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Abstract – This paper reports an investigation of pulse width modulation (PWM) techniques for two-

phase brushless DC (BLDC) motors fed by a two-phase eight-switch inverter in a fan application. The 

three-phase BLDC motor is widely applied in industry; however, a lower-cost two-phase BLDC motor 

and drive circuit has been greatly in demand in recent years. In this paper, we introduce a mathematical 

model of the two-phase BLDC motor with sinusoidal back electromotive forces (EMFs) based on 

traditional three-phase BLDC motors. To simplify the drive algorithm and speed up its application, we 

analyze the principle of block commutation for a two-phase BLDC motor drive in the 180-electrical-

degree conduction mode, and we further propose five PWM schemes to improve the commutation 

performance of the two-phase BLDC drive. The effectiveness of the proposed PWM methods is 

verified through experiments. 
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1. Introduction 
 
The electric farm tractors, traction engines, used electric 

motor for power. The use of these tractors, instead of 

diesel-powered tractors, provides quieter, eco-friendly 

transportation that does not pollute the air. Interior 

permanent-magnet synchronous motors (IPMSMs) for 

electrically powered tractors offer a variety of advantages, 

including high efficiency and high motor power density. 

Limits to the operating time of IPMSMs are set by the 

allowed maximum operating temperature for insulation 

and/or permanent-magnet materials. Thermal analysis is 

therefore important in the predicting temperature of 

IPMSMs and there are the most used techniques: lumped-

parameter (LP) thermal analysis and finite-element method 

(FEM) thermal analysis. The most recent review dealt with 

an extended survey on the evolution and the modern 

approaches in the thermal analysis of electrical machines 

[1]. The journal literatures on thermal analysis of electric 

motors are [2-7], describing induction motors; [8-13], 

dealing with permanent-magnet motors. The thermal 

analysis of IPMSMs has received less attention than other 

machines. [5, 9, 14] show the coupled electromagnetic-

thermal analysis of some electrical machines. However, the 

analysis of IPMSM by combined electromagnetic-thermal 

model has received less attention than other machines. 

This paper presents the results of thermal analysis and 

shows a comparison between the measurements of 

temperature and our predictions. To predict a prototype 

IPMSM temperature, we linked the results of electro-

magnetic field analysis with both LP thermal analysis and 

3-D FEM thermal analysis. The motor used in the electric 

tractor is IPMSM without cooling system (7.5 kW, class F 

insulation system) shown in Fig. 1. 

 

 

2. Lumped-Parameter Thermal Analysis 

 

2.1 Lumped-parameter thermal model 

 

The structure of an IPMSM can be subdivided into the 
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Fig. 1. (a) Developed smaller electric tractor: (b) prototype 

IPMSM; (c) stator; (d) interior permanent-magnet 

rotor. 
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10 components shown in Fig. 2. To analytically calculate 

the temperature, we modeled LP thermal model for heat-

transfer shown in Fig. 3. The thermal model is very simple 

to include the major components such as winding, stator, 

and rotor. The analytical model is well-known. In the LP 

thermal model, the rotor core and the permanent-magnet 

consolidated for easier calculation. Furthermore, all the 

thermal parameters (e.g., electric conductivity, thermal 

conductivity, specific heat, etc) are assumed to be constant.  

In addition, any heat transfer due to radiation is 

neglected. All interference gaps between components set 

0.1 mm except for interface gap between the winding and 

the stator. Initial temperature was set to 25°C. Typical 

value of the heat transfer coefficient for free convection is 

in the range 2 to 25 W/ (m2·°C) [15]. In this model, the 

free convection heat transfer coefficient was set to 10 W/ 

(m2·°C). In the thermal model, heat source is the average 

losses obtained by electromagnetic field analysis at rated 

operation. According to [1] and [2], the thermal resistance 

and the thermal capacitance for the machine are given in 

Table 1. 

