Notes

Pyridinolysis of Dipropyl Chlorophosphate in Acetonitrile

Md. Ehtesham Ul Hoque and Hai Whang Lee*

Department of Chemistry, Inha University, Incheon 402-751, Korea. *E-mail: hwlee@inha.ac.kr Received February 15, 2012, Accepted June 30, 2012

Key Words : Phosphoryl transfer reaction, Pyridinolysis, Dipropyl chlorophosphate, Steric effect

Continuing the kinetic studies on the pyridinolyses of dimethyl [1: (MeO)₂P(=O)Cl],^{1a} diethyl [2: (EtO)₂P(=O)Cl],^{1a} dibutyl [4: (BuO)₂P(=O)Cl],^{1b} diisopropyl [5: (*i*-PrO)₂P(=O)Cl],^{1c} and Y-aryl phenyl [6: (PhO)(YC₆H₄O) P(=O)Cl]^{1d} chlorophosphates, the nucleophilic substitution reactions of dipropyl chlorophosphate (3) with X-pyridines are investigated kinetically in acetonitrile (MeCN) at 35.0 ± 0.1 °C (Scheme 1). The aim of this work is to gain further information into the reactivity and mechanism depending on the variation of the two ligands, R₁O and R₂O. The numbering of the substrates of 1-6 follows the sequence of the summation of the Taft steric constants of the two ligands,² R₁ and R₂: 6(PhO,YC₆H₄O) > 5(*i*-PrO)₂ > 4(BuO)₂ > 3(PrO)₂ > 2(EtO)₂ > 1(MeO)₂.

Scheme 1. The pyridinolysis of dipropyl chlorophosphate (3) in MeCN at $35.0 \,^{\circ}$ C.

Results and Discussion

The reactions were carried out under pseudo-first-order conditions with a large excess of pyridine. The observed pseudo-first-order rate constants (k_{obsd}) for all the reactions obeyed Eq. (1) with negligible $k_0 (\approx 0)$ in MeCN. The clean second-order rate constants were determined with at least five pyridine concentrations. The linear plots of Eq. (1) suggest a lack of any base-catalysis or side reaction, and the overall reaction is described by Scheme 1.

$$k_{\text{obsd}} = k_0 + k_2 [\text{XC}_5\text{H}_4\text{N}] \tag{1}$$

The second-order rate constants $[k_2 (M^{-1} s^{-1})]$ are sum-

marized in Table 1. The Brönsted β_X value was calculated by correlating log k_2 (MeCN) with pK_a (H₂O),³ which was justified theoretically and experimentally.⁴ The substituent effects (X) of the nucleophiles upon the pyridinolysis rates are compatible with those for a typical nucleophile substitution reaction and the stronger nucleophile leads to a faster rate with positive charge development at the nucleophilic N atom in the transition state (TS), resulting in negative ρ_X (= -4.88: Fig. 1) and positive β_X (= 0.87: Fig. 2) values.

The second-order rate constants (k_2) with unsubstituted pyridine (C₅H₅N) at 35.0 °C, natural bond order (NBO) charges at the reaction center P atom in the gas phase [B3LYP/6-311+G(d,p) level of theory],⁵ summations of the Taft steric constants of R₁ and R₂ [$\Sigma E_S = E_S(R_1) + E_S(R_2)$],² Brönsted coefficients (β_X), cross-interaction constant (CIC; ρ_{XY}),⁶ and variation trends of the free energy relationships with X for the pyridinolyses of six (R₁O)(R₂O)P(=O)Cl-type chlorophosphates in MeCN are summarized in Table 2.

Figure 1. The Hammett plot (log $k_2 vs \sigma_X$) of the reaction of dipropyl chlorophosphate (**3**) with X-pyridines in MeCN at 35.0 °C. The value of ρ_X is -4.88 ± 0.09 (r = 0.999).

