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ANISOTROPIC QUASILINEAR ELLIPTIC EQUATIONS WITH

VARIABLE EXPONENT

Mihai Mihăilescu and Denisa Stancu-Dumitru

Abstract. We study some anisotropic boundary value problems involv-
ing variable exponent growth conditions and we establish the existence
and multiplicity of weak solutions by using as main argument critical
point theory.

1. Introduction

Materials involving nonhomogenities are usually modelled by energetic func-
tionals of the type

(1)

∫
|∇u(x)|p(x) dx ,

where p(x) > 1 is a continuous function. Such kind of functionals are men-
tioned, for instance, in the work of Ruzicka [18] where they are used to model
an electrorheological fluid. They correspond to the so called a p(x)-Laplace
operator which is described by the formula

∆p(x)u = div(|∇u|p(x)−2∇u) .

However, if we seek for the model of an inhomogeneous material which has
a different behavior on each direction we note that the above energy is not
adequate. In this new case an appropriate form for energetic functionals can
be described by the formula

(2)

∫ ∑

i

|∂xiu|
pi(x) dx ,

where pi(x) > 1 are continuous functions. Functionals of type (2) correspond
to a differential operator of the type

(3)
∑

i

∂xi(|∂xiu|
pi(x)−2∂xiu) ,
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which appears also in a paper by Mihăilescu-Pucci-Rădulescu [11] and more
recently in two papers by Mihăilescu-Moroşanu [9, 10]. Problems involving
operators of type (3) will be called anisotropic partial differential equations
with variable exponent. In the particular case when pi(x) = p(x) for each i
the differential operator (3) becomes

∑
i ∂xi(|∂xiu|

p(x)−2∂xiu) and has similar
properties with the p(x)-Laplace operator.

Motivated by the above discussion, we analyze in this paper the existence
and multiplicity of solutions for a nonhomogeneous anisotropic problem of type

(4)

{
−
∑N

i=1 ∂xi(|∂xiu|
pi(x)−2∂xiu) = f(x, u) for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

where Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary and

pi : Ω → (1,∞) are continuous functions for each i ∈ {1, . . . , N}.

2. A brief overview on variable exponent spaces

Assume Ω ⊂ R
N is an open domain.

Set

C+(Ω) = {h : h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any p ∈ C+(Ω) we define

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x) .

For each p ∈ C+(Ω), we recall the definition of the variable exponent Lebesgue

space:

Lp(·)(Ω) = {u : u is a measurable real-valued function such that
∫
Ω
|u(x)|p(x) dx < ∞}.

This space becomes a Banach space [7, Theorem 2.5] with respect to the Lux-

emburg norm, that is,

|u|p(·) = inf

{
µ > 0 :

∫

Ω

∣∣∣∣
u(x)

µ

∣∣∣∣
p(x)

dx ≤ 1

}
.

Moreover, Lp(·)(Ω) is a reflexive space [7, Corollary 2.7] provided that 1 < p− ≤
p+ < ∞. Furthermore, on such kind of spaces a Hölder type inequality is valid
[7, Theorem 2.1]. More exactly, denoting by Lq(·)(Ω) the conjugate space of
Lp(·)(Ω), where 1

p(x) +
1

q(x) = 1 for any x ∈ Ω, for each u ∈ Lp(·)(Ω) and each

v ∈ Lq(·)(Ω) the Hölder type inequality reads as follows

(5)

∣∣∣∣
∫

Ω

uv dx

∣∣∣∣ ≤
(

1

p−
+

1

q−

)
|u|p(·)|v|q(·) .

An immediate consequence of Hölder’s inequality is connected with some in-
clusions between various Lebesgue spaces involving variable exponent growth
[7, Theorem 2.8]: if 0 < |Ω| < ∞ and p1, p2 are variable exponents, such
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that p1(x) ≤ p2(x) almost everywhere in Ω, then there exists the continuous
embedding Lp2(·)(Ω) →֒ Lp1(·)(Ω), whose norm does not exceed |Ω|+ 1.

An important role in manipulating the generalized Lebesgue-Sobolev spaces
is played by the modular of the Lp(·)(Ω) space, which is the mapping ρp(·) :

Lp(·)(Ω) → R defined by

ρp(·)(u) =

∫

Ω

|u|p(x) dx ,

provided that p+ < ∞. Spaces with p+ = ∞ have been studied by Edmunds,
Lang and Nekvinda [1].

