DOI QR코드

DOI QR Code

Gene Cloning and Enzymatic Properties of Thermostable Laccase from Thermus thermophilus HJ6

Thermus thermophilus HJ6 유래 내열성 laccase의 유전자 클로닝 및 효소학적 특성

  • Lee, So-Young (Department of Biomaterial Control (BK21 program), Dong-Eui University) ;
  • Jung, Young-Hoon (Department of Biotechnology & Bioengineering, Dong-Eui University) ;
  • Seo, Min-Ho (Department of Biotechnology & Bioengineering, Dong-Eui University) ;
  • Jeon, Sung-Jong (Department of Biomaterial Control (BK21 program), Dong-Eui University)
  • 이소영 (동의대학교 바이오물질제어학과) ;
  • 정영훈 (동의대학교 생명공학과) ;
  • 서민호 (동의대학교 생명공학과) ;
  • 전숭종 (동의대학교 바이오물질제어학과)
  • Received : 2012.08.11
  • Accepted : 2012.08.27
  • Published : 2012.08.31

Abstract

The gene encoding Thermus thermophilus HJ6 laccase (Tt-laccase) was cloned, sequenced, and comprised of 1,389 nucleotides encoding a protein (462 amino acids) with a predicted molecular mass of 51,049 Da. The deduced amino acid sequence of Tt-laccase showed 99.7% and 44.3% identities to the Thermus thermophilus HB27 laccase and Synechococcus sp. RS9917 laccase, respectively. Tt-laccase gene was expressed as a fusion protein with six histidine residues in E. coli Rosetta-gami (DE3) cells, and the recombinant protein was purified to homogeneity. UV-Vis spectrum analysis revealed that the enzyme has copper atoms, a type I Cu(II) and a type III binuclear Cu(II). The optimum pH for the oxidation of guaiacol was 5.0 and the optimum temperature was $90^{\circ}C$ The half-life of heat inactivation was about 120 min at $90^{\circ}C$ The enzyme reaction was inhibited by sodium azide, L-cystein, EDTA, dithiothreitol, tropolone, and kojic acid. The enzyme oxidized various known laccase substrates, its lowest $K_m$ value being for 4-hydroxyindole, highest $k_{cat}$ value for syringaldazine, and highest $k_{cat}/K_m$ for guaiacol.

