References
-
Hofer, C. and D. Schlosser (1999) Novel enzymatic oxidation of
$Mn^{2+}$ to$Mn^{3+}$ catalyzed by a fungal laccase. FEBS Lett. 451: 186-190. https://doi.org/10.1016/S0014-5793(99)00566-9 - Larrondo, L. F., L. Salas, F. Melo, R. Vicuña, and D. Cullen (2003) A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Appl. Environ. Microbiol. 69: 6257-6263. https://doi.org/10.1128/AEM.69.10.6257-6263.2003
- Sanchez-Sutil, M. C., N. Gomez-Santos, A. Moraleda-Munoz, L. O. Martins, J. Perez, and J. Munoz-Dorado (2007) Differential expression of the three multicopper oxidases from Myxococcus xanthus. J. Bacteriol. 189: 4887-4898. https://doi.org/10.1128/JB.00309-07
- Thurston, C. F. (1994) The structure and function of fungal laccases. Microbiology 140: 19-26. https://doi.org/10.1099/13500872-140-1-19
- Claus, H., G. Faber, and H. Konig (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl. Microbiol. Biotechnol. 59: 672-678. https://doi.org/10.1007/s00253-002-1047-z
- Palonen, H. and L. Viikari (2004) Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol. Bioeng. 86: 550-557. https://doi.org/10.1002/bit.20135
- Murugesan, K. (2003) Bioremediation of paper and pulp mill effluents. Indian J. Exp. Biol. 41: 1239-1248.
- Huttermann, A., C. Mai, and A. Kharazipour (2001) Modification of lignin for the production of new compounded materials. Appl. Microbiol. Biotechnol. 55: 387-394. https://doi.org/10.1007/s002530000590
- Peter, M. G. and U. Wollenberger (1997) Phenol-oxidizing enzymes: mechanisms and applications in biosensors. EXS. 80: 63-82.
- Liu, X., M. Gillespie, A. D. Ozel, E. Dikici, S. Daunert, and L. G. Bachas (2011) Electrochemical properties and temperature dependence of a recombinant laccase from Thermus thermophilus. Anal. Bioanal. Chem. 399: 361-366. https://doi.org/10.1007/s00216-010-4345-9
- Baldrian, P. (2006) Fungal laccases-occurrence and properties. FEMS Microbiol. Rev. 30: 215-242. https://doi.org/10.1111/j.1574-4976.2005.00010.x
- Dantan-Gonzalez, E., O. Vite-Vallejo, C. Martinez-Anaya, et al. (2008) Production of two novel laccase isoforms by a thermotolerant strain of Pycnoporus sanguineus isolated from an oil-polluted tropical habitat. Int. Microbiol. 11: 163-169.
- Mayer, A. M. (1987) Polyphenol oxidases in plants-Recent progress. Phytochemistry 26: 11-20.
- Dittmer, N. T., R. J. Suderman, H. Jiang, Y. C. Zhu, M. J. Gorman, K. J. Kramer, and M. R. Kanost (2004) Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem. Mol. Biol. 34: 29-41. https://doi.org/10.1016/j.ibmb.2003.08.003
- Arias, M. E., M. Arenas, J. Rodriguez, J. Soliveri, A. S. Ball, and M. Hernández (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl. Environ.Microbiol. 69: 1953-1958. https://doi.org/10.1128/AEM.69.4.1953-1958.2003
- Martins, L. O., C. M. Soares, M. M. Pereira, M. Teixeira, T. Costa, G. H. Jones, and A. O. Henriques (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J. Biol. Chem. 277: 18849-18859. https://doi.org/10.1074/jbc.M200827200
- Alexandre, G. and I. B. Zhulin (2000) Laccases are widespread in bacteria. Trends Biotechnol. 18: 41-42. https://doi.org/10.1016/S0167-7799(99)01406-7
- Miyazaki, K. (2005) A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9: 415-25. https://doi.org/10.1007/s00792-005-0458-z
- Fernandes, A. T., C. M. Soares, M. M. Pereira, R. Huber, G. Grass, and L. O. Martins (2007) A robust metallo-oxidase from the hyperthermophilic bacterium Aquifex aeolicus. FEBS J. 274: 2683-2694. https://doi.org/10.1111/j.1742-4658.2007.05803.x
-
Gu, N. Y., J. L. Kim, H. J. Kim, D. J. You, H. W. Kim, and S. J. Jeon (2009) Gene cloning and enzymatic properties of hyperthermostable
$\beta$ -glycosidase from Thermus thermophilus HJ6. J. Biosci. Bioeng. 107: 21-26. https://doi.org/10.1016/j.jbiosc.2008.10.002 - Perrella, F. W. (1988) EZ-FIT: a practical curve-fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers. Anal. Biochem. 174: 437-447. https://doi.org/10.1016/0003-2697(88)90042-5
- Suzuki, T., K. Endo, M. Ito, H. Tsujibo, K. Miyamoto, and Y. Inamori (2003) A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem. 67: 2167-2175. https://doi.org/10.1271/bbb.67.2167
- D'Souza-Ticlo, D., D. Sharma, and C. Raghukumar (2009) A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Mar Biotechnol (NY). 11: 725-737. https://doi.org/10.1007/s10126-009-9187-0
- Stoj, C. S. and D. J. Kosman (2005) Copper proteins: oxidases. In Encyclopedia of Inorganic Chemistry, Vol. II, 2nd edn. (King RB, ed.), pp. 1134-1159. John Wiley and Sons, NY, USA.
- Nagai, M., T. Sato, H. Watanabe, K. Saito, M. Kawata, and H. Enei (2002) Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol. 60: 327-335. https://doi.org/10.1007/s00253-002-1109-2