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Finite Wordlength Recursive Sliding-DFT for Phase Measurement 
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† 
 

 

Abstract – This paper proposes a modified recursive sliding DFT to measure the phase of a single-

tone. The modification is to provide a self error-cancelling mechanism so that it can significantly 

reduce the numerical error, which is generally introduced and accumulated when a recursive algorithm 

is implemented in finite wordlength arithmetic. The phase measurement error is analytically derived to 

suggest optimized distributions of quantization bits. The analytic derivation and the robustness of the 

algorithm are also verified by computer simulations. It shows that the maximum phase error of less 

than 5×10
-2
 radian is obtained even when the algorithm is coarsely implemented with 4-bit wordlength 

twiddle factors. 
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1. Introduction 
 
Sliding DFT is one of the effective methods to measure 

the single-tone phase in harmonically-distorted environment 

like electric power line systems[1-4]. This effectiveness is 

related to the harmonics decomposing characteristics of the 

DFT, where signals are directly decomposed into 

orthogonal harmonics of the fundamental component [4-6]. 

However, the computational complexity of DFT is often 

considered too high for the purpose of real time 

applications in a small scale embedded system. Recursive 

implementation of the sliding DFT can be considered as a 

means to reduce the computational complexity, if the 

recursive architecture can be free from the problem of 

accumulating finite-precision errors[6-8]. 

This paper proposes a modified recursive sliding DFT 

algorithm for measurement of single-tone phase. It is 

obtained by multiplying a phasor factor, which is rotating 

in the opposite direction, to the conventional recursive 

sliding DFT. This modification brings the use of quadruplet 

symmetric twiddle factors in its computation, consequently 

resulting in cancelling of the errors and its accumulation 

caused by the finite wordlength implementation. The error 

cancelling mechanism is described in section II. 

The effect of finite wordlength implementation is 

analytically derived in section III to show its robustness 

against the finite-precision arithmetic in tracking the phase 

of a signal having frequency drift. The quantization effects 

are geometrically investigated to obtain the bounds of 

phase measurement error in a form of closed-function. The 

variance of the finite-precision error shows a quadratic 

nature in terms of the input and the twiddle factor 

quantization, which can be further exploited to derive 

optimized assignments of quantization wordlengths under 

given constraints of total number of representation bits. 

The optimized quantization architecture developed in this 

paper can serve as a useful design guide for the modified 

recursive sliding-DFT algorithm, especially for low 

complexity real-time phase measurement of a single-tone 

signal. The analytic derivations are also verified with the 

results of simulations performed for the phase tracking of 

power line signal. 

 

 

2. Modified Sliding-DFT Algorithm for 

Measurement of Single-Tone Phase 

 

This section describes the proposed modified recursive 

algorithm to measure the phase of single-tone signals and 

to eliminate the error-accumulation phenomenon caused by 

the finite wordlength implementation. 

Consider a single-tone signal of frequency 2 Mπ  

expressed as  
 

 
2

( ) cos( )xx n A n
M

π
φ= +  (1) 

 

where x
A is the magnitude of the signal and φ  is the 

phase of the signal as shown in Fig. 1. 
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Fig. 1. Sliding window to measure the phase of a single-

tone signal 
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The phasor of the signal ( )x n at the trailing edge of the 

sliding window, i.e., at 1n N′ − +  can be obtained from 

the k-th bin frequency component of DFT of the k cycle 

signal samples inside the sliding window in Fig.1, and 

which is defined as ( )
k

X n′  in the following. 
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It is confirmed from (2) that ( )
k

X n′ is same as the 

phasor of ( )x n  at 1n N′ − + except the DFT scaling 

factor 2N . 

From now, for notational convenience, the variable n′  
is replaced with n to indicate the leading edge of the 

sliding window. Thus the phasor ( )
k

X n indicates the signal 

phasor at the trailing edge of the sliding window, i.e., at 

1n N− + , and n  indicates the leading edge of the window. 

