SUBTOURNAMENTS ISOMORPHIC TO \boldsymbol{W}_{5} OF AN INDECOMPOSABLE TOURNAMENT

Houmem Belkhechine, Imed Boudabbous, and Kaouthar Hzami

Abstract

We consider a tournament $T=(V, A)$. For each subset X of V is associated the subtournament $T(X)=(X, A \cap(X \times X))$ of T induced by X. We say that a tournament T^{\prime} embeds into a tournament T when T^{\prime} is isomorphic to a subtournament of T. Otherwise, we say that T omits T^{\prime}. A subset X of V is a clan of T provided that for $a, b \in X$ and $x \in V \backslash X,(a, x) \in A$ if and only if $(b, x) \in A$. For example, $\emptyset,\{x\}(x \in V)$ and V are clans of T, called trivial clans. A tournament is indecomposable if all its clans are trivial. In 2003, B. J. Latka characterized the class \mathcal{T} of indecomposable tournaments omitting a certain tournament W_{5} on 5 vertices. In the case of an indecomposable tournament T, we will study the set $W_{5}(T)$ of vertices $x \in V$ for which there exists a subset X of V such that $x \in X$ and $T(X)$ is isomorphic to W_{5}. We prove the following: for any indecomposable tournament T, if $T \notin \mathcal{T}$, then $\left|W_{5}(T)\right| \geq|V|-2$ and $\left|W_{5}(T)\right| \geq|V|-1$ if $|V|$ is even. By giving examples, we also verify that this statement is optimal.

1. Introduction

A tournament $T=(V(T), A(T))$ (or $(V, A))$ consists of a finite set V of vertices together with a set A of ordered pairs of distinct vertices, called arcs, such that for all $x \neq y \in V,(x, y) \in A$ if and only if $(y, x) \notin A$. The order of T, denoted by $|T|$, is the cardinality of $V(T)$. Given a tournament $T=(V, A)$, with each subset X of V is associated the subtournament $T(X)=(X, A \cap$ $(X \times X))$ of T induced by X. For $X \subseteq V$ (resp. $x \in V$), the subtournament $T(V \backslash X)($ resp. $T(V \backslash\{x\}))$ is denoted by $T-X($ resp. $T-x)$. Let $T=(V, A)$ and $T^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ be two tournaments. A bijection f from V onto V^{\prime} is an isomorphism from T onto T^{\prime} provided that for all $x, y \in V,(x, y) \in A$ if and only if $(f(x), f(y)) \in A^{\prime}$. The tournaments T and T^{\prime} are then said to be isomorphic, which is denoted by $T \simeq T^{\prime}$. An isomorphism from a tournament T onto itself is called an automorphism of T. We say that T^{\prime} embeds into T when T^{\prime} is isomorphic to a subtournament of T. Otherwise, we say that T omits T^{\prime}. With each tournament $T=(V, A)$ is associated its dual tournament

[^0]$T^{\star}=\left(V, A^{\star}\right)$, where $A^{\star}=\{(x, y):(y, x) \in A\}$. The tournament T is then said to be self-dual when $T \simeq T^{\star}$. For every $x \neq y \in V$, the notation $x \longrightarrow y$ signifies that $(x, y) \in A$. Moreover, for every $x \in V$ and $Y \subseteq V \backslash\{x\}, x \longrightarrow Y$ (resp. $Y \longrightarrow x$) means that $x \longrightarrow y$ (resp. $y \longrightarrow x$) for every $y \in Y$. For every $x \in V$, we set $N_{T}^{+}(x)=\{y \in V: x \longrightarrow y\}$ and $N_{T}^{-}(x)=\{y \in V: y \longrightarrow x\}$. Furthermore, the score of a vertex x of T, denoted by $s_{T}(x)$, is the cardinality of $N_{T}^{+}(x)$.

Given a tournament $T=(V, A)$, a subset I of V is a clan [6] (or an interval $[11,16])$ of T provided that for every $x \in V \backslash I, x \longrightarrow I$ or $I \longrightarrow x$. For example, $\emptyset,\{x\}$, where $x \in V$, and V are clans of T, called trivial clans. A tournament is then said to be indecomposable $[11,16]$ (or primitive $[6]$) if all its clans are trivial and it is decomposable otherwise. Notice that a tournament T and its dual T^{\star} have the same clans, in particular, T^{\star} is indecomposable precisely if the same holds for T.

The main result of this paper, presented in [2] without proof, concerns the subtournaments of an indecomposable tournament T which are isomorphic to a tournament W_{5} defined on $\{0, \ldots, 4\}$ by $A\left(W_{5}-4\right)=\{(i, j): 0 \leq i<j \leq$ $3\}$ and $N_{W_{5}}^{+}(4)=\{0,2\}$. Note that the tournament W_{5} is the tournament $W_{2 n+1}$, introduced in Section 3, by taking $n=2$ (see Figure 3). In 2003, B. J. Latka characterized the indecomposable tournaments omitting W_{5} (see Theorem 3.4). Many classes of tournaments defined by means of embedding, involving inevitable configurations or morphological descriptions, have been studied by several authors $[1,10,12,13]$. The aim of this paper is to examine the set $W_{5}(T)$ of the vertices x of an indecomposable tournament T for which there exists a subset $X \in\binom{V(T)}{5}$ such that $x \in X$ and $T(X) \simeq W_{5}$. So, notice that almost all tournaments $T=(V, A)$ verify $W_{5}(T)=V$. It is an elementary exercise to show that. Note also that if T satisfies a certain extension axiom, then it satisfies $W_{5}(T)=V$. The extension axioms are introduced in $[8,9]$, as a first order logic sentences, for the study of 0-1 laws. These axioms form an important tool in the study of the random aspects of finite structures, each of these axioms is satisfied by almost all these structures [5, 8, 9]. We recall these axioms in the case of tournaments. A tournament $T=(V, A)$ is r existentially closed (or r-e.c. [3]), where $r \in \mathbb{N}$, when it satisfies the r-extension axiom: for all $X \in\binom{V}{r}$ and $Y \subseteq X$, there is a vertex $x \in V \backslash X$ such that $N_{T(X \cup\{x\})}^{+}(x)=Y$. For $r \in \mathbb{N}$, almost all tournaments are r-e.c. $[3,8,9]$. As a 4-e.c. tournament T satisfies $W_{5}(T)=V(T)$, then almost all tournaments T satisfy $W_{5}(T)=V(T)$. As we are interested in indecomposable tournaments, which is the case of almost all tournaments [7], we deduce the following fact.

