DOI QR코드

DOI QR Code

단결정 철의 소성에 대한 멀티스케일 모델링

Multi-scale Modeling of Plasticity for Single Crystal Iron

  • 투고 : 2012.06.21
  • 심사 : 2012.07.25
  • 발행 : 2012.10.01

초록

Atomistic simulations have become useful tools for exploring new insights in materials science, but the length and time scale that can be handled with atomistic simulations are seriously limiting their practical applications. In order to make meaningful quantitative predictions, atomistic simulations are necessarily combined with higher-scale modeling. The present research is thus concerned with the development of a multi-scale model and its application to the prediction of the mechanical properties of body-centered cubic(BCC) iron with an emphasis on the coupling of atomistic molecular dynamics with meso-scale discrete dislocation dynamics modeling. In order to achieve predictive multi-scale simulations, it is necessary to properly incorporate atomistic details into the meso-scale approach. This challenge is handled with the proposed hierarchical information passing strategy from atomistic to meso-scale by obtaining material properties and dislocation mobility. Finally, this fundamental and physics-based meso-scale approach is employed for quantitative predictions of the mechanical response of single crystal iron.

키워드

참고문헌

  1. E. B. Tadmor, M. Ortiz, R. Phillips, 1996, Quasicontinuum Analysis of Defects in Solids, Philos. Mag. A, Vol. 73, No. 6, pp. 1529-1563. https://doi.org/10.1080/01418619608243000
  2. W. S. Yu, S. P. Shen, 2010, Initial Dislocation Topologies of Nanoindentation into Copper (0 0 1) Film with a Nanocavity, Eng. Fract. Mech., Vol. 77, No. 16, pp. 3329-3340. https://doi.org/10.1016/j.engfracmech.2010.09.003
  3. B. Steffen, K. M. Dhiraj, H. Alexander, 2012, A Scheme to Combine Molecular Dynamics and Dislocation Dynamics, Modell. Simul. Mater. Sci. Eng., Vol. 20, No. 4, pp. 045001-045022. https://doi.org/10.1088/0965-0393/20/4/045001
  4. M. Tang, L. P. Kubin, G. R. Canova, 1998, Dislocation Mobility and the Mechanical Response of BCC Single Crystals: A Mesoscopic Approach, Acta Mater., Vol. 46, No. 9, pp. 3221-3235. https://doi.org/10.1016/S1359-6454(98)00006-8
  5. S. Plimpton, 1995, Fast Parallel Algoriths for Short-Range Molecular Dyanmics, J. Comput. Phys., Vol. 117, No. 1, pp. 1-19. https://doi.org/10.1006/jcph.1995.1039
  6. M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, M. Asta, 2003, Development of New Interatomic Potentials Appropriate for Crystalline and Liquid Iron, Philos. Mag., Vol. 83, No. 35, pp. 3977-3994. https://doi.org/10.1080/14786430310001613264
  7. J. Chaussidon, M. Fivel, D. Rodney, 2006, The Glide of Screw Dislocations in BCC Fe: Atomistic Static and Dynamic Simulations, Acta Mater., Vol. 54, No. 13, pp. 3407-3416. https://doi.org/10.1016/j.actamat.2006.03.044
  8. L. Ventelon, F. Willaime, 2010, Generalized Stacking-Faults and Screw-Dislocation Core-Structure in BCC Iron: A Comparison between Ab Initio Calculations and Empirical Potentials, Philos. Mag., Vol. 90, No. 7-8, pp. 1063-1074. https://doi.org/10.1080/14786431003668793
  9. P. A. Gordon, T. Neeraj, M. I. Mendelev, 2011, Screw Dislocation Mobility in BCC Metals: A Refined Potential Description for Α-Fe, Philos. Mag., Vol. 91 , No. 30, pp. 3931-3945. https://doi.org/10.1080/14786435.2011.597947
  10. P. A. Gordon, T. Neeraj, Y. Li, J. Li, 2010, Screw Dislocation Mobility in BCC Metals: The Role of the Compact Core on Double-Kink Nucleation, Modell. Simul. Mater. Sci. Eng., Vol. 18, No. 8, pp. 085008-085021. https://doi.org/10.1088/0965-0393/18/8/085008
  11. J. Marian, W. Cai, V. V. Bulatov, 2004, Dynamic Transitions from Smooth to Rough to Twinning in Dislocation Motion, Nat. Mater., Vol. 3, No. 3, pp. 158-163. https://doi.org/10.1038/nmat1072
  12. A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce, V. V. Bulatov, 2007, Enabling Strain Hardening Simulations with Dislocation Dynamics, Modell. Simul. Mater. Sci. Eng., Vol. 15, No. 6, pp. 553-595. https://doi.org/10.1088/0965-0393/15/6/001