The recursive SDFT can be derived by relating ( )
k

X n  

and ( 1)
k

X n −  as shown in the following. 
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  (3) 

 

In the last line of (3), the first summation term in the 

bracket is equal to ( 1)kX n − , therefore, the recursive 

sliding DFT equation is obtained as, 

 

 ( ) [ ( 1) ( ) ( )]k

k N k
X n W X n x n x n N= − + − − , (4) 

 

where, N
W indicates the complex twiddle factor (2 )j Ne π . 

The recursive SDFT given in (4) suffers from the severe 

error accumulation when the twiddle factors are represented 

by finite number of bits [6]. Repeated multiplication with 

the single quantized twiddle factors ˆ k

N
W will cause error 

accumulation. The error accumulation can be eliminated by 

modifying the phasor ( )
k

X n to include 
kn

N
W −

 as defined in 

(5), which actually compensates the phasor rotation 

resulting from the window sliding. 

 

 ( ) ( ) kn

k k N
X n X n W −′ =  (5) 

 

By inserting (5) into (4), the recursive computation of 

the modified SDFT ( )
k

X n′ is obtained as (6) and its signal 

flow diagram is shown in Fig.2, respectively. 

 

 
( 1)( ) ( 1) [ ( ) ( )]k n

k k N
X n X n W x n x n N− −′ ′= − + − −  (6) 

 

As illustrated in Fig. 2, the arithmetic structure of the 

modified recursive SDFT is organized with the cascade of 

a finite impulse response (FIR) filter section and an infinite 

impulse response (IIR) filter section. In contrast to (4), 

where only a single fixed twiddle factor 
k

N
W  is repeatedly 

used, the recursive computation of ( )
k

X n′ in (6) uses 

multiple numbers of twiddle factors which are quadruplet 

symmetric. The quadruplet symmetric characteristics of N 

twiddle factors provides the self error-canceling effect to 

eliminate the error accumulation, which will be analytically 

proved in Section III. 

 

 

3. Analysis of Phase Error Caused by Finite 

Wordlength Implementation  

 

This section analytically shows that the modified 

recursive SDFT is robust against the finite-precision 

arithmetic errors in tracking the phase of a tone signal 

having frequency drift. For the geometric evaluation of the 

phase error, the SDFT in (6) is first solved and obtained as 

the sum of two rotating phasors as shown in the following. 

The modified recursive SDFT equation (6) can be 

represented equivalently in a non-recursive form as 

 

 
( 1)

0

( ) [ ( ) ( )],
n

k m

k N

m

X n W x m x m N
− −

=

= − −∑  (7) 

 

Where, and also in the following, the apostrophe in 
( )

k
X n′  is dropped for notational simplicity. 

Consider the input tone at frequency f f+ ∆ given as, 

 
2 ( )

( ) cos( ),x

s

f f
x n A n

f

π
ϕ

+ ∆
= +  (8) 

where, the frequency f∆ indicates the frequency deviation 

 

Fig. 2. The recursive implementation of the modified 

SDFT proposed for measuring the phase of single-

tone signals. 
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of the input tone from its nominal frequency f , and s
f  

indicates the sampling frequency. Then the difference 
( ) ( )x n x n N− −  also becomes a sinusoidal signal at the 

same frequency f f+ ∆  as, 

 

 
2 ( )

( ) ( ) cos( ),d

s

f f
x n x n N A n

f

π
ϕ

+ ∆
′− − = +  (9) 

 

where, 2(1 cos[2 (1 )] 
d x

A A k f fπ= − + ∆  and ϕ ′  is the 

cumulative term.  

By substituting (9) into (7), the phasor is derived to 

have the sum of two rotating phasors as 

 

 

2 2 (2 )
( ) ( )1 1

( ) ( ),
2

f f f
j n j n

f fs s
k p

X n A e e

π π
φ φ

γ γ

∆ +∆
+ − +

≈ +
+

 (10) 

 

where / 4
p d

A A M π= , /f fγ = ∆ , 2φ ϕ π′= − , and it 

is assumed that 1.0γ ≪ . The detailed derivation of (9) 

and (10) is given in Appendix A and B, respectively. 

Based on the phasor representation derived in (10), the 

finite wordlength effects can be obtained by geometrically 

evaluating their distributions in the complex plane.  

