DOI QR코드

DOI QR Code

태양전지 2 단계 전극형성 공정을 위한 마스크 패턴공정 및 효율에 대한 영향성 연구

Mask Patterning for Two-Step Metallization Processes of a Solar Cell and Its Impact on Solar Cell Efficiency

  • 이창준 (부경대학교 인쇄정보공학과 인쇄전자실험실) ;
  • 신동윤 (부경대학교 인쇄정보공학과 인쇄전자실험실)
  • Lee, Chang-Joon (Dept. of Graphic Arts Information Engineering, Pukyong Nat'l Univ.) ;
  • Shin, Dong-Youn (Dept. of Graphic Arts Information Engineering, Pukyong Nat'l Univ.)
  • 투고 : 2012.06.08
  • 심사 : 2012.08.29
  • 발행 : 2012.11.01

초록

마스크를 이용하여 니켈 시드층의 형성 후 실버 도금을 통해 태양전지 상부전극을 형성하는 2 단계 전극형성 공정이 태양전지의 고효율화 방안으로 제안되었다. 본 연구에서는, 자외선 경화형 혹은 상변화 잉크를 고비용의 인쇄공정을 통해 마스크를 형성하는 방법을 대신하여, 코팅과 레이저의 복합공정을 통해 마스크를 형성하는 방법에 대해 제안하도록 한다. 마스크를 형성하는 물질로서 저비용의 저융점 왁스 혹은 플루오르카본 용액을 태양전지 웨이퍼 상에 코팅 후 레이저로 선택적으로 제거하여 전극패턴을 형성하였으며, 플루오르카본 용액 코팅이 왁스 코팅보다 패턴 균일도 측면에서 우수할 뿐만 아니라 통계적으로 0.16% 태양전지 효율증대를 유발한다는 점이 발견되었다.

Two-step metallization processes have been proposed to achieve high-efficiency silicon solar cells, where the front-side grids are formed by silver plating after the formation of a nickel seed layer with a mask. Because the conventional mask patterning process is performed by an expensive selective printing method using either UV resist or phase change ink, however, the combination of a simple coating and laser-selective ablation processes is proposed in this study as an alternative means. As a masking material, the solar cell wafer was coated with either inexpensive wax having a low melting temperature or a fluorocarbon solution, and then, an electrode image was patterned by selectively removing the masking material using the laser. It was found that the fluorocarbon coating was not only superior to the wax coating in terms of pattern uniformity but it also increased the efficiency of the solar cell by 0.16%, as confirmed by statistical f and t tests.

키워드

참고문헌

  1. Pirozzi, L., Arabito, G., Artuso, F., Barbarossa, V., Besi-Vetrella, U., Loreti, S., Mangiapane, P. and Salza E., 2001, "Selective Emitters in Buried Contact Silicon Solar Cells: Some Low-Cost Solutions," Sol. Energ. Mat. Sol. C., Vol. 65, pp. 287-295. https://doi.org/10.1016/S0927-0248(00)00104-5
  2. Pauli, P., Beesley, J. G., Schönholzer, U. P. and Kerat, U., 2005, "Swiss Wafer Slicing Technology for the Global PV Market from Meyer+Burger AG-Novel Trends for the Future in Photovoltaic Wafer Manufacturing," $6^{e}$ Symp. Photovoltaique National (SIG Geneve, Switzerland, 24-25 November 2005).
  3. Knorz, A., Peters, M., Grohe, A., Harmel, C. and Preu, R., 2009, "Selective Laser Ablation of SiNx Layers on Textured Surfaces for Low Temperature Front Side Metallizations," Prog. Photovoltaics, Vol. 17, pp. 127-136. https://doi.org/10.1002/pip.856
  4. Shin, D.-Y., 2011, "Investigation of Laser-Induced Damage to a Surface Energy Patterned Solar Cell Wafer for the Formation of an Inkjet-Printed Seed Pattern," J. Ceram. Process. Res., Vol. 12, pp. s114-s117.
  5. Kray, D., Fell, A., Hopman, S., Mayer, K., Willeke, G.P. and Glunz, S.W., 2008, "Laser Chemical Processing (LCP)-A Versatile Tool for Microstructuring Applications," Appl. Phys. A, Vol. 93, pp. 99-103. https://doi.org/10.1007/s00339-008-4723-8
  6. Hameiri, Z., Mai, L., Puzzer, T. and Wenham, S.R., 2011, "Influence of Laser Power on the Properties of Laser Doped Solar Cells," Sol. Energ. Mat. Sol. C., Vol. 95, pp. 1085-1094. https://doi.org/10.1016/j.solmat.2010.12.006
  7. Horteis, M. and Glunz, S.W., 2008, "Fine Line Printed Silicon Solar Cells Exceeding 20% Efficiency," Prog. Photovoltaics, Vol. 16, pp. 555-560. https://doi.org/10.1002/pip.850
  8. Dong, H., Barr, R. and Hinkley, P., 2010, "Inket Plating Resist for Improved Cell Efficiency," 35th IEEE Photovoltaic Specialists Conference (Hawai'I, USA, 20-25 June 2010).
  9. Shin, D.-Y., 2010, "Fabrication of an Inkjet-Printed Seed Pattern with Silver Nanoparticulate Ink on a Textured Silicon Solar Cell Wafer," J. Micromech. Microeng., Vol. 20, p. 125003. https://doi.org/10.1088/0960-1317/20/12/125003
  10. Foggiato, J., Yoo, W. S., Ouaknine, M., Murakami, T. and Fukada, T., 2004, "Optimizing the Formation of Nickel Silicide," Mat. Sci. Eng. B-Adv., Vol. B114-115, pp. 56-60.
  11. Utlu, G., Artunç, N., Budak, S. and Tari, S., 2010, "Structural and Electrical Characterization of the Nickel Silicide Films Formed at 850 ${^{\circ}C}$ by Rapid Thermal Annealing of the Ni/Si(100) Films," Appl. Surf. Sci., Vol. 256, pp. 5069-5075. https://doi.org/10.1016/j.apsusc.2010.03.062
  12. Castaner, L., Silvestre, S., Carter, J., Parton, D. and Ashburn, P., 1998, "Effects of Fluorine in Silicon Solar Cells with Polysilicon Contacts," Sol. Energ. Mat. Sol. C., Vol. 53, pp. 115-129. https://doi.org/10.1016/S0927-0248(98)00017-8
  13. Kim, Y. K., Jeong, T. E., Oh, D. H., Kim, N. S. and Hong, S. Y., 2010, "Synthesis of Top Connector for Solar Cells by Using Silver Paste," Trans. of the KSME (A), Vol. 34, No. 12, pp. 1837-1842. https://doi.org/10.3795/KSME-A.2010.34.12.1837

피인용 문헌

  1. Comparison of Contact Resistivity Measurements of Silver Paste for a Silicon Solar Cell Using TLM and CTLM vol.38, pp.6, 2014, https://doi.org/10.3795/KSME-B.2014.38.6.539