Fact 1.1. Almost all the indecomposable tournaments T satisfy $W_{5}(T)=V(T)$.

Note that these facts extend in a natural way when one considers a tournament other than W_{5}.

In this paper, we focus on the tournament W_{5}, we establish the following theorem and we verify that it is optimal.

Theorem 1.2. Let T be an indecomposable tournament. If W_{5} embeds into T, then $\left|W_{5}(T)\right| \geq|T|-2$. If, moreover, $|T|$ is even, then $\left|W_{5}(T)\right| \geq|T|-1$.

2. The indecomposable tournaments

Definition. Given a tournament $T=(V, A)$, with each subset X of V, such that $|X| \geq 3$ and $T(X)$ is indecomposable, are associated the following subsets of $V \backslash X$.

- $[X]=\{x \in V \backslash X: x \longrightarrow X$ or $X \longrightarrow x\}$.
- For every $u \in X, X(u)=\{x \in V \backslash X:\{u, x\}$ is a clan of $T(X \cup\{x\})\}$.
- $\operatorname{Ext}(X)=\{x \in V \backslash X: T(X \cup\{x\})$ is indecomposable $\}$.

Lemma $2.1([6])$. Let $T=(V, A)$ be a tournament and let X be a subset of V such that $|X| \geq 3$ and $T(X)$ is indecomposable. The nonempty elements of the family $\{X(u): u \in X\} \cup\{\operatorname{Ext}(X),[X]\}$ constitute a partition of $V \backslash X$ and the following assertions are satisfied.

- Let $u \in X, x \in X(u)$ and $y \in V \backslash(X \cup X(u))$. If $T(X \cup\{x, y\})$ is decomposable, then $\{u, x\}$ is a clan of $T(X \cup\{x, y\})$.
- Let $x \in[X]$ and $y \in V \backslash(X \cup[X])$. If $T(X \cup\{x, y\})$ is decomposable, then $X \cup\{y\}$ is a clan of $T(X \cup\{x, y\})$.
- Let $x \neq y \in \operatorname{Ext}(X)$. If $T(X \cup\{x, y\})$ is decomposable, then $\{x, y\}$ is a clan of $T(X \cup\{x, y\})$.

From this lemma follows the next result.
Corollary 2.2 ([6]). Let $T=(V, A)$ be an indecomposable tournament. If X is a subset of V such that $|X| \geq 3,|V \backslash X| \geq 2$ and $T(X)$ is indecomposable, then there are distinct $x, y \in V \backslash X$ such that $T(X \cup\{x, y\})$ is indecomposable.

We also recall the following result concerning the indecomposable tournaments.

Lemma 2.3 ([15]). Let $T=(V, A)$ be an indecomposable tournament. If X is a subset of V such that $|X| \geq 3,|V \backslash X| \geq 4$ and $T(X)$ is indecomposable, then there are distinct $x, y \in V \backslash X$ such that $T-\{x, y\}$ is indecomposable.

3. The critical tournaments and Latka's theorem

Given an indecomposable tournament T with $V(T) \neq \emptyset, T$ is said to be critical if for all vertex x of T, the tournament $T-x$ is decomposable. The critical tournaments are one of the tools of the proof of Theorem 1.2. Moreover, an important part of these tournaments form the class of indecomposable tournaments of order >7 and omitting W_{5} due to B. J. Latka [12]. In order to present the characterization of the critical tournaments due to J. H.

Schmerl and W. T. Trotter [16], we introduce the following notations and tournaments. A transitive tournament is a tournament omitting the tournament $C_{3}=(\{0,1,2\},\{(0,1),(1,2),(2,0)\})$. For $n \in \mathbb{N}$, we set $\mathbb{N}_{n}=\{0, \ldots, n\}$, $2 \mathbb{N}_{n}=\left\{2 i: i \in \mathbb{N}_{n}\right\}$ and for every finite set X of \mathbb{N}, we denote by \underline{X} the transitive tournament defined on X by $A(\underline{X})=\{(i, j) \in X \times X: i<j\}$. Now, we introduce the tournaments $T_{2 n+1}, U_{2 n+1}$ and $W_{2 n+1}$ defined on $\mathbb{N}_{2 n}$, where $n \geq 2$, as follows.
(1) $A\left(T_{2 n+1}\right)=\{(i, j): j-i \in\{1, \ldots, n\} \bmod 2 n+1\}$ (see Figure 1).
(2) $U_{2 n+1}\left(\mathbb{N}_{n}\right)=\mathbb{N}_{n}, U_{2 n+1}^{\star}\left(\mathbb{N}_{2 n} \backslash \mathbb{N}_{n}\right)=\mathbb{N}_{2 n} \backslash \mathbb{N}_{n}$ and for $i \in \mathbb{N}_{n-1}$, $\{i+1, \ldots, n\} \longrightarrow i+n+1 \longrightarrow \mathbb{N}_{i}$ (see Figure 2).
(3) $W_{2 n+1}\left(\mathbb{N}_{2 n-1}\right)=\underline{\mathbb{N}_{2 n-1}}$ and $N_{W_{2 n+1}}^{+}(2 n)=2 \mathbb{N}_{n-1}$ (see Figure 3).

Figure 1. The tournament $T_{2 n+1}$.

Figure 2. The tournament $U_{2 n+1}$.

Proposition 3.1 ([16]). Up to isomorphisms, the critical tournaments are the tournaments $T_{2 n+1}, U_{2 n+1}$ and $W_{2 n+1}$, where $n \geq 2$.

Notice that the critical tournaments are self-dual and recall the remarks below, which follow easily from the definitions of these tournaments.

Figure 3. The tournament $W_{2 n+1}$.

Remark 3.2. Up to isomorphisms, the indecomposable subtournaments of $T_{2 n+1}$ (resp. $U_{2 n+1}, W_{2 n+1}$) on at least 5 vertices, where $n \geq 2$, are the tournaments $T_{2 m+1}$ (resp. $U_{2 m+1}, W_{2 m+1}$), where $2 \leq m \leq n$. In particular, for all integers $p, q, l \geq 2$, the tournaments $T_{2 p+1}, U_{2 q+1}$ and $W_{2 l+1}$ are incomparable with respect to the embedding.

Remark 3.3. Let $T=\left(\mathbb{N}_{6}, A\right)$ be an indecomposable tournament such that $T\left(\mathbb{N}_{4}\right)=U_{5}$. The tournament T is isomorphic to U_{7} if and only if, by interchanging the vertices 5 and 6 , one of the six following configurations occurs.