The quantized input and the twiddle-factor can be 

represented as, ˆ( ) ( ) ( )
x

x m x m q m= + and ˆ km

N
W − =  

( )km

N W
W q m− + , respectively. Where, ( )

x
q m  and ( )

W
q m  

indicate the input quantization error and twiddle factor 

quantization error, respectively. 

With the use of quantized input and twiddle factor, the 

DFT of the window data is approximated as 

 

 
1

0

ˆ ˆˆ( ) ( 1) .
N

km

k

m

X n x m n N W
−

−

=

= + − +∑  (11) 

 

Neglecting the cross-product term between ( )
x

q m  and 
( )

W
q m in (11), the effects of input quantization and the 

twiddle-factor quantization can be separately investigated 

by defining ˆ ( )
k

X n  as (12). 

 

 ˆ ( ) ( ) ( ) ( )
k k x W

X n X n E n E n= + +  (12) 

 

where 
1

0

( ) ( 1),
N

km

x N x

m

E n W q m n N
−

−

=

= + − +∑  and ( )
W

E n =  

1

0

( ) ( 1)
N

W

m

q m x m n N
−

=

+ − +∑ . 

 

2.1 Phase error caused by the input quantization 

 

When the single-tone input is represented as x
b -bit 

binary word, the phasor, ˆ
k

X , can be represented as a 

composition of the true phasor k
X  and the error phasor 

x
E  as shown in (12) and its trajectory is shown in the 

complex plane in Fig. 3. The error phasor, x
E  is spatially 

distributed around the true phasor. It is shown in Fig.3 that 

the phase error x
θ  is caused by the perpendicular 

component of the phasor error x
E  in reference to the 

direction of true phasor k
X . 

Under the assumption that / 1.0xp kE X ≪ , the variance  

of the phase error x
θ  is obtained as the ratio between the 

expected values of 
2

xpE and
2

k
X , i.e., 

2

xθσ =  

2 2
{ } { }xp kE Xε ε , where, the notation ε{·} indicates the 

operation of the expectation. 

Assuming the uniform distribution of the phasor error 

x
E  around k

X , the perpendicular component
2

{ }xpEε  is 

obtained as half of 
2

{ ( ) }
x

E nε  as follows. 
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  (13) 

 

Since ( )xq m  is uncorrelated random, the last line in 

(13) is further reduced as 
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where, 
2

qx
σ is the power of the quantized noise of the input 

assuming its secondary order stationary. 

Also, from (10), 
2 2{ } ( 4 )

k d
X A Mε πγ≈ . Therefore, 
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o

xpE

 

Fig. 3. Geometrical representation of the phase error 

caused by the finite wordlength representation of 

the input signal. 
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2 22 2

{ } { } (2 3 )( )x xp k x dE X N k Aθσ ε ε πγ= = ∆  (14) 

 

where, without loss of generality x
A  is assumed to be 1.0, 

and then 1
2

bx
x

−∆ = . 

If the bin frequency of DFT k is selected as one, i.e., 

N=M, and γ  converges to zero, i.e., the frequency 

deviation is negligible, then Adγ  in (14) can be treated 

as 1 2π . Then (14) can be simplified as  

 

 
2 2 6 .
x x

Nθσ ≈ ∆  (15) 

 

2.2  Phase error caused by the twiddle factor approxi-

mation 

 

While ˆ kn

N
W  is a pure single-tone sequence, the 

approximated ˆ kn

N
W  can be regarded as a periodic sequence 

containing harmonics associated with the quantization of 

the twiddle factors. Therefore, ˆ kn

N
W can be represented 

with the discrete Fourier series as  

 

 

2
1

0

1ˆ .

lf
N j n

fkn s
N l

l

W a e
N

π−

=

= ∑  (16) 

 

Because of the symmetric placement of the twiddle 

factors in the complex plane, the third harmonic 

component is the first non-zero term beyond the 

fundamental component 1
a  in (16) and is far greater than 

the other higher harmonics. Therefore the term 
kn

N
W −

 can 

be further approximated as the sum of the fundamental and 

the third harmonic components as  

 

 
2 6

1 3
ˆ ( ) ( ) .