Table 1. Second-Order Rate Constants ($k_2 \times 10^3/M^{-1} \text{ s}^{-1}$) of the Reactions of Dipropyl Chlorophosphate (**3**) with XC₅H₄N in MeCN at 35.0 °C

Х	4-MeO	4-Me	3-Me	Н	3-Ph	3-MeO	3-Cl	3-Ac	4-Ac	3-CN	4-CN
$k_2 \times 10^3$	909 ± 2	332 ± 1	97.7 ± 0.2	41.2 ± 0.1	21.3 ± 0.1	$\begin{array}{c} 14.5 \\ \pm \ 0.1 \end{array}$	$\begin{array}{c} 0.580 \\ \pm \ 0.001 \end{array}$	$\begin{array}{c} 0.503 \pm \\ 0.001 \end{array}$	$\begin{array}{c} 0.170 \\ \pm \ 0.001 \end{array}$	$\begin{array}{c} 0.0631 \\ \pm \ 0.0001 \end{array}$	0.0387 ± 0.0001

Figure 2. The Brönsted plot [log $k_2 vs pK_a(X)$] of the reactions of dipropyl chlorophosphate (**3**) with X-pyridines in MeCN at 35.0 °C. The value of β_X is 0.87 ± 0.13 (r = 0.997).

There is no correlation between the pyridinolysis rate and the magnitude of the positive charge of the reaction center P atom in the substrate, suggesting that the inductive effects of the two ligands do not play any role to determine the pyridinolysis rate.

At a glance, the pyridinolysis rates are inversely proportional to the summation of the steric constants of the two ligands (ΣE_s), 1 > 2 > 3 > 4 > 5, when excluding 6 (with Y = H). To examine into the steric effects of the two ligands on the pyridinolysis rates of the studied P=O systems, the sensitivity coefficient of δ (= 0.64 with r = 0.816) are obtained from the Taft eq. (log $k_2 = \delta \Sigma E_S + C$) as shown in Figure 3.² It should be noted that the value of ΣE_S is not $E_S(R_1O) +$ $E_{\rm S}({\rm R_2O})$ ' but ' $E_{\rm S}({\rm R_1}) + E_{\rm S}({\rm R_2})$ ' since the data of Taft steric constants of R_iO are not available: $E_S(R) = 0(Me)$; -0.07 (Et); -0.36(Pr); -0.39(Bu); -0.47(i-Pr); -2.48(Ph).² The pyridinolysis rate of 6 (with Y = H) shows exceptionally great positive deviation from the slope. The dependence of the rate upon the steric effects of the two ligands is not quantitative but qualitative. In the case of the chlorothiophyshetes $[(R_1O)(R_2O)P(=S)Cl]$, the pyridinolysis rates are

Figure 3. The plot of log $k_2 vs \Sigma E_s$ for the reactions of **1-6** with C_5H_5N in MeCN at 35.0 °C. The number of the substrate and two ligands are displayed next to the corresponding point.

also semi-quantitatively correlated with the steric effects of the two ligands.^{1a,7} Figure R1⁷ can be explained in two ways: (i) diphenyl chlorothiophosphate $[(PhO)_2P(=S)CI]^{7a}$ shows exceptionally great positive deviation from the slope, the same as observed in the chlorophosphates; or (ii) phenyl ethyl chlorothiophosphate $[(EtO)(PhO)P(=S)CI]^{7b}$ shows negative deviation from the slope. The δ value with the chlorophosphates is greater than that with the chlorothiophosphates, indicating that the steric effects of the two ligands on the pyridinolysis rates of chlorophosphates are greater than those of chlorothiophosphates.

The free energy relationships for substituent X variations in the nucleophiles are linear with **1**, **2**, **3**, **5**, and **6** while biphasic concave upwards with **4**. The β_X (=0.16-0.18) values of **6** are exceptionally small and that ($\beta_X = 0.39$) of **5** with the weakly basic pyridines is relatively small. A concerted mechanism with an early TS involving backside nucleophilic attack TSb towards the Cl leaving group (Scheme 2) was proposed on the basis of small negative CIC ($\rho_{XY} = -0.15$)⁸ and small values of Brönsted coefficients (β_X = 0.16-0.18) for the pyridinolysis of **6**.^{1d} The S_N2 reaction mechanism was proposed for the pyridinolyses of **1**, **2**, and **4** with both frontside TSf and backside attacks TSb (Scheme

Table 2. Summary of the Second-Order Rate Constants ($k_2 \times 10^3/M^{-1} \text{ s}^{-1}$) with C₃H₅N at 35.0 °C, NBO Charges at the Reaction Center P Atom, Summations of the Taft Steric Constants of R₁ and R₂ [$\Sigma E_S = E_S(R_1) + E_S(R_2)$], Brönsted coefficients (β_X), CIC (ρ_{XY}), and Variation Trends of Free Energy Relationship with X for the Pyridinolyses (XC₃H₄N) of **1-6** in MeCN