We point out some relations which can be established between the Luxem-
burg norm and the modular. If (un), u ∈ Lp(·)(Ω) and p+ < ∞, then the
following relations hold true

(6) |u|p(·) > 1 ⇒ |u|p
−

p(·) ≤ ρp(·)(u) ≤ |u|p
+

p(·),

(7) |u|p(·) < 1 ⇒ |u|p
+

p(·) ≤ ρp(·)(u) ≤ |u|p
−

p(·),

(8) |un − u|p(·) → 0 ⇔ ρp(·)(un − u) → 0 .

Next, we define the variable exponent Sobolev space W
1,p(·)
0 (Ω) as the closure

of C∞
0 (Ω) under the norm

‖u‖ = |∇u|p(·) .

The space (W
1,p(·)
0 (Ω), ‖·‖) is a separable and reflexive Banach space, provided

that 1 < p− ≤ p+ < ∞. We recall that if Ω is a bounded, open domain in R
N ,

q ∈ C+(Ω) and q(x) < p⋆(x) for all x ∈ Ω, then the embedding

W
1,p(·)
0 (Ω) →֒ Lq(·)(Ω)

is compact and continuous, where p⋆(x) = Np(x)
N−p(x) if p(x) < N or p⋆(x) = +∞

if p(x) ≥ N . We refer to [1, 2, 3, 4, 5, 7, 13] for further properties of variable
exponent Lebesgue-Sobolev spaces.

Finally, we recall the definition and properties of the anisotropic variable
exponent Sobolev spaces as they were introduced in [11]. With that end in
view, we assume in the sequel that Ω is a bounded open domain in R

N and
we denote by −→p (·) : Ω → R

N the vectorial function −→p (·) = (p1(·), . . . , pN (·)).

We define W
1,−→p (·)
0 (Ω), the anisotropic variable exponent Sobolev space, as the

closure of C∞
0 (Ω) with respect to the norm

‖u‖−→p (·) =

N∑

i=1

|∂xiu|pi(·) .

In the case when pi(·) ∈ C+(Ω) are constant functions for any i ∈ {1, . . . , N}

the resulting anisotropic Sobolev space is denoted by W 1,−→p
0 (Ω), where −→p is the

constant vector (p1, . . . , pN). The theory of this type of spaces was developed
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in [6, 14, 16, 17, 20, 21]. It was argued in [11] that W
1,−→p (·)
0 (Ω) is a reflexive

Banach space.
On the other hand, in order to facilitate the manipulation of the space

W
1,−→p (·)
0 (Ω) we introduce

−→
P +,

−→
P − in R

N as
−→
P + = (p+1 , . . . , p

+
N),

−→
P − = (p−1 , . . . , p

−
N ),

and P+
+ , P+

− , P−
− ∈ R

+ as

P+
+ = max{p+1 , . . . , p

+
N}, P+

− = max{p−1 , . . . , p
−
N}, P−

− = min{p−1 , . . . , p
−
N}.

Throughout this paper we assume that

(9)

N∑

i=1

1

p−i
> 1

and define P ⋆
− ∈ R

+ and P−,∞ ∈ R
+ by

P ⋆
− =

N
∑N

i=1
1
p−

i

− 1
, P−,∞ = max{P+

− , P ⋆
−}.

Finally, we recall a result regarding the compact embedding betweenW
1,−→p (·)
0 (Ω)

and variable exponent Lebesgue spaces (see, [11, Theorem 1]):

Theorem 1. Assume that Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth

boundary. Assume relation (9) is fulfilled. For any q ∈ C(Ω) verifying

(10) 1 < q(x) < P−,∞ for all x ∈ Ω,

the embedding

W
1,−→p (·)
0 (Ω) →֒ Lq(·)(Ω)

is continuous and compact.

3. The main results

In this paper we study problem (4) in the particular cases

f(x, t) = ±(−λ|t|m(x)−2t+ |t|q(x)−2t),

where m : Ω → R, q : Ω → R are continuous functions such that

(11) m(x) = max
i∈{1,...,N}

{pi(x)} for any x ∈ Ω,

(12) 1 < m(x) < q(x) < P−,∞ for any x ∈ Ω

and λ > 0.

Remark. Condition (11) implies m+ = P+
+ .

First, we consider the following problem
(13){

−
∑N

i=1 ∂xi(|∂xiu|
pi(x)−2∂xiu) = −λ|u|m(x)−2u+ |u|q(x)−2u for x ∈ Ω,

u = 0 for x ∈ ∂Ω.
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We seek solutions for problem (13) belonging to the space W
1,−→p (·)
0 (Ω) in the

sense below.