Table 1. Computed Lumped-Parameters 

Thermal 

Resistance 

VALUE 

[°C/W] 

Thermal 

capacitance 

Value 

[J/(kg·°C)] 

Average 

Loss 

Value 

[W] 

R1A 0.545 C1 5650.0 P2 179.3 

R12 0.084 C2 3044.3 P3 74.1 

R19 1.262 C3 502.9 P4 11.7 

R110 1.262 C4 78.7 P5 11.7 

R23 0.048 C5 78.7 P6 48 

R26 0.176 C6 2012.9   

R49 1.016 C7 88.7   

R510 1.016 C8 88.7   

R67 0.412 C9 7.5   

R68 0.412 C10 7.5   

R79 11.111     

R810 11.111     

 

 

2.2 Thermal network equations 

 

The LP thermal model consists of 10 nodes. The 

individual node network equations are  
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Fig. 2. Prototype IPMSM structure. 
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Fig. 3. Simple lumped-parameter thermal model. 
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where Pi is power loss at node i, Ci is node thermal 

capacitance, Rij is thermal resistance between adjoining 

nodes i and j, θi is node temperature, θkA is ambient 

temperature and is assumed to be constant. The differential 

equations are derived from (1), shown at the top of the next 

page. Where (2), Gij is thermal conductance. The differential 

equations are represented in matrix form by 

 

 
1 1[ ] [ ] [ ] [ ] [ ][ ]

d
C P C G

dt
θ θ

− −
= −  (3) 

 

where [θ] is a column matrix of temperatures, [C] is a 

diagonal matrix of thermal capacitance, [P] is a column 

matrix of power losses, [G] is a square matrix of thermal 

conductance. Assuming that the temperatures are 

unchanging in time, the steady-state equation becomes 

 

 1[ ] [ ] [ ].G Pθ
−

=  (4) 

 

 

3. Electromagnetic Field–Thermal Linked 

Analysis Using FEM 

 

To numerically compute the temperature, we used FEM 

software package. The 3-D FEM model is sufficiently 

detailed to comprise all components shown in Fig. 2. The 

FEM thermal model has been computed in the same 

assumptions discussed in Section 2. Fig. 4 shows a diagram 

of computation procedures to calculate an IPMSM 

temperature by an electromagnetic field-thermal linked 

analysis. 3-D FEM thermal analysis results are linked with 

the LP thermal analysis. 

 

 
4. Thermal Test, Results and Discussion 

 

A prototype IPMSM thermal test has been performed at 

rated power (Fig. 5). Thermocouples were embedded in 

both the winding and the frame to measure the temperature 

of the prototype motor. At 50 minutes into the thermal test, 

the motor was turned off because the winding temperature 

was 156.3 °C. The rated operating time of the prototype 

motor should be limited to 50 minutes because allowed 

maximum operating temperature is below 155 °C. 

Fig. 6 shows a comparison both thermal analyses at 

steady-state. The numerical prediction for the winding 

temperature shows a very similar behavior to the 

experimental temperature data (Fig. 7), but the accuracy of 

frame temperature is not so good. This is not too bad 

because the winding is a more critical component than 
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Fig. 4. Diagram of computation procedures. 
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frame. FEM thermal analysis seems more accurate than LP 

thermal analysis. Table 2 shows the predicted and 

measured temperatures at 50 minutes for the prototype 

motor. 

Local temperature measurements such as using 

thermocouples give the machine operator confidence, but 

the temperature detectors may not be at the portion of rotor. 

Temperature measurements discussed so far have been on 

the portion of stator. However, the rotor is a critical 

component in many motors, particularly permanent-magnet 

motor under high temperature conditions. A high 

temperature will cause more demagnetization resulting in 

premature failure. As in the thermal analysis, the rotor 

temperature was near 100 °C at 50 minutes. The operating 

time of the prototype motor should be also limited to 50 

minutes because the maximum operating temperature of 

neodymium permanent-magnet is 100 °C.  

 

 

5. Conclusion 

 

A lumped-parameter thermal model of an IPMSM was 

modeled. The thermal model is very simple, but computed 

results show a similar value to the FEM results at steady-

state. The analytical thermal model has the advantage of 

being very fast to compute temperature; however, there is 

still room for improvement in our thermal model. We 

anticipate that electromagnetic field-thermal linked 

analyses are able to predict the temperature variation of 

IPMSM. These thermal analyses are expected to help 

improve the thermal performance of prototype IPMSM. 
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