Substrate	$k_2 \times 10^{3a}$	Charge at P	$-\Sigma Es^d$	$\beta_{\rm X}$	$ ho_{ m XY}$	Trend
1: (MeO) ₂ P(=O)Cl	64.7	2.226	0.00	0.63	_	L^g
2: (EtO) ₂ P(=O)Cl	52.8	2.236	0.14	0.73	-	L
3: (PrO) ₂ P(=O)Cl	41.2	2.239	0.72	0.87	-	L
4: (BuO) ₂ P(=O)Cl	30.4	2.239	0.78	0.80	_	L
5: (<i>i</i> -PrO) ₂ P(=O)Cl	9.60	2.269	0.94	1.05 ^e /0.39 ^f	_	\mathbf{V}^h
6: (PhO)(YC ₆ H ₄ O)P(=O)Cl	$266^{b,c}$	2.230^{c}	4.96 ^c	0.16-0.18	-0.15	L

^{*a*}Second-order rate constant with unsubstituted pyridine (X = H) at 35.0 °C. ^{*b*}Extrapolated value in the Arrhenius plot with kinetic data: $k_2 = 37.1, 94.0$, and $135 \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$ at 5.0, 15.0, and 25.0 °C, respectively, from ref. 1a. ^{*c*}The value with Y = H. ^{*d*}Note that the value of ΣE_S is not ' $E_S(R_1O) + E_S(R_2O)$ ' but ' $E_S(R_1) + E_S(R_2O)$ ' since the data of Taft steric constants of R_iO are not available. ^{*e*}Strongly basic pyridines. ^{*f*}Weakly basic pyridines. ^{*g*}Linear free energy relationship with X. ^{*h*}Biphasic concave upward free energy relationship with X. Notes

Scheme 2. Backside and frontside attack TS.

2), and the fraction of a frontside attack is more or less larger than that of a backside attack, on the basis of the magnitudes of β_X (= 0.63, 0.73, and 0.80 for 1, 2, and 4, respectively) values. 1a,b A concerted $S_{\rm N}2$ mechanism was proposed and biphasic concave upward free energy correlations was rationalized by a change of nucleophilic attacking direction from a frontside attack TSf ($\beta_{\rm X} = 1.05$) with the strongly basic pyridines to a backside attack (TSb; $\beta_X = 0.39$) with the weakly basic pyridines for the pyridinolysis of 4.^{1c} It is worthy of note that a frontside attack TSf yields greater magnitudes of ρ_X and β_X values compared to a backside attack.9 In the present work, thus, the S_N2 reaction mechanism is proposed with both frontside TSf and backside attacks TSb, and the fraction of a frontside attack is somewhat greater than that of a backside attack, on the basis of the magnitude of β_X (= 0.87) value.

In summary, the nucleophilic substitution reactions of dipropyl chlorophosphate (3) with X-pyridines are investigated kinetically in MeCN at 35.0 °C. The S_N2 reaction mechanism is proposed with both frontside TSf and back-side attacks TSb on the basis of the magnitude of β_X value. The importance of the steric effects of the two ligands on the pyridinolysis rates of chlorophosphates is discussed based on the Taft eq. of log $k_2 = \delta \Sigma E_S + C$.

Experimental Section

Materials. Dipropyl chlorophosphate (97%), GR grade pyridines and HPLC grade acetonitrile (water content is less than 0.005%) were used for kinetic studies without further purification.

Kinetic Procedure. Rates were measured conductometrically at 35.0 °C. The conductivity bridge used in this work was a self-made computer automated A/D converter conductivity bridge. The pseudo-first-order rate constants, k_{obsd} were measured by curve fitting analysis in origin program with a large excess of pyridines, [substrate] = 1 × 10^{-3} M and [XC₃H₄N] = (0.03-0.15) M. Second-order rate constants, k_2 , were obtained from the slope of a plot of k_{obsd} vs. [X-pyridine] with at least five concentrations of pyridine. The pseudo-first-order rate constant values (k_{obsd}) were the average of three runs that were reproducible within $\pm 3\%$.

Product Analysis. Dipropyl chlorophosphate was reacted with excess pyridine, for more than 15 half-lives at 35.0 °C in MeCN. Acetonitrile was removed under reduced pressure.