Definition 1. We say that u ∈ W
1,−→p (·)
0 (Ω) is a weak solution for problem (13)

if

∫

Ω

{
N∑

i=1

(
|∂xiu|

pi(x)−2∂xiu ∂xiv
)
+ λ|u|m(x)−2uv − |u|q(x)−2uv

}
dx = 0

for all v ∈ W
1,−→p (·)
0 (Ω).

We will prove:

Theorem 2. For every λ > 0 problem (13) has infinitely many weak solutions

provided 2 ≤ P−
− , P+

+ < q− and q+ < P−,∞.

Next, we deal with the problem
(14){

−
∑N

i=1 ∂xi(|∂xiu|
pi(x)−2∂xiu) = λ|u|m(x)−2u− |u|q(x)−2u for x ∈ Ω,

u = 0 for x ∈ ∂Ω.

We seek solutions for problem (14) belonging to the space W
1,−→p (·)
0 (Ω) in the

sense below.

Definition 2. We say that u ∈ W
1,−→p (·)
0 (Ω) is a weak solution for problem (14)

if

∫

Ω

{
N∑

i=1

(
|∂xiu|

pi(x)−2∂xiu ∂xiv
)
− λ|u|m(x)−2uv + |u|q(x)−2uv

}
dx = 0

for all v ∈ W
1,−→p (·)
0 (Ω).

Regarding problem (14) we prove the following result:

Theorem 3. There exists λ⋆ > 0 such that for any λ ≥ λ⋆ problem (14) has a
nontrivial weak solution provided 2 ≤ P−

− , P+
+ < q− and q+ < P−,∞.

Remark. We point out the fact that similar results as the one of Theorems 2
and 3 were obtained by Mihăilescu [8], in the case when in the left hand side
of equations (13) and (14) we replace the anisotropic operator

N∑

i=1

∂xi(|∂xiu|
pi(x)−2∂xiu)

by an isotropic one of the type div((|∇u|p1(x)−2+ |∇u|p2(x)−2)∇u), where p1(x)
and p2(x) are two continuous functions. Our results represent a natural gener-
alization of the one in [8] in the anisotropic case.
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4. Proof of Theorem 2

We will use critical point theory to prove Theorem 2. More exactly, we
will associate to problem (13) an energetic functional for which the critical
points correspond to the weak solutions of the equation. The main tool is a
Z2-symmetric version (for even functionals) of the Mountain Pass Theorem (see
[15, Theorem 9.12]):

Mountain Pass Theorem. Let X be an infinite dimensional real Banach

space and let I ∈ C1(X,R) be even, satisfying the Palais-Smale condition (that
is, any sequence {xn} ⊂ X such that {I(xn)} is bounded and I ′(xn) → 0 in

X⋆ has a convergent subsequence) and I(0) = 0. Suppose that

(I1) there exist two constants ρ, a > 0 such that I(x) ≥ a if ‖x‖X = ρ,
(I2) for each finite dimensional subspace X1 ⊂ X, the set {x ∈ X1 : I(x) ≥

0} is bounded.

Then I has an unbounded sequence of critical values.

Let λ > 0 be arbitrary but fixed. Define the energy functional Iλ : W
1,−→p (·)
0 (Ω)

→ R, corresponding to problem (13), by

(15) Iλ(u) =

∫

Ω

{
N∑

i=1

|∂xiu|
pi(x)

pi(x)
+ λ

|u|m(x)

m(x)
−

|u|q(x)

q(x)

}
dx.

Standard arguments assure that Iλ ∈ C1(W
1,−→p (·)
0 (Ω),R) and the Fréchet de-

rivative is given by
(16)

〈I ′λ(u), v〉 =

∫

Ω

{
N∑

i=1

|∂xiu|
pi(x)−2∂xiu ∂xiv + λ|u|m(x)−2uv − |u|q(x)−2uv

}
dx

for all u, v ∈ W
1,−→p (·)
0 (Ω). Obviously, the weak solutions of problem (13)

coincide with the critical points of Iλ.
Our goal is to show that the Mountain Pass Theorem can be applied in this

case. In order to do that we start by establishing some auxiliary results.

Lemma 1. If {un} ⊂ W
1,−→p (·)
0 (Ω) is a sequence which satisfies the conditions

(17) |Iλ(u)| < K,

(18) I ′λ(un) → 0 as n → ∞,

where K is a positive constant, then {un} has a convergent subsequence.

Proof. First, we show that {un} is bounded in W
1,−→p (·)
0 (Ω). In order to do

that, we assume by contradiction that passing eventually to a subsequence,
still denoted by {un}, we have ‖un‖−→p (·) → ∞ as n → ∞. Clearly, we may

assume that ‖un‖−→p (·) > 1 for any integer n.