- $N_{T}^{+}(5)=\{0,1,2\}$ and $N_{T}^{+}(6)=\{5\}$.
- $N_{T}^{+}(5)=\{1,2,6\}$ and $N_{T}^{+}(6)=\{0\}$.
- $N_{T}^{+}(5)=\{1,2,3\}$ and $N_{T}^{+}(6)=\{0,3,5\}$.
- $N_{T}^{+}(5)=\{2,3,6\}$ and $N_{T}^{+}(6)=\{1,3,0\}$.
- $N_{T}^{+}(5)=\{2,3,4\}$ and $N_{T}^{+}(6)=\{0,1,3,4,5\}$.
- $N_{T}^{+}(5)=\{3,4,6\}$ and $N_{T}^{+}(6)=\{0,1,2,3,4\}$.

In order to present the characterization of the indecomposable tournaments omitting W_{5}, due to B. J. Latka, we also introduce the Paley tournament P_{7} defined on \mathbb{N}_{6} by $A\left(P_{7}\right)=\{(i, j): j-i \in\{1,2,4\} \bmod 7\}$. Notice that for every $x \neq y \in \mathbb{N}_{6}, P_{7}-x \simeq P_{7}-y$ and set $B_{6}=P_{7}-6$. Moreover, for all $x \neq y \in \mathbb{N}_{5}, B_{6}-x \simeq B_{6}-y \simeq U_{5}$. Notice also that the tournaments B_{6} and P_{7} are self-dual.

Theorem 3.4 ([12]). Up to isomorphisms, the indecomposable tournaments on at least 5 vertices and omitting W_{5} are the tournaments $B_{6}, P_{7}, T_{2 n+1}$ and $U_{2 n+1}$, where $n \geq 2$.

With this characterization, we obtain the following statement of Theorem 1.2: Let T be an indecomposable tournament of order ≥ 5 such that $T \not \approx B_{6}$, $P_{7}, T_{2 n+1}$ or $U_{2 n+1}$ for $n \geq 2$. Then $\left|W_{5}(T)\right| \geq|T|-2$. If, moreover, $|T|$ is even, then $\left|W_{5}(T)\right| \geq|T|-1$.

Given five distinct vertices $x_{i}\left(i \in \mathbb{N}_{4}\right)$ of a tournament T. For convenience, we write $T\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \simeq W_{5}$ to signify that the bijection $\tau: i \mapsto x_{i}$ is
an isomorphism from W_{5} onto $T\left(\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}\right)$. Similarly, for another choice of five distinct vertices $y_{i}\left(i \in \mathbb{N}_{4}\right)$ of T, we write $T\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \simeq$ $T\left(y_{0}, y_{1}, y_{2}, y_{3}, y_{4}\right)$ to signify that the bijection $\sigma: x_{i} \mapsto y_{i}$ is an isomorphism from $T\left(\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}\right)$ onto $T\left(\left\{y_{0}, y_{1}, y_{2}, y_{3}, y_{4}\right\}\right)$.

4. The minimal tournaments

The minimal tournaments are involved in the proof of Theorem 1.2. These tournaments have been introduced in 1998 by A. Cournier and P. Ille [4] as follows. Given an indecomposable tournament $T=(V, A)$ and two distinct vertices $x \neq y \in V, T$ is said to be minimal for x and for y (or $\{x, y\}$-minimal) whenever for every proper subset X of $V(X \neq V)$, if $\{x, y\} \subset X(|X| \geq 3)$, then $T(X)$ is decomposable. We say that T is minimal when there exist $x \neq$ $y \in V(T)$ such that T is $\{x, y\}$-minimal. A. Cournier and P. Ille characterized the minimal tournaments. In order to recall this characterization, we introduce the tournaments F_{n} and G_{n} in the following manner.
(1) For $n \geq 4, F_{n}$ is defined on \mathbb{N}_{n-1} as follows: for $i, j \in \mathbb{N}_{n-1},(i, j) \in$ $A\left(F_{n}\right)$ if and only if $j=i+1$ or $i \geq j+2$ (see Figure 4).
(2) For $n \geq 6, G_{n}$ is defined on \mathbb{N}_{n-1} as follows: $G_{n}\left(\mathbb{N}_{n-3}\right)=F_{n-2}$, $N_{G_{n}}^{+}(n-2)=\{n-3\}$ and $N_{G_{n}}^{+}(n-1)=\{n-2\}$ (see Figure 5).

Figure 4. The tournament F_{n}.

Proposition 4.1 ([4]). Up to isomorphisms, the minimal tournaments of order ≥ 3 are the tournaments $C_{3}, U_{5}, W_{5}, F_{n}, G_{n}$ and G_{n}^{\star}, where $n \geq 6$.

Corollary 4.2. Given a minimal tournament T of order $n \geq 6$, we have $\left|W_{5}(T)\right| \geq n-1$.

Proof. As W_{5} is self-dual, it suffices to prove the result for the tournaments F_{n} and G_{n} for $n \geq 6$. For $n \geq 5$, we have $\left|W_{5}\left(F_{n}\right)\right|=n$ because for all $i \in \mathbb{N}_{n-5}, F_{n}(i+3, i+4, i, i+1, i+2) \simeq W_{5}$. For $n=6,\left|W_{5}\left(G_{6}\right)\right| \geq 5$ because $G_{6}(1,2,5,4,3) \simeq W_{5}$. For $n \geq 7,\left|W_{5}\left(G_{n}\right)\right|=n$ because $G_{n}(n-5, n-4, n-$ $1, n-2, n-3) \simeq W_{5}$ and $\left|W_{5}\left(G_{n}\left(\mathbb{N}_{n-3}\right)\right)\right|=\left|W_{5}\left(F_{n-2}\right)\right|=n-2$.

Figure 5. The tournament G_{n}.

5. Proof of Theorem 1.2 for $|T| \leq 8$

Theorem 1.2 is trivial for $|T| \leq 7$. In this section, we establish this theorem for $|T|=8$. Up to isomorphisms, there are 6880 tournaments of 8 vertices, 3785 tournaments of them are indecomposable [14], but our verification, made by hand, is not exhaustive. We begin by the case where B_{6} embeds into T. So, notice the following additional remarks concerning B_{6} and P_{7}. The Paley tournament P_{7} is regular: for every $x \in \mathbb{N}_{6}, s_{P_{7}}(x)=3$. The tournament B_{6} is quasi-regular: for every $x \in \mathbb{N}_{5}, s_{B_{6}}(x)=2$ if $x \in\{2,4,5\}$, and $s_{B_{6}}(x)=3$ if $x \in\{0,1,3\}$. Moreover, the automorphism group of B_{6} is generated by the permutation $\pi=(013)(254)$.