The product was isolated by adding ether and insoluble fraction was collected. The product was purified to remove excess pyridine by washing several times with ether. Analytical and spectroscopic data of the product gave the following results (see Supporting Information with activation parameters):

[(PrO)₂P(=O)NC₅H₅]⁺Cl⁻: Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 0.860.99 (6H, m, 2CH₃, Pr), 1.64-1.78 (4H, m, 2CH₂, Pr), 4.07-4.18 (4H, m, 2OCH₂, PrO), 7.92-7.96 (2H, t, *J* = 7.6 Hz, pyridinium), 8.41-8.45 (1H, t, *J* = 8.4 Hz, pyridinium), 8.90-8.92 (2H, d, *J* = 6.0 Hz, pyridinium); ¹³C NMR (100 MHz, CDCl₃) δ 9.82 (CH₃, Pr), 18.40, 23.15-23.48 (CH₂, Pr), 70.54, 71.19 (OCH₂, PrO), 103.54, 126.83, 141.79 (C=C, pyridinium); ³¹P NMR (162 MHz, CDCl₃) δ -7.52 (s, 1P, P=O); MS (ESI) *m/z* 279 (M⁺).

Acknowledgments. This work was supported by Inha University Research Grant.

References and Notes

- (a) Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2010, 23, 1022. (b) Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2012, 33, 1055. (c) Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3505. (d) Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12.
- (a) Taft, R. W. Steric Effect in Organic Chemistry; Newman, M. S., Ed.; Wiley: New York, 1956; Chapter 3. (b) Exner, O. Correlation Analysis in Chemistry: Recent Advances; Chapman, N. B., Shorter, J., Eds.; Plenum Press: New York, 1978; p 439.
- The pK_a(H₂O) values of X-pyridines were taken from: (a) Fischer, A.; Galloway, W. J.; Vaughan, J. J. Chem. Soc. **1964**, 3591. (b) Dean, J. A. Handbook of Organic Chemistry; McGraw-Hill: New York, 1987; Chapter 8. (c) Castro, E. A.; Freudenberg, M. J. Org. Chem. **1980**, 45, 906.
- (a) Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302. (b) Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 45. (c) Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099. (d) Ritchie, C. D. Solute Solvent Interactions; Marcel-Dekker: New York, 1969; p 228. (e) Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834.
- Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley: New York, 1986; Chapter 4.
- (a) Lee, I. Chem. Soc. Rev. 1990, 19, 317. (b) Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57. (c) Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529.
- 7. (a) Hoque, M. E. U.; Dey, S.; Kim, C. K.; Lee, H. W. *Bull. Korean Chem. Soc.* **2011**, *32*, 1138. (b) Adhikary, K. K.; Lumbiny, B. J.; Lee, H. W. *Bull. Korean Chem. Soc.* **2011**, *32*, 3947. (c) Hoque, M. E. U.; Lee, H. W. *Bull. Korean Chem. Soc.* **2012**, *33*, 325. (d) Hoque, M. E. U.; Lee, H. W. *Bull. Korean Chem. Soc.* **2012**, *33*, 1085. Fig. R1 shows semi-quantitatively linear correlation between the pyridinolysis rates and steric effects of the two ligands for the reactions of chlorothiophosphates (*1-6*) with C₅H₅N in MeCN at 35.0 °C, giving the sensitivity coefficients of δ = 0.16 (r = 0.754) with six substrates of *1-6*, δ = 0.41 (r = 0.973) with five substrates of *1-5*, and δ = 0.12 (r = 0.989) with five substrates of *1*, *2*, *3*, *4*, and *6*.

Figure R1. The plot of log $k_2 vs \Sigma E_8$ for the reactions of six chlorothiophosphates [(R₁O)(R₂O)P(=S)Cl] with C₅H₅N in MeCN at 35.0 °C. The two ligands of R₁O and R₂O are displayed next to the corresponding point.

- 8. The magnitude of ρ_{XY} value is inversely proportional to the distance between X and Y through the reaction center, and the negative sign of ρ_{XY} implies that the reaction proceeds through a concerted mechanism (or a stepwise mechanism with a rate-limiting bond formation), while a stepwise mechanism with a rate-limiting leaving group expulsion from the intermediate with the positive sign of ρ_{XY} . The value of $\rho_{XY} = -0.7$ is a typical one for S_N2 process.
- 9. Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135.