ANISOTROPIC QUASILINEAR ELLIPTIC EQUATIONS 1129

Condition (18) implies that for n large enough we have

‖I ′λ(un)‖ ≤ 1 .

On the other hand, for each fixed n, the application

W
1,−→p (·)
0 (Ω) ∋ v 7−→ 〈I ′λ(un), v〉 ∈ R

is linear and continuous. Combining the above two relations, we obtain that

|〈I ′λ(un), v〉| ≤ ‖I ′λ(un)‖ · ‖v‖−→p (·) ≤ ‖v‖−→p (·), ∀ v ∈ W
1,−→p (·)
0 (Ω) ,

for n large enough. Setting v = un, we deduce that

−‖un‖−→p (·) ≤

∫

Ω

N∑

i=1

|∂xiun|
pi(x) dx+ λ

∫

Ω

|un|
m(x) dx−

∫

Ω

|un|
q(x) dx

≤ ‖un‖−→p (·)

for n large enough.
Thus, the above information yields

(19) −‖un‖−→p (·) −

∫

Ω

N∑

i=1

|∂xiun|
pi(x) dx− λ

∫

Ω

|un|
m(x) dx ≤ −

∫

Ω

|un|
q(x) dx

for all n large.
Provided that ‖un‖−→p (·) > 1, by relations (17), (19) and (6), and the fact

that m+ = P+
+ we get

K > Iλ(un)

≥
1

P+
+

∫

Ω

N∑

i=1

|∂xiun|
pi(x) dx+

λ

m+

∫

Ω

|un|
m(x) dx−

1

q−

∫

Ω

|un|
q(x) dx

≥

(
1

P+
+

−
1

q−

)∫

Ω

N∑

i=1

|∂xiun|
pi(x) dx+ λ

(
1

m+
−

1

q−

)∫

Ω

|un|
m(x) dx

−
1

q−
‖un‖−→p (·)

≥

(
1

P+
+

−
1

q−

)∫

Ω

N∑

i=1

|∂xiun|
pi(x) dx−

1

q−
‖un‖−→p (·).

For each n and i ∈ {1, . . . , N} we define

ξn,i =

{
P+
+ , if |∂xiun|pi(·) < 1,

P−
− , if |∂xiun|pi(·) > 1.

We have

K > Iλ(un) ≥

(
1

P+
+

−
1

q−

)∫

Ω

N∑

i=1

|∂xiun|
pi(x) dx −

1

q−
‖un‖−→p (·)
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≥

(
1

P+
+

−
1

q−

)
N∑

i=1

|∂xiun|
ξn,i

pi(·)
−

1

q−
‖un‖−→p (·)

≥

(
1

P+
+

−
1

q−

)
N∑

i=1

|∂xiun|
P−

−

pi(·)

−

(
1

P+
+

−
1

q−

)
∑

{i:ξn,i=P+

+
}

(
|∂xiun|

P−

−

pi(·)
− |∂xiun|

P+

+

pi(·)

)
−

1

q−
‖un‖−→p (·)

≥

(
1

P+
+

−
1

q−

)
‖un‖

P−

−

−→p (·)

NP−

−
−1

−N

(
1

P+
+

−
1

q−

)
−

1

q−
‖un‖−→p (·).

Passing to the limit as n → ∞, we obtain a contradiction. It follows that

{un} is bounded in W
1,−→p (·)
0 (Ω).

Since {un} is bounded in W
1,−→p (·)
0 (Ω) and the space W

1,−→p (·)
0 (Ω) is reflexive,

we deduce that there exist a subsequence, still denoted by {un}, and u in

W
1,−→p (·)
0 (Ω) such that {un} converges weakly to u in W

1,−→p (·)
0 (Ω). Theorem 1

and conditions (11) and (12) imply that W
1,−→p (·)
0 (Ω) is compactly embedded

into Lm(·)(Ω) and Lq(·)(Ω). Consequently, {un} converges strongly to u in
Lm(·)(Ω) and Lq(·)(Ω).

These facts and condition (18) show that

(20) 〈I ′λ(un)− I ′λ(u), un − u〉 → 0 as n → ∞.

We get

∫

Ω

N∑

i=1

(
|∂xiun|

pi(x)−2 · ∂xiun − |∂xiu|
pi(x)−2 · ∂xiu

)
· (∂xiun − ∂xiu)dx

= 〈I ′λ(un)− I ′λ(u), un − u〉 − λ

∫

Ω

(
|un|

m(x)−2un − |u|m(x)−2u
)
· (un − u)dx

+

∫

Ω

(
|un|

q(x)−2un − |u|q(x)−2u
)
· (un − u) dx.