f f
j n j n

f fkn s s
N

W a N e a N e

π π
− −

− ≈ +  (17) 

 

Then by replacing ( 1)ˆ k n

N
W − −  and ( ) ( )x n x n N− −  with 

(17) and (9), respectively, the phasor ˆ ( )X n  of (7) can be 

approximately obtained as 

 

ˆ ( )X n  

2 2 (2 ) 2 (2 )
( ) ( ) ( )

3

1

1 1 1
,

2 2

j n j n j n
M M M

q

a
A e e e

a

πγ π γ π γ
φ φ φ

γ γ γ

+ −
+ − + − −   

≈ + +  
+ −   

  (18) 

 

where, 1
.

q p
A A a N=  

The detailed derivation of (18) is given in Appendix C. 

With this derivation, (18) can be regarded as the 

accumulation after the product of the single-tone 
( ) ( )x n x n N− −  of frequency f f+ ∆  with the 

fundamental and the third harmonic components of 

frequencies f  and 3 f , respectively.  

Among the product terms, all the higher frequency 

components are eliminated because the magnitude of 

higher harmonics is much smaller than that of the third 

harmonics. Therefore, only the first dominant harmonic 

error term 2 f f− ∆  is included in (18). The first and the 

second terms in (18) are identical with the true phasor 
( )

k
X n  of (10) except the inclusion of the scaling factor 

1
/a N to its magnitude. Without loss of generality, the 

scaling factor q
A can be treated as 1.0 since the common 

magnitude scaling does not affect the analysis of the phase 

error. 

Then, with the twiddle factors being represented as 

W
b bit binary word, the phase error W

θ  appears as the 

angle deviation from the true phasor k
X . The deviation is 

caused by the error phasor, W
E , i.e., by the last term of 

(12). W
E  encircles around the true phasor trajectory, 

which is represented by the first two terms of (18) as 

shown in Fig. 4. The approximated magnitudes of the true 

phasor and the error phasor are proportional to 1/ γ , and 

3 1
( / ) /(2 )a a γ− , respectively. 

The variance of the phase deviation can be obtained by 

integrating the perpendicular component, Ep, around the 

circle as  

 

{ } { }2 22
/p kW

E Xθσ ε ε=  

2
2 2 23

0
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1 1 1 4
( sin ) /( ) ( ) ,

2 2 48 2

W

bw

a
d

a

π γπ
φ φ

π γ γ γ
∆−

= ≈
− −∫  

  (19) 

 

where, the harmonic error ratio, 3 1
/a a  is approximated to 

have the Rayleigh distribution because the quantization 

errors of real and imaginary values of the twiddle factors 

are jointly distributed in the complex plane[10], i.e.,  
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If the frequency deviation, ∆f is sufficiently small 
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Fig. 4. Geometrical representation of the phase measure-

ment error caused by the finite wordlength 

arithmetic of the twiddle factors. 



Finite Wordlength Recursive Sliding-DFT for Phase Measurement 

 1018 

relative to the nominal frequency f of the target signal x(n), 

the phase error in (19) is the quantization error power of 

twiddle factor, 
2

W
∆  scaled down with the near zero factor 

of γ/(2−γ). This offers significant reduction of the phase 

measurement error caused by the finite wordlength twiddle 

factors. 

For the finite wordlength implementation of both the 

input and the twiddle factors in the proposed phase 

detection algorithm, the variance of the phase error is 

obtained from (15) and (19) as 

 

 

22

2 2 2 4
.

6 48 2

x W

e x w
N

θ θ θ

γπ
σ σ σ

γ
∆ ∆ −

= + = +  − 
 (20) 

 

2.3 Optimized selection of representation wordlength 

pairs 

 

By further exploiting the quadratic expression of the 

error variance in (20), it is possible to provide optimized 

selections of the quantization wordlength pairs for the 

input and the twiddle factor of the recursive SDFT. For a 

given total number of bits, btot, to represent the input and 

the twiddle factor, the error variance shows a parabolic 

behavior for the different combination of representation 

wordlength pair as shown in Fig. 5. 