Lemma 5.1. If B_{6} embeds into an indecomposable tournament T on 7 vertices and if $T \not 千 P_{7}$, then $\left|W_{5}(T)\right|=7$.
Proof. We set $V(T)=\mathbb{N}_{6}$ and $T\left(\mathbb{N}_{5}\right)=B_{6}$. By interchanging T and T^{\star}, we can assume that $s_{T}(6) \leq 3$. The automorphisms of B_{6} restrict the proof to the following cases. When $s_{T}(6)=1$, we can assume that $N_{T}^{+}(6)=\{0\}$ or $\{2\}$. If $N_{T}^{+}(6)=\{0\}$, then $T(1,5,2,6,0) \simeq T(2,3,4,6,0) \simeq W_{5}$. If $N_{T}^{+}(6)=\{2\}$, then $T(0,1,6,2,3) \simeq T(5,0,6,2,4) \simeq W_{5}$. When $s_{T}(6)=2$, we can assume that $N_{T}^{+}(6)=\{4,5\},\{0,1\},\{0,5\},\{3,5\}$ or $\{1,5\}$. If $N_{T}^{+}(6)=\{1,5\}$, then T is decomposable because $6 \in \mathbb{N}_{5}(4)$. If $N_{T}^{+}(6)=\{4,5\}$, then $T(3,0,6,4,1) \simeq$ $T(0,1,2,6,5) \simeq W_{5}$. If $N_{T}^{+}(6)=\{0,1\}$, then $T(3,5,6,0,2) \simeq T(3,4,5,6,1) \simeq$ W_{5}. If $N_{T}^{+}(6)=\{0,5\}$, then $T(2,3,4,6,0) \simeq T(4,1,6,5,2) \simeq W_{5}$. If $N_{T}^{+}(6)=$
$\{3,5\}$, then $T(0,1,2,6,5) \simeq T(1,2,6,3,4) \simeq W_{5}$. When $s_{T}(6)=3$, we can assume that $N_{T}^{+}(6)=\{0,1,2\},\{0,1,3\},\{0,1,4\},\{0,1,5\},\{0,4,5\},\{1,4,5\}$, $\{2,4,5\}$ or $\{3,4,5\}$. If $N_{T}^{+}(6)=\{0,1,3\}$, then $T \simeq P_{7}$. If $N_{T}^{+}(6)=\{1,4,5\}$ (resp. $N_{T}^{+}(6)=\{0,4,5\}$), then T is decomposable because $6 \in \mathbb{N}_{5}(4)$ (resp. $\left.6 \in \mathbb{N}_{5}(3)\right)$. If $N_{T}^{+}(6)=\{2,4,5\}$, then $T(1,3,6,5,0) \simeq T(0,6,2,4,5) \simeq$ W_{5}. If $N_{T}^{+}(6)=\{0,1,2\}$, then $T(6,0,1,2,4) \simeq T(3,4,5,6,1) \simeq W_{5}$. If $N_{T}^{+}(6)=\{0,1,5\}$, then $T(3,6,5,0,1) \simeq T(2,3,4,6,0) \simeq W_{5}$. If $N_{T}^{+}(6)=$ $\{0,1,4\}$, then $T(3,5,6,0,2) \simeq T(6,0,4,1,2) \simeq W_{5}$. If $N_{T}^{+}(6)=\{3,4,5\}$, then $T(6,3,4,5,0) \simeq T(0,1,2,6,5) \simeq W_{5}$.

Lemma 5.2. If P_{7} embeds into an indecomposable tournament T on 8 vertices, then $\left|W_{5}(T)\right|=8$.

Proof. We set $V(T)=\mathbb{N}_{7}$ and $T\left(\mathbb{N}_{6}\right)=P_{7}$. By interchanging T and T^{\star}, we can assume that $s_{T}(7) \leq 3$. First, assume that $s_{T}(7)=1$. We take $N_{T}^{+}(7)=\{x\}$ and $y \in \mathbb{N}_{6} \backslash\{x\}$. We have $T-\{7, y\} \simeq B_{6}, T-y \nsimeq P_{7}$ and $T-y$ is indecomposable by Lemma 2.1. It follows from Lemma 5.1 that $\left|W_{5}(T-y)\right|=7$. By changing y by $z \in \mathbb{N}_{6} \backslash\{x, y\}$, we obtain $\left|W_{5}(T-z)\right|=7$. Therefore, $\left|W_{5}(T)\right|=8$. Second, assume that $s_{T}(7)=2$ and set $N_{T}^{+}(7)=\{x, y\}$. For $\alpha \in\{x, y\}$, we have $T-\{7, \alpha\} \simeq B_{6}, T-\alpha \nsucceq P_{7}$ and $T-\alpha$ is indecomposable by Lemma 2.1. It follows from Lemma 5.1 that $\left|W_{5}(T-\alpha)\right|=7$ and hence $\left|W_{5}(T)\right|=8$. Finally, assume that $s_{T}(7)=3$, set $N_{T}^{+}(7)=\{x, y, z\}$ and let $\alpha \in\{x, y, z\}$. We have $T(X) \simeq B_{6}$, where $X=\mathbb{N}_{6} \backslash\{\alpha\}$ and $T-\alpha \not 千 P_{7}$. Moreover, $T-\alpha$ is indecomposable. Otherwise, as $7 \notin[X]$, then by Lemma 2.1, there is $u \in X$ such that $7 \in X(u)$. Since $s_{T-\alpha}(7)=2$, then $s_{T(X)}(u)=2$. As moreover, $\{u, 7\} \longrightarrow \alpha$, then $\{u, 7\}$ is a nontrivial clan of T, which contradicts the indecomposability of T. It follows from Lemma 5.1 that $\left|W_{5}(T-\alpha)\right|=7$ and thus $\left|W_{5}(T)\right|=8$.

Lemma 5.3. If B_{6} embeds into an indecomposable tournament T on 8 vertices, then $\left|W_{5}(T)\right| \geq 7$.