Using the fact that {un} converges strongly to u in Lq(·)(Ω) and inequality
(5) we get

∣∣∣∣
∫

Ω

(|un|
q(x)−2un − |u|q(x)−2u)(un − u) dx

∣∣∣∣

≤

∣∣∣∣
∫

Ω

|un|
q(x)−2un(un − u) dx

∣∣∣∣+
∣∣∣∣
∫

Ω

|u|q(x)−2u(un − u) dx

∣∣∣∣

≤ M1||un|
q(x)−1| q(·)

q(·)−1

· |un − u|q(·) +M2||u|
q(x)−1| q(·)

q(·)−1

· |un − u|q(·),

where M1, M2 are two positive constants.
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Since |un − u|q(·) → 0 as n → ∞, we deduce that

(21) lim
n→∞

∫

Ω

(
|un|

q(x)−2un − |u|q(x)−2u
)
(un − u) dx = 0.

Similar arguments as the one used in the proof of relation (21) show that

(22) lim
n→∞

∫

Ω

(
|un|

m(x)−2un − |u|m(x)−2u
)
(un − u) dx = 0.

By relations (20), (21) and (22) we have
(23)

lim
n→∞

∫

Ω

N∑

i=1

(
|∂xiun|

pi(x)−2∂xiun − |∂xiu|
pi(x)−2∂xiu

)
(∂xiun − ∂xiu) dx = 0.

It is known that

(24) (|ζ|t−2ζ − |ϑ|t−2ϑ)(ζ − ϑ) ≥ 2−t|ζ − ϑ|t, ∀ t ≥ 2, ∀ ζ, ϑ ∈ R
N .

Relations (23) and (24) yield that actually {un} converges strongly to u in

W
1,−→p (·)
0 (Ω). The proof of Lemma 1 is complete. �

Lemma 2. There exist ρ > 0 and a > 0 such that

Iλ(u) ≥ a > 0, ∀ u ∈ W
1,−→p (·)
0 (Ω) with ‖u‖−→p (·) = ρ.

Proof. By condition (12) we have 1 < q− ≤ q+ < P−,∞, for all x ∈ Ω and

using Theorem 1 we get that W
1,−→p (·)
0 (Ω) is compactly embedded in Lq−(Ω)

and Lq+(Ω).

The fact that W
1,−→p (·)
0 (Ω) is compactly embedded in Lq−(Ω) assures that

there exists a positive constant C1 such that

(25) |u|q− ≤ C1 · ‖u‖−→p (·), ∀ u ∈ W
1,−→p (·)
0 (Ω).

Similarly, W
1,−→p (·)
0 (Ω) is compactly embedded in Lq+(Ω) and this guarantees

that there exists a positive constant C2 such that

(26) |u|q+ ≤ C2 · ‖u‖−→p (·), ∀ u ∈ W
1,−→p (·)
0 (Ω).

On the other hand, we have

(27) |u(x)|q(x) ≤ |u(x)|q
−

+ |u(x)|q
+

for all x ∈ Ω.

Using relation (27) we deduce that

(28) Iλ(u) ≥
1

P+
+

∫

Ω

N∑

i=1

|∂xiu|
pi(x) dx−

1

q−

(∫

Ω

|u|q
−

dx+

∫

Ω

|u|q
+

dx

)
.

Next, we focus our attention on the case when u ∈ W
1,−→p (·)
0 (Ω) with ‖u‖−→p (·)

< 1. For such an element u, we have |∂xiu|pi(·) < 1 for any i ∈ {1, . . . , N},
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and, by relation (7) we obtain

(29)

‖u‖
P+

+

−→p (·)

NP+

+
−1

= N

(∑N
i=1 |∂xiu|pi(·)

N

)P+

+

≤
N∑

i=1

|∂xiu|
P+

+

pi(·)
≤

N∑

i=1

|∂xiu|
p+

i

pi(·)
≤

N∑

i=1

∫

Ω

|∂xiu|
pi(x) dx.

Thus, relations (25), (26), (28) and (29) imply

Iλ(u) ≥
1

P+
+

‖u‖
P+

+

−→p (·)

NP+

+
−1

− C3‖u‖
q−
−→p (·)

− C4‖u‖
q+
−→p (·)

=

(
B1 −B2‖u‖

q−−P+

+

−→p (·)
−B3‖u‖

q+−P+

+

−→p (·)

)
‖u‖

P+

+

−→p (·)

for any u ∈ W
1,−→p (·)
0 (Ω) with ‖u‖−→p (·) < 1, where C3, C4, B1, B2 and B3 are

positive constants.
Since the function g : [0, 1] → R defined by

g(t) = B1 −B2 · t
q−−P+

+ −B3 · t
q+−P+

+

is positive in a neighborhood of the origin, the conclusion of the lemma follows
at once. �

Lemma 3. If S is a finite dimensional subspace of W
1,−→p (·)
0 (Ω), the set M =

{u ∈ S : Iλ(u) ≥ 0} is bounded in W
1,−→p (·)
0 (Ω).