From Fig. 5, it is found that, with the same btot, 

increment of the DFT block length results in a shift of the 

optimized quantization bit–pair, given as the minimum 

point of the parabolic curve, toward the lower-left direction. 

The shift indicates that smaller number of bits needs to be 

allocated for the input quantization and the saved number 

of bits can be additionally added to the quantization of the 

twiddle factor. This is the direct consequence coming from 

the fact that the input quantization noise decreases as the 

block length of the DFT increases. On the other hand, the 

optimized quantization bit-pair moves toward lower-right 

direction as the frequency drift ratio decreases as shown in 

Fig. 5. Optimized point’s shift to the right hand direction 

indicates that the twiddle factor quantization needs to be 

more precise as the input tone signal contains more 

frequency drift.  

The optimized selection of bx can be obtained by finding 

the minima of (20) by solving the following equation, 

 

 

22 1
14 4

4 0.
6 48 2
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x x

d d

db db N

θσ π γ
γ

−
− +

  −
 = + =  −  

 (21) 

 

From the solution of (21) for bx,  
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  (22) 

 

where tot x W
b b b= + . 

This result gives the design strategy to decide the 

optimized distribution of the quantization bits between the 

input and the twiddle factors, although the utilization of 

(22) is limited to the selection of closer integer values. 

Basic principle of the bit distribution is to allocate more 

bits to the side which dominates in causing the errors. As 

the frequency drift of the input increases, more phase error 

is caused by the multiplication with the approximated 

twiddle factors while the error caused by the quantization 

noise of the input remains the same. Therefore it is 

advantageous to allocate more bits for the twiddle factor 

quantization. It is found from (22) that, for the increase of 

frequency drift by the order of 10, 1.6 more bits need to be 

allocated for the twiddle factor quantization whereas 1.6 

less bits are allocated for the input quantization. The signal 

to quantization noise ratio of the input reduces inverse 

proportionally as the block length increases. Therefore, it is 

also advantageous to allocate more bits to the twiddle 
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Fig. 5. Parabolic behaviors of the error variance for 

different combinations of the representation 

wordlength pairs. (SDFT block length N=32 and 

512 at γ =0.1, and frequency drift ratio γ=0.1 and 

0.01 at N=512.) 

Table 1. Examples of the optimized selection of the 

representation wordlength pairs 

(
x

b : bit length for input, 
w

b : bit length for twiddle factor) 

N=32, γ=0.1 N=512, γ=0.1 N=32, γ=0.01 
Total 
bits 

xb  
wb  

error 

variance 
[rad] 

xb  
wb  

error 

variance 
[rad] 

xb  
wb  

error  

variance  
[rad] 

8 6 2 1.75×10-5 5 3 4.37×10-6 7 1 1.72×10-6 

12 8 4 1.09×10-6 7 5 2.73×10-7 9 3 1.07×10-7 

16 10 6 6.82×10-8 9 7 1.71×10-8 11 5 6.73×10-9 

20 12 8 4.26×10-9 11 9 1.07×10-9 13 7 4.20×10-10 

24 14 10 2.66×10-10 13 11 6.66×10-11 15 9 2.62×10-11 

28 16 12 1.66×10-11 15 13 4.16×10-12 17 11 1.64×10-12 

32 18 14 1.04×10-12 17 15 2.60×10-13 19 13 1.02×10-13 
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factors. From (22), it is found that 0.25 more bits 

corresponds to the doubling of the DFT block length.  

The summary shown in Table 1 is the optimized 

quantization bit distribution between the input and the 

twiddle factors for the varying number of total bit length 

and three different operation cases. 

 

 

3. Simulations and Results  

 

Simulations are performed to verify the analytic 

derivation of the phase measurement error obtained in 

section III.  

In many practical applications, the frequency drift and/or 

the harmonic distortions are phenomena of special interest 

in tracking the phase of a tone signal. A good example is 

the monitoring of 50/60Hz power system where the correct 

tracking of the fundamental component of power line 

signal is important under the intrusion of harmonic 

distortion and the frequency drift caused by sudden or 

abnormal fault situations [9, 11]. Input tone signal is 

generated to include up to 7th odd harmonics with the 

same amplitude and frequency drift ranging from 0.001 to 

0.1 times of the nominal frequency. The number of bits to 

represent the input and the twiddle factors are changed 

widely from 4 to 16 in the simulation.  

