DOI QR코드

DOI QR Code

족부 진동 자극 유무에 따른 인체의 운동지각 변화 및 정량화

Effect of Vision Coherent Sensory Cue on Roll Tilt Perception and Sensory Weighting

  • 임혜림 (한국과학기술원 기계공학과) ;
  • 박수경 (한국과학기술원 기계공학과)
  • Lim, Hye-Rim (Division of Mechanical Engineering, School of Mechanical, Aerospace and Systems Engineering, KAIST) ;
  • Park, Su-Kyung (Division of Mechanical Engineering, School of Mechanical, Aerospace and Systems Engineering, KAIST)
  • 투고 : 2012.04.19
  • 심사 : 2012.08.29
  • 발행 : 2012.11.01

초록

최근 현실감을 주는 3D 영화에 진동, 바람과 같이 감각 정보를 추가하여 시각 자극으로 유도되는 운동지각을 향상시키기 위한 시도가 이루어지고 있으나, 추가적인 감각 정보에 의한 운동지각 변화를 정량화하는 연구는 많지 않다. 따라서 본 연구에서는 회전하는 시각 자극과 함께 추가적인 감각 정보를 가하여 그에 따른 운동지각과 이를 정량화하는 것에 대해 연구하였다. 가해진 시각 자극에 대해 피험자의 몸의 기울어짐과 피험자가 느끼는 지표면을 나타내는 체성 감각 막대의 각도를 측정한 결과 추가적인 감각 정보로 인해 운동지각은 증가하는 경향을 보였으며 칼만 필터를 이용하여 구한 시각 정보의 중요도 또한 증가함을 보였다. 따라서 시각 자극과 일치하는 다른 감각 정보는 시각 자극으로 유도되는 운동지각과 시각의 중요도를 증가시키는 경향이 있음을 알 수 있다.

Nowadays, some movie theaters provide additional sensory information in 3D movies to enhance visually induced motion perception. However, no studies have investigated how motion perception increases. Thus, in this study, we examined the effect of visual coherent sensory information on visually induced motion perception and quantification of sensory information. A visual stimulus rotated sinusoidally and visual coherent sensory information were applied as vibrations to a subject's foot. We measured the sway of the subject's body by using a force plate and somatosensory bar rotation that represents the subject's perception of the horizon using an encoder. By using this data, we obtained the weight of the sensory information using a Kalman filter. As a result, it was found that subjects rotated the somatosensory bar more when visual coherent vibrations were applied. The weight of vision also increased when visual coherent vibrations were applied. Thus, we can conclude that visual coherent sensory information tends to enhance visually induced motion perception and weight of vision.

키워드

참고문헌

  1. Wall, C. III., Weinberg, M. S., Schmidt, P. B. and Krebs, D. E., 2001, "Balance Prothesis Based on Micromechanical Sensors Using Vibrotactile Feedback of Tilt," Biomedical Engineering, IEEE Transactions on, Vol. 48, No. 10, pp. 1153-1161. https://doi.org/10.1109/10.951518
  2. Wolpert, D. M., Ghahramani, Z. and Jordon, M. I., 1995, "An Internal Model for Sensorimotor Integration," Science, Vol. 269, pp. 1880-1882. https://doi.org/10.1126/science.7569931
  3. Welch, G. and Bishop, G., 1995, "An Introduction to the Kalman Filter," University of North Carolina, Department of Computer Science, TR 95-941.
  4. Park, S., 2011, "4D, beyond 3D," The Segye Times, Vol. 6, No. 7015, p. 10.
  5. Kuo, A. D., 2005, "An Optimal State Estimation Model of Sensory Integration in Human Postural Balance," Journal of Neural Engineering, Vol. 2, No. 3, pp. S235-S249. https://doi.org/10.1088/1741-2560/2/3/S07
  6. Stevenson, I. H., Fernandes, H. L., Vilares, I., Wei, K. and Körding, K. P., 2009, "Bayesian Integration and Non-Linear Feedback Control in a Full-Body Motor Task," PLoS Comput Biol, Vol. 5, No. 12, e1000629. https://doi.org/10.1371/journal.pcbi.1000629
  7. Mahboobin, A., Loughlin, P. J., Redfern, M. S., Anderson, S. O., Atkeson, C. G. and Jessica K. Hodgins, 2008, "Sensory Adaptation in Human Balance Control: Lessons for Biomimetic Robotic Bipeds," Neural Networks, Vol. 21, pp. 621-627. https://doi.org/10.1016/j.neunet.2008.03.013
  8. Robert J. Peterka, and Martha S. Benolken, 1995, "Role of Somatosensory and Vestibular Cues in Attenuating Visually Induced Human Postural Sway," Experimental Brain Research, Vol. 105, No. 1, pp. 101-110.
  9. Shunji Nakamura, 2010, "Additional Oscillation Can Facilitate Visually Induced Self-Motion Perception: The Effects of Its Coherence and Amplitude Gradient," Perception, Vol. 39, pp. 320-329. https://doi.org/10.1068/p6534
  10. Borah, J., Young, L. R. and Curry, R. E., 1988, "Optimal Estimator Model for Human Spatial Orientation," Annals of the New York Academy of Sciences, Vol. 545, pp. 51-72. https://doi.org/10.1111/j.1749-6632.1988.tb19555.x
  11. Evans, M. J., 1998, "Modeling the Oculomotor System Using Modern and Adaptive Control Theory," In Master thesis, p. 26.
  12. Stark, L., 1968, "Neurological Control Systems: Studies in Bioengieering," Plenum Press, Newyork, pp. 313-317.