Proof. We set $V(T)=\mathbb{N}_{7}$ and $T\left(\mathbb{N}_{5}\right)=B_{6}$. By Lemma 5.1 and Lemma 5.2 we obtain the following remark. If $\operatorname{Ext}\left(\mathbb{N}_{5}\right) \neq \emptyset$, then $\left|W_{5}(T)\right| \geq 7$. So, assume that $\operatorname{Ext}\left(\mathbb{N}_{5}\right)=\emptyset$. By Lemma 2.1, assume first that $6 \in \mathbb{N}_{5}(u)$, where $u \in \mathbb{N}_{5}$, and that $7 \in\left[\mathbb{N}_{5}\right]$. By interchanging T and T^{\star}, we can assume that $7 \longrightarrow \mathbb{N}_{5}$ and hence $6 \longrightarrow 7$ by Lemma 2.1. We have $T(X) \simeq B_{6}$ where $X=\mathbb{N}_{6} \backslash\{u\}$. Since $s_{T-u}(7)=5 \notin\{2,3,4,0,6\}$, then $7 \in \operatorname{Ext}(X)$ by Lemma 2.1. It follows, from the remark above, that $\left|W_{5}(T)\right| \geq 7$. Now, suppose that $6 \in \mathbb{N}_{5}(u)$ and $7 \in \mathbb{N}_{5}(v)$, where $u \neq v \in \mathbb{N}_{5}$. By interchanging T and T^{\star} and by considering the automorphisms of B_{6}, we may assume that $u \in\{0,1,3,4\}$ and $v=5$. We have $T(Y) \simeq U_{5}$ and $7 \in Y(5)$, where $Y=\mathbb{N}_{5} \backslash\{u\}$. Moreover, $6 \notin Y(5)$. Indeed, if $u=1$ or 4 , then $5 \longrightarrow 0 \longrightarrow 6$ and if $u=0$ or 3 , then $6 \longrightarrow 4 \longrightarrow 5$. As furthermore, $\{5,7\}$ is not a clan of $T-u$, it ensues, from Lemma 2.1, that $T-u$ is indecomposable. Therefore, $\left|W_{5}(T)\right| \geq 7$ by the remark above.

Lemma 5.4. Let $T=\left(\mathbb{N}_{6}, A\right)$ be an indecomposable tournament such that $T\left(\mathbb{N}_{4}\right)=U_{5}$. If $T \not 千 U_{7}$ and $\operatorname{Ext}\left(\mathbb{N}_{4}\right)=\emptyset$, then $W_{5}(T) \cap\{3,4\} \neq \emptyset$.
Proof. Notice first that $\operatorname{Ext}\left(\mathbb{N}_{4}\right)=\emptyset$ if and only if $\left\{N_{T-6}^{+}(5), N_{T-5}^{+}(6)\right\} \subset$ $\mathcal{C}=\left\{\emptyset, \mathbb{N}_{4},\{0\},\{1,2\},\{2,3\},\{3,4\},\{0,3\},\{0,1,2\},\{1,2,3\},\{2,3,4\},\{0,1,3\}\right.$, $\{0,1,3,4\}\}$. As $T-6$ is decomposable, then $T \not \approx P_{7}$. Similarly, $T \nsim T_{7}$ by Remark 3.2. It follows from Theorem 3.4 that W_{5} embeds into T. If $T-\{3,4\} \nsucceq W_{5}$, then there exists $X \in\binom{\mathbb{N}_{6}}{5}$ such that $T(X) \simeq W_{5}$ and $X \cap\{3,4\} \neq \emptyset$. So, assume that $T-\{3,4\} \simeq W_{5}$. Since $T\left(\mathbb{N}_{2}\right)=\underline{\mathbb{N}_{2}}$, then, by considering the subtournaments of W_{5} which are isomorphic to $\overline{\mathbb{N}_{2}}$ and by taking $5 \longrightarrow 6$, we obtain that $W_{5} \simeq T(5,0,6,1,2), T(5,0,2,6, \overline{1})$, $T(6,0,1,2,5), T(1,5,2,6,0), T(0,1,2,5,6), T(0,1,6,2,5)$ or $T(0,5,1,2,6)$. If $W_{5} \simeq T(6,0,1,2,5)$ or $T(1,5,2,6,0)\left(\right.$ resp. $W_{5} \simeq T(5,0,6,1,2), T(5,0,2,6,1)$ or $T(0,1,2,5,6))$, then $N_{T-6}^{+}(5) \notin \mathcal{C}\left(\right.$ resp. $\left.N_{T}^{+}(6) \notin \mathcal{C}\right)$. If $W_{5} \simeq T(0,1,6,2,5)$, then $N_{T}^{+}(6)=\{2,3\}$ or $\{2,3,4\}$ and $N_{T-6}^{+}(5)=\{0\}$ or $\{0,3\}$. If $N_{T}^{+}(6)=$ $\{2,3\}$, then $T(4,1,5,6,2) \simeq W_{5}$. If $N_{T}^{+}(6)=\{2,3,4\}$, then $T(4,1,3,5,6) \simeq W_{5}$ when $3 \longrightarrow 5$ and $T(1,5,6,3,0) \simeq W_{5}$ when $5 \longrightarrow 3$. Finally, if $W_{5} \simeq$ $T(0,5,1,2,6)$, then $N_{T}^{+}(6)=\{0,1,3\}$ or $\{0,1,3,4\}$ and $N_{T-6}^{+}(5)=\{1,2\}$ or $\{1,2,3\}$. If $N_{T-6}^{+}(5)=\{1,2\}\left(\right.$ resp. $\left.N_{T-6}^{+}(5)=\{1,2,3\}\right)$, then $T(2,4,6,3,5) \simeq$ W_{5} (resp. $\left.T(4,5,6,1,2) \simeq W_{5}\right)$ when $4 \longrightarrow 6$ and $T(6,4,1,3,5) \simeq W_{5}$ (resp. $\left.T(6,4,3,0,5) \simeq W_{5}\right)$ when $6 \longrightarrow 4$.

