DOI QR코드

DOI QR Code

Enhanced Photocurrent from CdS Sensitized ZnO Nanorods

  • Nayak, Jhasaketan (Dept. of Electrical Engineering, Pusan National University) ;
  • Son, Min-Kyu (Dept. of Electrical Engineering, Pusan National University) ;
  • Kim, Jin-Kyoung (Dept. of Electrical Engineering, Pusan National University) ;
  • Kim, Soo-Kyoung (Dept. of Electrical Engineering, Pusan National University) ;
  • Lee, Jeong-Hoon (R&D Unit, Daerim Enterprises LtD.) ;
  • Kim, Hee-Je (Dept. of Electrical Engineering, Pusan National University)
  • Received : 2011.09.05
  • Accepted : 2012.06.20
  • Published : 2012.11.01

Abstract

Structure and optical properties of cadmium sulphide-zinc oxide composite nanorods have been evaluated by suitable characterization techniques. The X-ray diffraction spectrum contains a series of peaks corresponding to reflections from various sets of lattice planes of hexagonal ZnO as well as CdS. The above observation is supported by the Micro-Raman spectroscopy result. The optical reflectance spectra of CdS-ZnO is compared with that of ZnO where we observe an enhanced absorption and hence diminished reflection from CdS-ZnO compared to that from only ZnO. A very small intensity of the visible photoluminescence peak observed at 550 nm proves that the ZnO nanorods have very low concentrations of point defects such as oxygen vacancies and zinc interstitials. The photocurrent in the visible region has been significantly enhanced due to deposition of CdS on the surface of the ZnO nanorods. CdS acts as a visible sensitizer because of its lower band gap compared to ZnO.

Keywords

References

  1. K. Takanezawa, K. Hirota, Q.S. Wei, K. Tajima, K. Hashimoto, Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices, J. Phys. Chem. C, Vol-111, pp. 7218-7223, 2007. https://doi.org/10.1021/jp071418n
  2. J. B. Baxter, E. S. Aydil, Nanowire-based dyesensitized solar cells, Appl. Phys. Lett., Vol-86, pp. 053114-053116, 2005. https://doi.org/10.1063/1.1861510
  3. K.S. Leschkies, D. J. Norris,; E. S. Aydil, Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices, Nanoletters, Vol-7, pp. 1793-1798, 2007. https://doi.org/10.1021/nl070430o
  4. M. W. Xiao, L. S. Wang, Y. D. Wu, X. J. Huang, Z. Dang, Preparation and Characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties, Nanotechnology, Vol- 19, pp. 015706, 2008. https://doi.org/10.1088/0957-4484/19/01/015706
  5. W. Lee, S.K. Min, V. Dash, S.B. Ogale, S.H. Han, Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dotssensitized solar cells, Electrochemistry Communications, Vol-11, 103-106, 2009. https://doi.org/10.1016/j.elecom.2008.10.042
  6. L. Vayssieres, On the design of advanced Metal Oxide Nanomaterials, Int. J. Nanotechnology, Vol-1, 1-41, 2004. https://doi.org/10.1504/IJNT.2004.003728
  7. Y.K. Tseng, C.T. Chia, C.Y. Tsay, L.J. Lin, H.M. Cheng, C. Y. Kwo, C. Chen, Growth of Epitaxial Needle like ZnO Nanowires on GaN Film, J. Electrochem. Soc., Vol-152, G95-G98, 2005. https://doi.org/10.1149/1.1825953
  8. W.Q. Han, A. Zettl, GaN nanorods coated with pure BN, Appl. Phys. Lett., Vol-81, pp. 5051-5053, 2002. https://doi.org/10.1063/1.1531836
  9. D.H. Zhang, Z.Y. Xue, Q.P. Wang, The mechanism of blue emission from ZnO films deposited on glass substrates by rf magnetron sputtering, J. Phys. D; Appl. Phys., Vol-35, pp. 2837, 2002. https://doi.org/10.1088/0022-3727/35/21/321
  10. X.Q. Meng, D.X. Zhao, J.Y. Zhang, D.Z. Shen , Y.M. Lu, X.W. Fan, X.H. Wang, Photoluminescence properties of single-crystalline ZnO/CdS core/shell one dimensional nanostructures, Materials Letters, Vol-61, 3535-3538, 2007. https://doi.org/10.1016/j.matlet.2006.11.136
  11. Q. Xiao, C. Xiao, Surface-defect-states photoluminescence in CdS nanocrystals prepared by onestep aqueous synthesis method, Appl. Surf. Sci., Vol- 255, pp. 7111-7114, 2009. https://doi.org/10.1016/j.apsusc.2008.12.032
  12. M. Agata, H. Kurase, S. Hayashi, K. Yamamoto, Photoluminescence spectra of gas-evaporated CdS microcrystals, Solid. Stat. Comm., Vol-76, pp. 1061- 1065, 1990. https://doi.org/10.1016/0038-1098(90)90084-O
  13. J. Jie, G. Wang, Y. Chen, X. Han, Q. Wang, B. Xu, J.G. Hou, Synthesis and optical properties of well-aligned ZnO nanorod array on an undoped ZnO film, Appl. Phys. Lett., Vol-86, 031909-031911, 2005. https://doi.org/10.1063/1.1854737
  14. P. Nandakumar, C. Vijayan, M. Rajalakshmi, A.K. Arora, Y. V. G. S. Murti, Raman spectra of CdS nanocrystals in Nafion: longitudinal optical and confined acoustic phonon modes, Physica E, Vol-11, 377-383, 2001. https://doi.org/10.1016/S1386-9477(01)00157-6
  15. G. Wang, X. Yang, F. Qian, J.Z. Zhang and Y. Li; Double-sided CdS and CdSe Quantum Dot Cosensitized ZnO Nanowire Array for Photoelectrochemical Hydrogen Generation, Nanoletters, Vol-10, pp. 1088-1092, 2010. https://doi.org/10.1021/nl100250z
  16. S. Hotchandani, P.V. Kamat, Charge-transfer processes in coupled semiconductor systems. Photochemistry and photoelectrochemistry of the colloidal cadmium sulfide-zinc oxide system, J. Phys. Chem., Vol-96, 6834-6839, 1992.

Cited by

  1. Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue vol.534, 2018, https://doi.org/10.1016/j.physb.2018.01.027
  2. Control of morphology and orientation of electrochemically grown ZnO nanorods vol.20, pp.2, 2014, https://doi.org/10.1007/s12540-014-2013-x
  3. Photosensitization of ZnO nanowire-based electrodes using one-step hydrothermally synthesized CdSe/CdS (core/shell) sensitizer vol.125, 2016, https://doi.org/10.1016/j.solener.2015.12.002