Proof. First, we establish that
(30)

N∑

i=1

∫

Ω

|∂xiu|
pi(x)

pi(x)
dx ≤ A1

(
‖u‖

P+

+

−→p (·)
+ ‖u‖

P−

−

−→p (·)

)
for all u ∈ W

1,−→p (·)
0 (Ω),

where A1 = 2N
P−

−

is a positive constant.

Indeed, using relations (6) and (7) we get

(31)

N∑

i=1

∫

Ω

|∂xiu|
pi(x)

pi(x)
dx ≤

N∑

i=1

1

p−i

(
|∂xiu|

p−

i

pi(·)
+ |∂xiu|

p+

i

pi(·)

)

≤
1

P−
−

N∑

i=1

(
|∂xiu|

p−

i

pi(·)
+ |∂xiu|

p+

i

pi(·)

)

for all u ∈ W
1,−→p (·)
0 (Ω).

On the other hand, for every i ∈ {1, . . . , N} and for all u ∈ W
1,−→p (·)
0 (Ω) we

infer that

|∂xiu|
p−

i

pi(·)
≤ ‖u‖

p−

i
−→p (·)

≤ ‖u‖
P−

−

−→p (·)
+ ‖u‖

P+

+

−→p (·)
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and

|∂xiu|
p+

i

pi(·)
≤ ‖u‖

p+

i
−→p (·)

≤ ‖u‖
P−

−

−→p (·)
+ ‖u‖

P+

+

−→p (·)
.

The above three inequalities yield

N∑

i=1

∫

Ω

|∂xiu|
pi(x)

pi(x)
dx ≤

2N

P−
−

(
‖u‖

P−

−

−→p (·)
+ ‖u‖

P+

+

−→p (·)

)
.

Thus, we conclude that inequality (30) holds true.
By relations (6) and (7), we arrive at

(32)

∫

Ω

|u|m(x) dx ≤ |u|m
−

m(·) + |u|m
+

m(·) for all u ∈ W
1,−→p (·)
0 (Ω).

The fact that W
1,−→p (·)
0 (Ω) is continuously embedded in Lm(·)(Ω) guarantees

that there exists a positive constant H such that

(33) |u|m(·) ≤ H ‖u‖−→p (·) for all u ∈ W
1,−→p (·)
0 (Ω).

Combining inequalities (32) and (33) we obtain that, for each λ > 0, there
exists a positive constant A2(λ) such that

(34) λ ·

∫

Ω

|u|m(x)

m(x)
dx ≤ A2(λ)

(
‖u‖m

+

−→p (·) + ‖u‖m
−

−→p (·)

)
for all u ∈ W

1,−→p (·)
0 (Ω).

Relations (30) and (34) imply

Iλ(u) ≤ A1

(
‖u‖

P+

+

−→p (·)
+‖u‖

P−

−

−→p (·)

)
+A2(λ)

(
‖u‖m

+

−→p (·) + ‖u‖m
−

−→p (·)

)
−

1

q+

∫

Ω

|u|q(x)dx

for all u ∈ W
1,−→p (·)
0 (Ω).

Let u ∈ W
1,−→p (·)
0 (Ω) be arbitrary but fixed. We denote by

Ω< := {x ∈ Ω : |u(x)| < 1} and Ω≥ := Ω \ Ω<.

Thus, we obtain

Iλ(u) ≤ A1

(
‖u‖

P+

+

−→p (·)
+ ‖u‖

P−

−

−→p (·)

)
+A2(λ)

(
‖u‖m

+

−→p (·) + ‖u‖m
−

−→p (·)

)

−
1

q+

∫

Ω

|u|q(x) dx

≤ A1

(
‖u‖

P+

+

−→p (·)
+ ‖u‖

P−

−

−→p (·)

)
+A2(λ)

(
‖u‖m

+

−→p (·) + ‖u‖m
−

−→p (·)

)

−
1

q+

∫

Ω≥

|u|q(x) dx

≤ A1

(
‖u‖

P+

+

−→p (·)
+ ‖u‖

P−

−

−→p (·)

)
+A2(λ)

(
‖u‖m

+

−→p (·) + ‖u‖m
−

−→p (·)

)

−
1

q+

∫

Ω≥

|u|q
−

dx
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≤ A1

(
‖u‖

P+

+

−→p (·)
+ ‖u‖

P−

−

−→p (·)

)
+A2(λ)

(
‖u‖m

+

−→p (·) + ‖u‖m
−

−→p (·)

)

−
1

q+

∫

Ω

|u|q
−

dx+
1

q+

∫

Ω<

|u|q
−

dx.