Proposition 5.5. Given an indecomposable tournament T of order 8, we have $\left|W_{5}(T)\right| \geq 7$.
Proof. Suppose, by contradiction, that there are $x \neq y \in V(T)$ such that $\{x, y\} \cap W_{5}(T)=\emptyset$. Let X be a minimal subset of $V(T)$ such that $\{x, y\} \subset X$ $(|X| \geq 3)$ and $T(X)$ is indecomposable. $T(X)$ is $\{x, y\}$-minimal. By Proposition 4.1 and Corollary $4.2, T(X) \simeq C_{3}$ or U_{5}. If $T(X) \simeq C_{3}$, then, by Lemma 2.3 and Theorem 3.4, B_{6} embeds into T. By Lemma 5.3, $\left|W_{5}(T)\right| \geq 7$, a contradiction. Therefore, $T(X) \simeq U_{5}$. We take $V(T)=\mathbb{N}_{7}$ and $T(X)=$ U_{5}. By observing the subtournaments of U_{5} which are isomorphic to C_{3}, we obtain that $\{x, y\}=\{3,4\}$. We have $\operatorname{Ext}\left(\mathbb{N}_{4}\right)=\emptyset$. Otherwise, by Theorem 3.4, there is $\alpha \in\{5,6,7\}$ such that $T\left(\mathbb{N}_{4} \cup\{\alpha\}\right) \simeq B_{6}$, contradiction by Lemma 5.3. By Corollary 2.2, we may assume that $T-7$ is indecomposable. If $T-7 \nsucceq U_{7}$, then, by Lemma 5.4, we have $W_{5}(T-7) \cap$ $\{3,4\} \neq \emptyset$, a contradiction. To finish, it remains to examine the case where $T-7 \simeq U_{7}$. By interchanging T and T^{\star} and by using Remark 3.3, it suffices to consider the following three cases: $\left(N_{T-7}^{+}(5), N_{T-7}^{+}(6)\right)=(\{0,1,2\},\{5\})$, $(\{1,2,6\},\{0\})$ or $(\{1,2,3\},\{0,3,5\})$. If $\left(N_{T-7}^{+}(5), N_{T-7}^{+}(6)\right)=(\{0,1,2\},\{5\})$ (resp. $(\{1,2,6\},\{0\}),(\{1,2,3\},\{0,3,5\}))$, then $5 \in \mathbb{N}_{4}(0)$ and $6 \in\left[\mathbb{N}_{4}\right]$ (resp. $5 \in \mathbb{N}_{4}(0)$ and $6 \in \mathbb{N}_{4}(3), 5 \in \mathbb{N}_{4}(1)$ and $\left.6 \in \mathbb{N}_{4}(3)\right)$. It follows that $7 \in \mathbb{N}_{4}(0)$ or $\left[\mathbb{N}_{4}\right]$ (resp. $7 \in \mathbb{N}_{4}(u)$ for $u \in\{0,3\}, 7 \in \mathbb{N}_{4}(u)$ for $u \in\{1,3\}$). Otherwise, since $\{v, 7\}$, where $v \in\{1,2,3,4\}$ (resp. $v \in\{1,2,4\}, v \in\{0,2,4\}$), and $\left[\mathbb{N}_{6}\right]$ are not clans of T, then, by Lemma 2.1, there is $\alpha \in\{5,6\}$ such that $T-\alpha$ is
indecomposable. By Remark 3.3, $T-\alpha \not 千 U_{7}$, which contradicts Lemma 5.4. Thus, we distinguish the following cases.

- $N_{T-7}^{+}(5)=\{0,1,2\}, N_{T-7}^{+}(6)=\{5\}$ and $7 \in \mathbb{N}_{4}(0)$ or $\left[\mathbb{N}_{4}\right]$. First, suppose that $7 \in \mathbb{N}_{4}(0)$. If $6 \longrightarrow 7$, then $0 \longrightarrow 7$ because $\{5,7\}$ is not a clan of T. Thus, $T(3,0,6,7,1) \simeq W_{5}$, a contradiction. If $7 \longrightarrow 6$, as $\{0,7\}$ is not a clan of T, then $7 \longrightarrow 5$. Thus, $T(3,7,6,5,2) \simeq W_{5}$, a contradiction. Now, assume that $7 \in\left[\mathbb{N}_{4}\right]$. If $7 \longrightarrow \mathbb{N}_{4}$, then $7 \longrightarrow 5$, otherwise $T(5,7,0,1,3) \simeq W_{5}$. Since \mathbb{N}_{6} is not a clan of T, then $6 \longrightarrow 7$ and hence $T(7,4,5,1,6) \simeq W_{5}$, a contradiction. If $\mathbb{N}_{4} \longrightarrow 7$, as $\{6,7\}$ and \mathbb{N}_{6} are not clans of T, then $5 \longrightarrow 7 \longrightarrow 6$ and thus $T(1,3,7,6,5) \simeq$ W_{5}, a contradiction.
- $N_{T-7}^{+}(5)=\{1,2,6\}, N_{T-7}^{+}(6)=\{0\}$ and $7 \in \mathbb{N}_{4}(u)$ for $u \in\{0,3\}$. If $7 \in \mathbb{N}_{4}(0)$ with $7 \longrightarrow 6$ (resp. $7 \in \mathbb{N}_{4}(3)$ with $5 \longrightarrow 7$), as $\{5,7\}$ (resp. $\{6,7\}$) is not a clan of T, then $7 \longrightarrow 0$ (resp. $7 \longrightarrow 3$). It follows from Lemma 2.1 and Remark 3.3 that $T-5$ (resp. $T-6$) is indecomposable and not isomorphic to U_{7}, which contradicts Lemma 5.4. Now, if $7 \in$ $\mathbb{N}_{4}(0)$ with $6 \longrightarrow 7$ (resp. $7 \in \mathbb{N}_{4}(3)$ with $7 \longrightarrow 5$), since $\{0,7\}$ (resp. $\{3,7\}$) is not a clan of T, then $5 \longrightarrow 7$ (resp. $6 \longrightarrow 7$). So, $T(3,5,6,7,1) \simeq W_{5}\left(\right.$ resp. $\left.T(2,4,6,7,5) \simeq W_{5}\right)$, a contradiction.
- $N_{T}^{+}(5)=\{1,2,3\}, N_{T}^{+}(6)=\{0,3,5\}$ and $7 \in \mathbb{N}_{4}(u)$ for $u \in\{1,3\}$. If $7 \in \mathbb{N}_{4}(1)$ and $6 \longrightarrow 7$ (resp. $7 \in \mathbb{N}_{4}(3)$ and $7 \longrightarrow 5$), as $\{5,7\}$ (resp. $\{6,7\}$) is not a clan of T, then $1 \longrightarrow 7$ (resp. $3 \longrightarrow 7$). It ensues from Lemma 2.1 and Remark 3.3 that $T-5$ (resp. $T-6$) is indecomposable and not isomorphic to U_{7}. This contradicts Lemma 5.4. Now, if $7 \in$ $\mathbb{N}_{4}(1)$ and $7 \longrightarrow 6$ (resp. $7 \in \mathbb{N}_{4}(3)$ and $5 \longrightarrow 7$), then $7 \longrightarrow 5$ (resp. $7 \longrightarrow 6$) because $\{1,7\}$ (resp. $\{3,7\}$) is not a clan of T. Therefore, $T(4,7,6,5,2) \simeq W_{5}\left(\right.$ resp. $\left.T(2,4,7,6,5) \simeq W_{5}\right)$, a contradiction.

