs for blood components that were related to immunity using high single nucleotide polymorphism (SNP) density panels in a Korean native pig (KNP)${\times}$Yorkshire (YK) cross population. A reciprocal design of KNP${\times}$YK produced 249 $F_2$ individuals that were genotyped for a total of 46,865 available SNPs in the Illumina porcine 60K beadchip. To perform whole genome association analysis (WGA), phenotypes were regressed on each SNP under a simple linear regression model after adjustment for sex and slaughter age. To set up a significance threshold, 0.1% point-wise p value from F distribution was used for each SNP test. Among the significant SNPs for a trait, the best set of SNP markers were determined using a stepwise regression procedure with the rates of inclusion and exclusion of each SNP out of the model at 0.001 level. A total of 54 SNPs were detected; 10, 6, 4, 4, 5, 4, 5, 10, and 6 SNPs for neutrophil, lymphocyte, monocyte, eosinophil, basophil, atypical lymph, immuno-globulin, insulin, and insulin-like growth factor-I, respectively. Each set of significant SNPs per trait explained 24 to 42% of phenotypic variance. Several pleiotropic SNPs were detected on SSCs 4, 13, 14 and 15.

키워드

참고문헌

  1. Bafica, A., H. C. Santiago, R. Goldszmid, C. Ropert, R. T. Gazzinelli and A. Sher. 2006. Cutting edge: TLR9 and TLR2 signaling together account for Myd88-dependent control of parasitemia in trypanosoma cruzi infection. J. Immunol. 177:3515-3519. https://doi.org/10.4049/jimmunol.177.6.3515
  2. Coates, M. E., R. Fuller, G. F. Harrison, M. Lev and S. F. Suffolk. 1963. Comparison of the growth of chicks in the Gustafsson germ-free apparatus and in a conventional environment, with and without dietary supplements of penicillin. Br. J. Nutr. 17:141-151. https://doi.org/10.1079/BJN19630015
  3. Cho, I. C., H. B. Park, C. K. Yoo, G. J. Lee, H. T. Lim, J. B. Lee, E. J. Jung, M. S. Ko, J. H. Lee and J. T. Jeon. 2011. QTL analysis of white blood cell, platelet and red blood cell-related traits in an F2 intercross between Landrace and Korean native pigs. Anim. Genet. 42:621-626. https://doi.org/10.1111/j.1365-2052.2011.02204.x
  4. Danilowicz, E., M. Akouchekian, C. Drogemuller, B. Haase, T. Leeb, H. Kuiper, O. Distl and F. C. Iras. 2008. Molecular characterization and SNP development for the porcine IL6 and IL10 genes. Anim. Biotechnol. 19:159-165. https://doi.org/10.1080/10495390802088621
  5. Dawson, T. C., A. B. Lentsch, Z. Wang, J. E. Cowhig and A. Rot. 2000. Exaggerated response to endotoxin in mice lacking the Duffy antigen/receptor for chemokines (DARC). Blood 96: 1681-1684.
  6. Edfors-Lilja, I., E. Wattrang, L. Marklund, M. Moller, L. Andersson-Eklund, L. Andersson and C. Fossum. 1998. Mapping quantitative trait loci for immune capacity in the pig. J. Immunol. 161:829-835.
  7. Falconer, D. S. and F. C. Mackay. 1996. Introduction to Quantitative Genetics, 4th ed., Longman Group Ltd, England.
  8. Ji, H., J. Ren, X. Yan, X. Huang, B. Zhang, Z. Zhang and L. Huang. 2011. The porcine MUC20 gene: molecular characterization and its association with susceptibility to enterotoxigenic Escherichia coli F4ab/ac. Mol. Biol. Rep. 38:1593-1601. https://doi.org/10.1007/s11033-010-0268-y
  9. Kruse, R., B. Essen-Gustavsson, C. Fossum and M. Jensen-Waern. 2008. Blood concentrations of the cytokines IL-1beta, IL-6, IL-10, TNF-alpha and IFN-gamma during experimentally inducedswine dysentery. Acta Vet. Scand. 50:32-39. https://doi.org/10.1186/1751-0147-50-32
  10. Lee, J. S., M. M. Wurfel, G. Matute-Bello, C. W. Frevert and M. R. Rosengart. 2006. The Duffy antigen modifies systemic and local tissue chemokine responses following lipopolysaccharide stimulation. J. Immunol. 177:8086-8094. https://doi.org/10.4049/jimmunol.177.11.8086
  11. Li, Y., S. L. Yang, Z. L. Tang, W. T. Cui, Y. L. Mu, M. X. Chu, S. H. Zhao, Z. F. Wu, K. Li and K. M. Peng. 2010. Expression and SNP association analysis of porcine FBXL4 gene. Mol. Biol. Rep. 37:579-585. https://doi.org/10.1007/s11033-009-9825-7
  12. Lu, X., J. F. Liu, Y. F. Gong, Z. P Wang, Y. Liu and Q. Zhang. 2011. Mapping quantitative trait loci for T lymphocyte subpopulations in peripheral blood in swine. BMC Genet. 12:79-88.
  13. Neter, J., W. Wasserman and M. H. Kutner. 1990. Applied linear statistical models. 3rd ed. Irwin. Boston, USA.
  14. Reiner, G., E. Melchinger, M. Kramarova, E. Pfaff, M. Buttner, A. Saalmuller and H. Geldermann. 2002. Detection of quantitative trait loci for resistance/susceptibility topseudorabies virus in swine. J. Gen. Virol. 83:167-172. https://doi.org/10.1099/0022-1317-83-1-167