The summary of the simulations and their comparison 

with the analytic derivation are shown in Fig. 6. It is 

confirmed that the analytically derived phase errors agree 

well with the simulation results. The robustness of the 

modified recursive SDFT is also very well illustrated in Fig. 

6 such that the standard-deviation of the phase error is less 

than 310−  radian even under the coarse 4-bit representation 

of the DFT twiddle factor and the relatively significant 

amount of frequency drift (γ=0.1) in the input tone signal.  

The parabolic behavior of the phase error variance, 

which is obtained by varying the distribution of the 

quantization bits between the input and the twiddle factor 

while the total number of quantization bits is kept constant, 

is well verified with the simulation results shown in Fig. 7. 

It is observed that the wordlength of twiddle factor is 

shorter by about four bits compared to those of input signal 

at the minimum error points, which indicates that the phase 

measurement is more robust with the twiddle factor 

approximation by about four bits in comparison with the 

input approximation. The minimum point’s shift of 1.6-bit 

in the parabolic curves toward the right-hand direction (A 

to A') indicates the increased relative effect of the input 

quantization error as the frequency drift ratio decreases by 

the factor of ten, i.e., from 0.1 to 0.01.  

 

 

4. Conclusion 

 

This paper proposed a modified recursive sliding-DFT 

and showed its application to measuring the phase of a 

single-tone signal. The robustness of the proposed 

algorithm against the finite wordlength implementation 

was analytically derived and was verified with computer 

simulations as well. The analysis also showed the parabolic 

behavior of the performance error curve and its 

dependency on the effects of the frequency drift of the 

input, consequently suggesting for the optimized quanti- 

zation architecture of the algorithm. The robustness of the 

modified recursive SDFT has been also well illustrated 

such that the standard-deviation of the phase error is less 

than 310−  radian even under the coarse 4-bit represen- 

tation of the DFT twiddle factor and the relatively 
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Fig. 7. Comparisons of the analytically derived phase 

errors with those obtained from simulations for 

different combinations of representation wordlength 

pairs, through the change of frequency drift ratio 

from  γ=0.1 to γ=0.01.  
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significant amount of frequency drift. It is concluded from 

this study that the modified recursive sliding-DFT can be 

regarded as a useful method to measure the phase of a 

single-tone signal, especially when the processing speed 

and implementation simplicity are critical considerations in 

the application. 
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Appendix A 

 

From (8), 
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In (23), the cumulative phase term ϕ ′  is replaced by φ  

for notational convenience, and N  is replaced using 
( ) ,

s
N f f k=  then (9) is obtained.  

 

 

Appendix B 

 

In (9), the cumulative phase ϕ ′  is replaced by ϕ for 

notational convenience and inserting (9) into (7), 
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The first term in the last line of (24) is, 
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where, 4 ,  ,   ,
p d s

A A M f f f fMπ γ= = ∆ =  and α  

represents the constant offset term of the rotating phasor. 

The second term in the last line of (24) is obtained in 

the same way as,  
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where 4
p d

A A M π= and β  represents the constant 

offset term of the rotating phasor.  

The constant offset terms α and β  can be dropped 

since they commonly appear in both true and approximated 

phasor ( )
k

X n and ˆ ( )
k

X n , respectively, and under the 

condition 1.0γ ≪ , the average phase estimation error is 

approximately same when measured only from the 

relationship among the rotating phasor terms. By summing 

the two terms, dropping the constant terms α and β , and 

replacing the cumulative phase 2ϕ π− with φ for 

notational convenience, then (10) is obtained. 
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Insert (17) and (9) into (7), 
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For the first term in the last line of (25), 
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Dropping the constant offset term and applying 
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where , ,  = 2,
s
f fM f fγ φ ϕ π′= = ∆ − and q

A =  

1
4

d
A a M Nπ . 

The rest terms in (25) can be derived in the same way as 
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By summing the three dominant phasor terms, (18) is 

obtained. 
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