6. Theorem 1.2: Proof and optimality

Theorem 1.2 Let T be an indecomposable tournament. If W_{5} embeds into T, then $\left|W_{5}(T)\right| \geq|T|-2$. If, moreover, $|T|$ is even, then $\left|W_{5}(T)\right| \geq|T|-1$.

Proof. The result is trivial for $|T| \leq 7$. By Proposition 5.5, we can assume that $|T|=n \geq 9$. First, assume that n is even. Suppose, by contradiction, that $\left|W_{5}(T)\right| \leq n-2$ and consider $x \neq y \in V(T)$ such that $\{x, y\} \cap W_{5}(T)=\emptyset$. Let X be a minimal subset of $V(T)$ such that $\{x, y\} \subset X(|X| \geq 3)$ and $T(X)$ is indecomposable, so that $T(X)$ is $\{x, y\}$-minimal. By Proposition 4.1 and Corollary $4.2, T(X) \simeq C_{3}$ or U_{5}. By applying several times Lemma 2.3, there exists a subset $Y \in\binom{V(T)}{8}$ such that $X \subset Y$ and $T(Y)$ is indecomposable. This contradicts Proposition 5.5. Now, assume that n is odd. If T is critical, then, by Remark 3.2, $T \simeq W_{n}$ and hence $\left|W_{5}(T)\right|=n$. If T is not critical, then there is $x \in V(T)$ such that $T-x$ is indecomposable. We have $|T-x|$ is even and W_{5} embeds into $T-x$ by Theorem 3.4. By the first case, $\left|W_{5}(T-x)\right| \geq n-2$, so that $\left|W_{5}(T)\right| \geq n-2$.

By constructing examples, we verify that Theorem 1.2 is optimal. By Fact 1.1, we only construct for each integer $m \geq 6$, an indecomposable tournament T of order m with $\left|W_{5}(T)\right|=m-1$ and, when m is odd, another indecomposable tournament T^{\prime} of order m with $\left|W_{5}\left(T^{\prime}\right)\right|=m-2$. We then introduce the tournaments $Q_{2 n+3}, R_{2 n+3}$ defined on $\mathbb{N}_{2 n+2}$, where $n \geq 2$, in the following manner.

- $Q_{2 n+3}\left(\mathbb{N}_{2 n}\right)=T_{2 n+1}, N_{Q_{2 n+3}}^{+}(2 n+1)=\{1, \ldots, n\} \cup\{2 n+2\}$ and $N_{Q_{2 n+3}}^{+}(2 n+2)=\mathbb{N}_{2 n}$.
- $R_{2 n+3}-\{2 n+1\}=Q_{2 n+3}-\{2 n+1\}$ and $N_{R_{2 n+3}}^{+}(2 n+1)=\{0,2 n+2\}$.

The tournaments $Q_{2 n+3}, R_{2 n+3}$ and $R_{2 n+3}-\{2 n+2\}$ form the required constructions:
Proposition 6.1. For $n \geq 2$, the tournaments $Q_{2 n+3}, R_{2 n+3}$ and $R_{2 n+3}-$ $\{2 n+2\}$ are indecomposable and satisfy: $W_{5}\left(Q_{2 n+3}\right)=\mathbb{N}_{2 n+2} \backslash\{0, n+1\}$, $W_{5}\left(R_{2 n+3}\right)=\mathbb{N}_{2 n+2} \backslash\{n\}$ and $W_{5}\left(R_{2 n+3}-\{2 n+2\}\right)=\mathbb{N}_{2 n+1} \backslash\{n\}$.
Proof. We begin by verifying the indecomposability of these tournaments by using Lemma 2.1. The tournament $Q_{2 n+3}$ is indecomposable because $Q_{2 n+3}\left(\mathbb{N}_{2 n}\right)$ is indecomposable, $2 n+2 \longrightarrow \mathbb{N}_{2 n}$ and, in this tournament, we have $2 n+1 \in$ $\mathbb{N}_{2 n}(0)$ with $2 n+1 \longrightarrow 2 n+2$. The tournaments $R_{2 n+3}$ and $R_{2 n+3}-\{2 n+2\}$ are indecomposable by remarking that $R_{2 n+3}\left(\mathbb{N}_{2 n}\right)$ is indecomposable, and the vertex $2 n+1 \notin\left[\mathbb{N}_{2 n}\right], 2 n+1 \notin \mathbb{N}_{2 n}(u)$, for a certain $u \in \mathbb{N}_{2 n}$ and $2 n+2 \longrightarrow \mathbb{N}_{2 n}$ with $2 n+1 \longrightarrow 2 n+2$. At present, we verify that $W_{5}\left(Q_{2 n+3}\right)=$ $\mathbb{N}_{2 n+2} \backslash\{0, n+1\}$. Since $Q_{2 n+3}(2 n+1,2 n+2,1,2, n+2) \simeq W_{5}$, then, by Theorem 1.2, it suffices to prove that $\{0, n+1\} \cap W_{5}\left(Q_{2 n+3}\right)=\emptyset$. So, let $x \in\{0, n+1\}$ and suppose, by contradiction, that $x \in W_{5}\left(Q_{2 n+3}\right)$. By Remark 3.2, there exist $i \neq j \in \mathbb{N}_{2 n} \backslash\{x\}$ with $i \longrightarrow j$ and $Q_{2 n+3}(\{x, 2 n+1,2 n+2, i, j\}) \simeq W_{5}$. As $Q_{2 n+3}(\{x, 2 n+1,2 n+2\}) \simeq C_{3}$ and $2 n+2 \longrightarrow \mathbb{N}_{2 n}$, then, by observing the subtournaments of W_{5} which are isomorphic to C_{3}, we obtain that $W_{5} \simeq Q_{2 n+3}(2 n+1,2 n+2, i, j, x), Q_{2 n+3}(2 n+2, x, i, j, 2 n+1)$ or $Q_{2 n+3}(2 n+$ $2, i, j, x, 2 n+1)$. It follows that $x \neq 0$. Otherwise, $\{x, 2 n+1\}=\{0,2 n+1\}$ is not a clan of $Q_{2 n+3}(\{0,2 n+1, j\})$, a contradiction because $2 n+1 \in \mathbb{N}_{2 n}(0)$. If $W_{5} \simeq Q_{2 n+3}(2 n+1,2 n+2, i, j, n+1)$ or $Q_{2 n+3}(2 n+2, n+1, i, j, 2 n+1)$ (resp. $\left.W_{5} \simeq Q_{2 n+3}(2 n+2, i, j, n+1,2 n+1)\right)$, then $i \in N_{Q_{2 n+3}}^{+}(2 n+1) \cap N_{Q_{2 n+3}}^{+}(n+1)$ (resp. $\left.i \in N_{Q_{2 n+3}}^{-}(2 n+1) \cap N_{Q_{2 n+3}}^{-}(n+1)\right)$. A contradiction because $N_{Q_{2 n+3}}^{+}(2 n+$ 1) $\cap N_{Q_{2 n+3}}^{+}(n+1)=N_{Q_{2 n+3}}^{-}(2 n+1) \cap N_{Q_{2 n+3}}^{-}(n+1)=\emptyset$. Now, we verify that $W_{5}\left(R_{2 n+3}\right)=\mathbb{N}_{2 n+2} \backslash\{n\}$. For all $\alpha \in\{n+2, \ldots, 2 n\}$ and for all $\beta \in\{1, \ldots, n-$ $1\}$, we have $R_{2 n+3}(2 n+2, \alpha, 0,1,2 n+1) \simeq R_{2 n+3}(n+1,2 n, 2 n+1,0, \beta) \simeq W_{5}$. Thus, $\mathbb{N}_{2 n+2} \backslash\{n\} \subseteq W_{5}\left(R_{2 n+3}\right)$. So, suppose, by contradiction, that $n \in$ $W_{5}\left(R_{2 n+3}\right)$. Since $R_{2 n+3}-0$ and $R_{2 n+3}-\{2 n+1\}$ omits W_{5}, then there exist $k \neq l \in \mathbb{N}_{2 n+2} \backslash\{0, n, 2 n+1\}$ with $k \longrightarrow l$ and $R_{2 n+3}(\{n, 0,2 n+1, k, l\}) \simeq W_{5}$. Since $R_{2 n+3}(\{0, n, 2 n+1\}) \simeq C_{3}$ and $s_{R_{2 n+3}}(2 n+1)=2$, then, by observing again the subtournaments of W_{5} which are isomorphic to C_{3}, we obtain that $W_{5} \simeq R_{2 n+3}(0, n, k, l, 2 n+1), R_{2 n+3}(0, k, l, n, 2 n+1), R_{2 n+3}(n, k, l, 2 n+1,0)$,
$R_{2 n+3}(k, l, 0, n, 2 n+1), R_{2 n+3}(k, l, 2 n+1,0, n)$, or $R_{2 n+3}(k, l,, n, 2 n+1,0)$. Thus, $R_{2 n+3}(\{0, n, l\})$ is a transitive tournament. This contradicts the fact that for all $l \in \mathbb{N}_{2 n} \backslash\{0, n\}, R_{2 n+3}(\{0, n, l\}) \simeq C_{3}$. Finally we can deduce that $W_{5}\left(R_{2 n+3}-\{2 n+2\}\right)=\mathbb{N}_{2 n+1} \backslash\{n\}$ by Theorem 1.2 and by the fact that $W_{5}\left(R_{2 n+3}\right)=\mathbb{N}_{2 n+2} \backslash\{n\}$.