Keywords

References

  1. Hofer, C. and D. Schlosser (1999) Novel enzymatic oxidation of $Mn^{2+}$ to $Mn^{3+}$ catalyzed by a fungal laccase. FEBS Lett. 451: 186-190. https://doi.org/10.1016/S0014-5793(99)00566-9
  2. Larrondo, L. F., L. Salas, F. Melo, R. Vicuña, and D. Cullen (2003) A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Appl. Environ. Microbiol. 69: 6257-6263. https://doi.org/10.1128/AEM.69.10.6257-6263.2003
  3. Sanchez-Sutil, M. C., N. Gomez-Santos, A. Moraleda-Munoz, L. O. Martins, J. Perez, and J. Munoz-Dorado (2007) Differential expression of the three multicopper oxidases from Myxococcus xanthus. J. Bacteriol. 189: 4887-4898. https://doi.org/10.1128/JB.00309-07
  4. Thurston, C. F. (1994) The structure and function of fungal laccases. Microbiology 140: 19-26. https://doi.org/10.1099/13500872-140-1-19
  5. Claus, H., G. Faber, and H. Konig (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl. Microbiol. Biotechnol. 59: 672-678. https://doi.org/10.1007/s00253-002-1047-z
  6. Palonen, H. and L. Viikari (2004) Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol. Bioeng. 86: 550-557. https://doi.org/10.1002/bit.20135
  7. Murugesan, K. (2003) Bioremediation of paper and pulp mill effluents. Indian J. Exp. Biol. 41: 1239-1248.
  8. Huttermann, A., C. Mai, and A. Kharazipour (2001) Modification of lignin for the production of new compounded materials. Appl. Microbiol. Biotechnol. 55: 387-394. https://doi.org/10.1007/s002530000590
  9. Peter, M. G. and U. Wollenberger (1997) Phenol-oxidizing enzymes: mechanisms and applications in biosensors. EXS. 80: 63-82.
  10. Liu, X., M. Gillespie, A. D. Ozel, E. Dikici, S. Daunert, and L. G. Bachas (2011) Electrochemical properties and temperature dependence of a recombinant laccase from Thermus thermophilus. Anal. Bioanal. Chem. 399: 361-366. https://doi.org/10.1007/s00216-010-4345-9
  11. Baldrian, P. (2006) Fungal laccases-occurrence and properties. FEMS Microbiol. Rev. 30: 215-242. https://doi.org/10.1111/j.1574-4976.2005.00010.x
  12. Dantan-Gonzalez, E., O. Vite-Vallejo, C. Martinez-Anaya, et al. (2008) Production of two novel laccase isoforms by a thermotolerant strain of Pycnoporus sanguineus isolated from an oil-polluted tropical habitat. Int. Microbiol. 11: 163-169.
  13. Mayer, A. M. (1987) Polyphenol oxidases in plants-Recent progress. Phytochemistry 26: 11-20.
  14. Dittmer, N. T., R. J. Suderman, H. Jiang, Y. C. Zhu, M. J. Gorman, K. J. Kramer, and M. R. Kanost (2004) Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem. Mol. Biol. 34: 29-41. https://doi.org/10.1016/j.ibmb.2003.08.003
  15. Arias, M. E., M. Arenas, J. Rodriguez, J. Soliveri, A. S. Ball, and M. Hernández (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl. Environ.Microbiol. 69: 1953-1958. https://doi.org/10.1128/AEM.69.4.1953-1958.2003
  16. Martins, L. O., C. M. Soares, M. M. Pereira, M. Teixeira, T. Costa, G. H. Jones, and A. O. Henriques (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J. Biol. Chem. 277: 18849-18859. https://doi.org/10.1074/jbc.M200827200
  17. Alexandre, G. and I. B. Zhulin (2000) Laccases are widespread in bacteria. Trends Biotechnol. 18: 41-42. https://doi.org/10.1016/S0167-7799(99)01406-7
  18. Miyazaki, K. (2005) A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9: 415-25. https://doi.org/10.1007/s00792-005-0458-z
  19. Fernandes, A. T., C. M. Soares, M. M. Pereira, R. Huber, G. Grass, and L. O. Martins (2007) A robust metallo-oxidase from the hyperthermophilic bacterium Aquifex aeolicus. FEBS J. 274: 2683-2694. https://doi.org/10.1111/j.1742-4658.2007.05803.x
  20. Gu, N. Y., J. L. Kim, H. J. Kim, D. J. You, H. W. Kim, and S. J. Jeon (2009) Gene cloning and enzymatic properties of hyperthermostable $\beta$-glycosidase from Thermus thermophilus HJ6. J. Biosci. Bioeng. 107: 21-26. https://doi.org/10.1016/j.jbiosc.2008.10.002
  21. Perrella, F. W. (1988) EZ-FIT: a practical curve-fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers. Anal. Biochem. 174: 437-447. https://doi.org/10.1016/0003-2697(88)90042-5
  22. Suzuki, T., K. Endo, M. Ito, H. Tsujibo, K. Miyamoto, and Y. Inamori (2003) A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem. 67: 2167-2175. https://doi.org/10.1271/bbb.67.2167
  23. D'Souza-Ticlo, D., D. Sharma, and C. Raghukumar (2009) A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Mar Biotechnol (NY). 11: 725-737. https://doi.org/10.1007/s10126-009-9187-0
  24. Stoj, C. S. and D. J. Kosman (2005) Copper proteins: oxidases. In Encyclopedia of Inorganic Chemistry, Vol. II, 2nd edn. (King RB, ed.), pp. 1134-1159. John Wiley and Sons, NY, USA.
  25. Nagai, M., T. Sato, H. Watanabe, K. Saito, M. Kawata, and H. Enei (2002) Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol. 60: 327-335. https://doi.org/10.1007/s00253-002-1109-2