But there exists a positive constant A3 such that

1

q+

∫

Ω<

|u|q
−

dx ≤ A3, ∀ u ∈ W
1,−→p (·)
0 (Ω).

Then, we have

Iλ(u) ≤ A1

(
‖u‖

P+

+

−→p (·)
+ ‖u‖

P−

−

−→p (·)

)
+A2(λ)

(
‖u‖m

+

−→p (·) + ‖u‖m
−

−→p (·)

)

−
1

q+

∫

Ω

|u|q
−

dx+A3

for all u ∈ W
1,−→p (·)
0 (Ω).

Define the functional | · |q− : W
1,−→p (·)
0 (Ω) → R by

|u|q− :=

(∫

Ω

|u|q
−

dx

)1/q−

.

The functional | · |q− is a norm on W
1,−→p (·)
0 (Ω). On the finite dimensional

subspace S, the norms | · |q− and ‖ · ‖−→p (·) are equivalent, so there exists a

positive constant A = A(S) such that

‖u‖−→p (·) ≤ A · |u|q− , ∀ u ∈ S.

Consequently, we have that there exists a positive constant A4 such that

Iλ(u) ≤ A1

(
‖u‖

P+

+

−→p (·)
+ ‖u‖

P−

−

−→p (·)

)
+A2(λ)

(
‖u‖m

+

−→p (·) + ‖u‖m
−

−→p (·)

)

+A3 −A4‖u‖
q−
−→p (·)

, ∀ u ∈ S.

Hence

A1

(
‖u‖

P+

+

−→p (·)
+ ‖u‖

P−

−

−→p (·)

)
+A2(λ)

(
‖u‖m

+

−→p (·) + ‖u‖m
−

−→p (·)

)

+A3 −A4‖u‖
q−
−→p (·)

≥ 0, ∀ u ∈ M

and since m+ = P+
+ < q−, we conclude that M is bounded in W

1,−→p (·)
0 (Ω).

Thus, Lemma 3 is proved. �

Proof of Theorem 2. It is clear that Iλ ∈ C1(W
1,−→p (·)
0 (Ω),R) is even and Iλ(0) =

0. Lemma 1 implies that Iλ satisfies the Palais-Smale condition. On the other
hand, Lemmas 2 and 3 show that conditions (I1) and (I2) are satisfied. The
Mountain Pass Theorem can be applied to the functional Iλ. Thus, Iλ has
an unbounded sequence of critical values and consequently problem (13) has
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infinitely many weak solutions in W
1,−→p (·)
0 (Ω). The proof of Theorem 2 is com-

plete. �

5. Proof of Theorem 3

We will use once more the critical point theory in order to prove Theorem
3.

Let λ > 0 be arbitrary but fixed. The energy functional corresponding to

problem (14) is defined as Jλ : W
1,−→p (·)
0 (Ω) → R,

Jλ(u) =

∫

Ω

N∑

i=1

|∂u|pi(x)

pi(x)
dx− λ

∫

Ω

|u|m(x)

m(x)
dx+

∫

Ω

|u|q(x)

q(x)
dx .

Standard arguments assure that Jλ is well-defined on W
1,−→p (·)
0 (Ω) and Jλ ∈

C1(W
1,−→p (·)
0 (Ω),R) with the Fréchet derivative given by

〈J ′
λ(u), v〉 =

∫

Ω

N∑

i=1

|∂xiu|
pi(x)−2 · ∂xiu · ∂xiv dx− λ

∫

Ω

|u|m(x)−2uv dx

+

∫

Ω

|u|q(x)−2uv dx

for all u, v ∈ W
1,−→p (·)
0 (Ω). Clearly, the weak solutions of problem (14) are

exactly the critical points of functional Jλ.
Our goal is to show that Jλ possesses a nontrivial global minimum point in

W
1,−→p (·)
0 (Ω). We start by establishing the following auxiliary result:

Lemma 4. The energy functional Jλ is coercive on W
1,−→p (·)
0 (Ω).

Proof. We recall that in [8, Lemma 4] it was proved that for any a, b > 0 and
0 < k < l the following inequality holds true

(35) a · tk − b · tl ≤ a ·
(a
b

) k
l−k

for all t ≥ 0.