We end by posing the following problems, motivated by Theorem 1.2, Fact 1.1 and Proposition 6.1.

Problem 6.2. Characterize the indecomposable tournaments T such that $\left|W_{5}(T)\right|=|T|-2$.

Problem 6.3. Characterize the indecomposable tournaments T such that $\left|W_{5}(T)\right|=|T|-1$.

References

[1] H. Belkhechine and I. Boudabbous, Tournois indécomposables et leurs sous-tournois indécomposables à 5 sommets, C. R. Math. Acad. Sci. Paris 343 (2006), no. 11-12, 685-688.
[2] H. Belkhechine, I. Boudabbous, and K. Hzami, Sous-tournois isomorphes à W_{5} dans un tournoi indécomposable, C. R. Math. Acad. Sci. Paris 350 (2012), no. 7-8, 333-337.
[3] A. Benato and K. Cameron, On an adjacency property of almost all tournaments, Discrete Math. 306 (2006), no. 19-20, 2327-2335.
[4] A. Cournier and P. Ille, Minimal indecomposable graphs, Discrete Math. 183 (1998), no. 1-3, 61-80.
[5] H.-D. Ebbinghaus and J. Flum, Finite Model Theory, Springer Monographs in Mathematics, 1999.
[6] A. Ehrenfeucht and G. Rozenberg, Primitivity is hereditary for 2-structures, Theoret. Comput. Sci. 70 (1990), no. 3, 343-358.
[7] P. Erdös, E. Fried, A. Hajnal, and C. Milner, Some remarks on simple tournaments, Algebra Universalis 2 (1972), 238-245.
[8] R. Fagin, Probabilities on finite models, J. Symbolic Logic 41 (1976), no. 1 50-58.
[9] \qquad , Finite-model theory - a personal perspective, Theoret. Comput. Sci. 116 (1993), no. 1, 3-31.
[10] C. Gnanvo and P. Ille, La reconstruction des tournois sans diamants, Z. Math. Logik Grundlag. Math. 38 (1992), no. 3, 283-291.
[11] P. Ille, Indecomposable graphs, Discrete Math. 173 (1997), no. 1-3, 71-78.
[12] B. J. Latka, Structure theorem for tournaments omitting N_{5}, J. Graph Theory 42 (2003), no. 3, 165-192.
[13] G. Lopez and C. Rozy, Reconstruction of binary relations from their restrictions of cardinality 2, 3, 4 and $(n-1)$. I, Z. Math. Logik Grundlag. Math. 38 (1992), no. 1, 27-37.
[14] V. J. Mueller, J. Nesetril, and J. Pelant, Either tournaments or algebras?, Discrete Math. 11 (1975), 37-66.
[15] M. Y. Sayar, Partially critical tournaments and partially critical supports, Contrib. Discrete Math. 6 (2011), no. 1, 52-76.
[16] J. H. Schmerl and W. T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Math. 113 (1993), no. 1-3, 191-205.

Houmem Belkhechine
Département de Mathématiques
Institut Préparatoire aux Études d’Ingénieurs de Bizerte
Université de Carthage
Bizerte, Tunisie
E-mail address: houmem@gmail.com
Imed Boudabbous
Département de Mathématiques
Institut Préparatoire aux Études d'Ingénieurs de Sfax
Université de Sfax
Sfax, Tunisie
E-mail address: imed.boudabbous@gmail.com
Kaouthar Hzami
Département de Mathématiques
Faculté des Sciences de Sfax
Université de Sfax
Sfax, Tunisie
E-mail address: hzamikawthar@gmail.com

[^0]: Received June 21, 2011.
 2010 Mathematics Subject Classification. 05C20, 05C60.
 Key words and phrases. tournament, indecomposable, embedding, critical.

