DOI QR코드

DOI QR Code

Dielectric Study of Allyl Chloride with 2-Pentanone and 2-Hexanone in Microwave Frequency Range

  • Received : 2012.01.04
  • Accepted : 2012.06.24
  • Published : 2012.10.20

Abstract

Dielectric measurement on binary mixtures of Allyl chloride (ALC) with 2-Pentanone (2-PE) and 2-Hexanone (2-HE) has been carried out over the entire concentration range using Time Domain Reflectometry (TDR) technique at various temperatures in microwave frequency range of 10 MHz to 10 GHz. The static dielectric constant, excess static dielectric constant (${\varepsilon}^E_S$), effective Kirkwood correlation factor ($g^{eff}$) of binary mixtures over entire concentration range were determined to study the effect of increasing alkyl group of ketones on hetero molecular interaction. It was found that magnitude of excess static dielectric constant of mixtures increases with increase of alky group of ketones. The study reveals that the dipole moment of Allyl chloride in mixture have antiparallelism tendency where as 2-pentanone and 2-hexanone have parallelism tendency. Excess static dielectric constant is also fitted to Redlich-Kister equation to get information about rates of multimers formation.

Keywords

References

  1. Dharmalingam, K.; Ramachandran, K.; Sivagurunathan, P.; Undre, P. B.; Khirade P. W.; Mehrotra, S. C. Bull. Korean Chem. Soc. 2006, 27, 2040. https://doi.org/10.5012/bkcs.2006.27.12.2040
  2. Sayyad, S. B.; Undre, P. B.; Yannewar, P.; Patil, S. S.; Khirade, P. W.; Mehrotra, S. C. Lith. J. Phys. 2011, 51, 29. https://doi.org/10.3952/lithjphys.51103
  3. Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K.; Undre, P. B.; Khirade, P. W.; Mehrotra, S. C. Lithuanian J. Phys. 2006, 46, 441. https://doi.org/10.3952/lithjphys.46403
  4. Maharolkar, A. P.; Sudake, Y. S.; Kamble, S. P.; Tidar, A. L.; Murugkar, A. G.; Patil, S. S.; Khirade, P. W.; Mehrotra, S. C. Int. J. Chem. 2010, 2, 250.
  5. Dharne, G. M.; Maharolkar, A. P.; Khirade P. W.; Patil, S. S.; Mehrotra, S. C. Mat. Sci. Res. India 2008, 5, 391.
  6. Singh, B. Bull. Chem. Soc. Japan 1984, 57, 2337. https://doi.org/10.1246/bcsj.57.2337
  7. Crossley, J. Can. J. Chem. 1973, 51, 2671. https://doi.org/10.1139/v73-403
  8. Madhurima, V.; Moni, M. S.; Sobhanadri, J.; Murthy, V. R. K. J. Mol. Liq. 2005, 122, 38. https://doi.org/10.1016/j.molliq.2005.02.002
  9. Madhurima, V. Indian J. Pure and Applied Phys. 2005, 43, 550.
  10. Sudake, Y. S.; Kamble, S. P.; Patil, S. S.; Khirade, P. W.; Mehrotra, S. C. J. Kor. Chem. Soc. 2012, 56, 20. https://doi.org/10.5012/jkcs.2012.56.1.020
  11. Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 345. https://doi.org/10.1021/ie50458a036
  12. Oster, G.; Kirkwood, J. G. J. Chem. Phys. 1943, 11, 175. https://doi.org/10.1063/1.1723823
  13. Lide, D. R. CRC Handbook of Chemistry and Physics, 87th ed.; 2006-07.
  14. Kumbharkhane, A. C.; Puranik, S. M.; Mehrotra, S. C. J. Sol. Chem. 1993, 22, 219. https://doi.org/10.1007/BF00649245
  15. Bruggeman, D. A. G. Ann. Phys. (Leopz) 1935, 5, 636.
  16. Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K.; Undre, P. B., Khirade, P. W.; Mehrotra, S. C. Lithuanian Physica B 2007, 387, 203.
  17. Sengwa, R. J.; Sonkhla, S.; Khatri, V. J. Mol. Liq. 2010, 151, 17. https://doi.org/10.1016/j.molliq.2009.10.011
  18. Undre, P.; Helambe, S. N.; Jagdale, S. B.; Khirade, P. W.; Mehrotra, S. C. Pramana-J. Phys. 2007, 68, 851. https://doi.org/10.1007/s12043-007-0083-8
  19. Kamble, S. P.; Sudake, Y. S.; Patil, S. S.; Khirade, P. W.; Mehrotra, S. C. J. Kor. Chem. Soc. 2011, 55, 373. https://doi.org/10.5012/jkcs.2011.55.3.373