Using relation (35), we infer that for any x ∈ Ω and u ∈ W
1,−→p (·)
0 (Ω) we have

λ

m−
|u(x)|m(x) −

1

q+
|u(x)|q(x) ≤

λ

m−

[
λq+

m−

] m(x)

q(x)−m(x)

≤
λ

m−



(
λq+

m−

) m+

q−−m+

+

(
λq+

m−

) m−

q+−m−


 := C,

where C is a positive constant independent of u and x.
Integrating the above inequality over Ω, we get

(36)
λ

m−

∫

Ω

|u|m(x) dx−
1

q+

∫

Ω

|u|q(x) dx ≤ D,

where D is a positive constant independent of u.
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Next, we focus our attention on the elements u ∈ W
1,−→p (·)
0 (Ω) with ‖u‖−→p (·)

> 1.
For each n and i ∈ {1, . . . , N} we define

ξn,i =

{
P+
+ , if |∂xiun|pi(·) < 1,

P−
− , if |∂xiun|pi(·) > 1.

By inequality (36), we get

Jλ(u) ≥
1

P+
+

N∑

i=1

∫

Ω

|∂xiu|
pi(x) dx−

λ

m−

∫

Ω

|u|m(x) dx+
1

q+

∫

Ω

|u|q(x) dx

≥
1

P+
+

N∑

i=1

|∂xiu|
ξn,i

pi(·)
−

λ

m−

∫

Ω

|u|m(x) dx+
1

q+

∫

Ω

|u|q(x) dx

≥
1

P+
+

N∑

i=1

|∂xiu|
P−

−

pi(·)
−

1

P+
+

∑

{i:ξn,i=P+

+
}

(
|∂xiu|

P−

−

pi(·)
− |∂xiu|

P+

+

pi(·)

)

−

(
λ

m−

∫

Ω

|u|m(x) dx −
1

q+

∫

Ω

|u|q(x) dx

)

≥
‖u‖

P−

−

−→p (·)

P+
+ NP−

−
−1

−
N

P+
+

−D.

Thus, Jλ(u) ≥
‖u‖

P
−

−

−→p (·)

P+

+
N

P
−

−
−1

− N
P+

+

−D for all u ∈ W
1,−→p (·)
0 (Ω) with ‖u‖−→p (·) > 1.

We infer that Jλ(u) → ∞ as ‖u‖−→p (·) → ∞. In other words, Jλ is coercive in

W
1,−→p (·)
0 (Ω), completing the proof. �

Proof of Theorem 3. By Lemma 4 we have that Jλ is coercive. Moreover, a
similar argument as the one used in the proof of [12, Lemma 3.4] shows that

Jλ is also weakly lower semi-continuous in W
1,−→p (·)
0 (Ω). These facts enable us

to apply [19, Theorem 1.2] in order to find that there exists uλ ∈ W
1,−→p (·)
0 (Ω)

a global minimizer of Jλ and thus, a weak solution of problem (14).
Next, we prove that uλ is not trivial for λ large enough. Indeed, letting

t0 > 1 be a fixed real and choosing Ω1 an open subset of Ω with |Ω1| > 0, we

deduce that there exists v0 ∈ C∞
0 (Ω) ⊂ W

1,−→p (·)
0 (Ω) such that v0(x) = t0 for

any x ∈ Ω1 and 0 ≤ v0(x) ≤ t0 for any x ∈ Ω \ Ω1. Thus, we have

Jλ(v0) =

∫

Ω

N∑

i=1

|∂xiv0|
pi(x)

pi(x)
dx− λ

∫

Ω

|v0|
m(x)

m(x)
dx +

∫

Ω

|v0|
q(x)

q(x)
dx

≤ C −
λ

m+

∫

Ω1

|v0|
m(x) dx
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≤ C −
λ

m+
tm

−

0 · |Ω1|,

where C is a positive constant.
Therefore, there exists λ⋆ > 0 such that Jλ(v0) < 0 for any λ ≥ λ⋆. It

follows that Jλ(uλ) < 0 for any λ ≥ λ⋆ and thus, we find that uλ is a nontrivial
weak solution of problem (14) for λ large enough. This completes the proof of
Theorem 3. �

Acknowledgments. The authors were partially supported by the grant
CNCSIS-UEFISCSU PN-II-ID-PCE-2011-3-0075, Analysis, Control and Nu-
merical Approximations of Partial Differential Equations.

References

[1] D. E. Edmunds, J. Lang, and A. Nekvinda, On L
p(x) norms, Proc. R. Soc. Lond. Ser.

A Math. Phys. Eng. Sci. 455 (1999), no. 1981, 219–225.
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