  15. Reiner, G., D. Kliemt, H. Willems, T. Berge, R. Fischer, F. Köhler, S. Hepp, B. Hertrampf, A. Daugschies, H. Geldermann, U. Mackenstedt and H. Zahner. 2007. Mapping of quantitative trait loci affecting resistance/susceptibility to Sarcocystis miescheriana in swine. Genomics 89:638-646. https://doi.org/10.1016/j.ygeno.2007.01.011
  16. Reiner, G., R. Fischer, S. Hepp, T. Berge, F. Köhler and H. Willems. 2008. Quantitative trait loci for white blood cell numbers in swine. Anim. Genet. 39:163-168. https://doi.org/10.1111/j.1365-2052.2008.01700.x
  17. Reiner, A. P., G. Lettre, M. A. Nalls, S. K. Ganesh and R. Mathias. 2011. Genome-Wide association study of white blood cell count in 16,388 African Americans: the continental origins and genetic epidemiology network (COGENT). PLoS Genet. 7: e1002108. https://doi.org/10.1371/journal.pgen.1002108
  18. Reutershan, J., B. Harry, D. Chang, G. J. Bagby and K. Ley. 2009. DARC on RBC limits lung injury by balancing compartmental distribution of CXC chemokines. Eur. J. Immunol. 39:1597-1607. https://doi.org/10.1002/eji.200839089
  19. Roura, E., J. Homedes and K. C. Klasing. 1992. Prevention of immunologic stress contributes to the growth-permitting ability of dietary antibiotics in chicks. J. Nutr. 122:2383-2390. https://doi.org/10.1093/jn/122.12.2383
  20. Scheerlinck, J. P. and H. H. Yen. 2005. Veterinary applications of cytokines. Vet. Immunol. Immunopathol. 108:17-22. https://doi.org/10.1016/j.vetimm.2005.08.001
  21. Schnabel, R. B., J. Baumert, M. Barbalic, J. Dupuis and P. T. Ellinor. 2010. Duffy antigen receptor for chemokines (Darc) polymorphism regulates circulating concentrations of monocyte chemoattractant protein-1 and other inflammatory mediators. Blood 115:5289-5299. https://doi.org/10.1182/blood-2009-05-221382
  22. Shinkai, H., M. Tanaka, T. Morozumi, T. Eguchi-Ogawa, N. Okumura, Y. Muneta, T. Awata and H. Uenishi. 2006. Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenetics 58:324-330. https://doi.org/10.1007/s00251-005-0068-z
  23. Sutherland, M. A., S. L. Rodriguez-Zas, M. Ellis and J. L. Salak-Johnson. 2005. Breed and age affect baseline immune traits, cortisol, and performance in growing pigs. J. Anim. Sci. 83:2087-2095. https://doi.org/10.2527/2005.8392087x
  24. Uddin, M. J., M. U. Cinar, C. Grosse-Brinkhaus, D. Tesfaye, E. Tholen, H. Juengst, C. Looft, K. Wimmers, C. Phatsara and K. Schellander. 2011. Mapping quantitative trait loci for innate immune response in the pig. Immunogenetics 38:121-131. https://doi.org/10.1111/j.1744-313X.2010.00985.x
  25. Uddin, M. J., C. Grosse-Brinkhaus, M. U. Cinar, E. Jonas, D. Tesfaye, E. Tholen, H. Juengst, C. Looft, S. Ponsuksili, K. Wimmers and C. S. Phatsara. 2010. Mapping of quantitative trait loci for mycoplasma and tetanus antibodies and interferon-gamma in a porcine F2 Duroc${\times}$Pietrain resource population. Mamm. Genome 21:409-418. https://doi.org/10.1007/s00335-010-9269-3
  26. Uenishi, H. and H. Shinkai. 2009. Porcine Toll-like receptors: the front line of pathogen monitoring and possible implications for disease resistance. Dev. Comp. Immunol. 33:353-361. https://doi.org/10.1016/j.dci.2008.06.001
  27. Wattrang, E., M. Almqvist, A. Johansson, C. Fossum, P. Wallgren, G. Pielberg, L. Andersson and I. Edfors-Lilja. 2005. Confirmation of QTL on porcine chromosomes 1 and 8 influencing leukocyte numbers, haematological parameters and leukocyte function. Anim. Genet. 36:337-345. https://doi.org/10.1111/j.1365-2052.2005.01315.x
  28. Yang, S., J. Ren, X. Yan, X. Huang, Z. Zou, Z. Zhang, B. Yang and L. Huang. 2009. Quantitative trait loci for porcine white blood cells and platelet-related traits in a White Duroc${\times}$Erhualian F resource population. Anim. Genet. 40:273-278. https://doi.org/10.1111/j.1365-2052.2008.01830.x
  29. Yao Q., Q. Huang, Y. Cao, P. Qian and H. Chen. 2008. Porcine interferongamma protects swine from foot-and-mouth disease virus (FMDV). Vet. Immunol. Immunopathol. 122:309-311. https://doi.org/10.1016/j.vetimm.2007.09.004

피인용 문헌

  1. Identification of genomic regions associated with piglet survival and mortality vol.15, pp.2, 2012, https://doi.org/10.12729/jbr.2014.15.2.078
  2. Association analyses of DNA polymorphisms in immune-related candidate genes GBP1, GBP2, CD163, and CD169 with porcine growth and meat quality traits vol.16, pp.2, 2015, https://doi.org/10.12729/jbr.2015.16.2.040
  3. Genomic Analysis of IgG Antibody Response to Common Pathogens in Commercial Sows in Health-Challenged Herds vol.11, pp.None, 2012, https://doi.org/10.3389/fgene.2020.593804
  4. Loci Associated With Antibody Response in Feral Swine ( Sus scrofa ) Infected With Brucella suis vol.7, pp.None, 2012, https://doi.org/10.3389/fvets.2020.554674