DOI QR코드

DOI QR Code

Effect of Template Removal on Synthesis of Organic-Inorganic Hybrid Mesoporous MCM-48

  • Zhao, Ya Nan (Department of Chemistry, Chonnam National University) ;
  • Li, San Xi (Shenyang University of Technology) ;
  • Han, Chong-Soo (Department of Chemistry, Chonnam National University)
  • Received : 2012.05.12
  • Accepted : 2012.07.02
  • Published : 2012.10.20

Abstract

Post-synthesis is used to synthesize organic hybrid inorganic mesoporous sieves. In this method, the activity and structure of the base sieve are crucial to obtain the definable hybrid materials. The chemical and physical properties of the base can be largely changed either by the final step of its synthesizing processes, by template removal which is accomplished with the oxidative thermal decomposition (burning) method or by solvent extraction method. In this paper we compared two methods for the post-synthesis of organic hybrid MCM-48. When the template was extracted with HCl/alcohol mixture, the final product showed larger pore size, larger pore volume and better crystallinity compared to the case of the thermal decomposition. The reactivity of the surface silanol group of template free MCM-48 was also checked with an alkylsilylation reagent $CH_2=CHSi(OC_2H_5)_3$. Raman and $^{29}Si$ NMR spectra of MCM-48 in the test reaction indicated that more of the organic group was grafted to the surface of the sample after the template was removed with the solvent extraction method. Direct synthesis of vinyl-MCM-48 was also investigated and its characteristics were compared with the case of post-synthesis. From the results, it was suggested that the structure and chemical reactivity can be maintained in the solvent extraction method and that organic grafting after the solvent extraction can be a good candidate to synthesize a definable hybrid porous material.

Keywords

References

  1. Corma, A.; Kan, Q.; Navarro, M. T.; Perez-Pariente, J.; Rey, F. Chem. Mater. 1997, 9, 2123. https://doi.org/10.1021/cm970203v
  2. Kresge, A. C. T.; Leonowicz, M. E.; Roth, W. J.; Vatuli, J. C.; Beck, J. S. Nature 1992, 359, 710. https://doi.org/10.1038/359710a0
  3. Beck, J. S.; Vartuli, J. C.; Leonowicz, M. E.; Kresge, C. T.; Schemitt, K. D.; Chu, T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834. https://doi.org/10.1021/ja00053a020
  4. Kaneda, M.; Tsubakiyama, T.; Carlsson, A.; Sakamoto, Y.; Ohsuna, T.; Terasaki, O.; Joo, S. H.; Ryoo, R. J. Phys. Chem. B 2002, 106, 1256.
  5. Schumacher, K.; Ravikovitch, P. I.; Du Chesne, A.; Neimark, A. V.; Unger, K. K. Langmuir 2000, 16, 4648. https://doi.org/10.1021/la991595i
  6. Wohlgemuth, M.; Yufa, N.; Hoffman, J.; Thomas, E. L. Macromolecules 2001, 34, 6083. https://doi.org/10.1021/ma0019499
  7. Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Nature 1999, 402, 867.
  8. Hoffmann, F.; Corneluis, M.; Morell, J.; Froba, M. Angew. Chem. Int. Ed. 2006, 45, 3216. https://doi.org/10.1002/anie.200503075
  9. Zhao, X. S.; Lu, G. Q.; Zhu, H. Y. 24th Australia and New Zealand Chemical Engineering Conference and Exhibition 1996, 4, 39.
  10. Sayari, A.; Hamoudi, S. Chem. Mater. 2001, 13, 3151. https://doi.org/10.1021/cm011039l
  11. Daehler, A.; Boskovic, S.; Gee, M. L.; Separovic, F.; Stevens, G. W.; O'Connor, A. J. J. Phys. Chem. B 2005, 109, 16263. https://doi.org/10.1021/jp0511799
  12. Kumar, P.; Kim, S.; Ida, J.; Guliants, V. V. Ind. Eng. Chem. Res. 2008, 47, 201. https://doi.org/10.1021/ie070700d
  13. Zhang, X.; Cui, W.; Han, W.; Zhang, Y.; Liu, S.; Mu, W.; Chang, Y.; Hu, R. React. Kinet. Catal. Lett. 2009, 98, 349. https://doi.org/10.1007/s11144-009-0086-1
  14. Lim, M. H.; Stein, A. Chem. Mater. 1999, 11, 3285. https://doi.org/10.1021/cm990369r
  15. Yokoi, T.; Yoshitake, H.; Tatsumi, T. J. Mater. Chem. 2004, 14, 951. https://doi.org/10.1039/b310576h
  16. He, J.; Shen, Y. B.; Evans, D. G. Microporous Mesoporous Mater. 2008, 109, 73. https://doi.org/10.1016/j.micromeso.2007.04.051
  17. Lim, M. H.; Blanford, C. F.; Stein, A. J. Am. Chem. Soc. 1997, 119, 4090. https://doi.org/10.1021/ja9638824
  18. Kumar, P.; Ida, J.; Kim, S.; Guliants, V. V.; Lin, J. Y. S. J. Memb. Sci. 2006, 279, 539. https://doi.org/10.1016/j.memsci.2005.12.053
  19. Zhao, W.; Li, Q.; Wang, L.; Chu, J. L.; Qu, J. K.; Li, S. H.; Qi, T. Langmuir 2010, 26, 6982. https://doi.org/10.1021/la9042155
  20. Yoon, S. B.; Kim, J. Y.; Kooli, F.; Lee, C. W.; Yu, J. S. Chem. Commun. 2003, 1740.
  21. Kleitz, F.; Be rube, F.; Guilet-Nocolas, R.; Yang, C.-M.; Thommes, M. J. Phys. Chem. 2010, 114, 9344.
  22. Ayed, L.; Chaieb, K.; Cheref, A.; Bakhrouf, A. World J. Microbiol. Biotechnol. 2009, 25, 705. https://doi.org/10.1007/s11274-008-9941-x
  23. Ma, H.; He, J.; Evans, D. G.; Duan, X. J. Mol. Catal. B: Enzym. 2004, 30, 209. https://doi.org/10.1016/j.molcatb.2004.04.007
  24. Daehler, A.; Boskovic, S.; Gee, M. L.; Separovic, F.; Stevens, G. W.; O'Connor, A. J. J. Phys. Chem. B 2005, 109, 16263. https://doi.org/10.1021/jp0511799
  25. Chen, X.; Huang, L.; Li, Q. J. Phys. Chem. B 1997, 101, 8460.
  26. Yuranov, I.; Moeckli, P.; Suvorova, E.; Buffat, P.; Minsker, L. K.; Renken, A. J. Mol. Catal. A: Chem. 2003, 192, 239. https://doi.org/10.1016/S1381-1169(02)00441-7
  27. Gaslain, F. O. M.; Delacote, C.; Walcarius, A.; Lebeau, B. J. Sol- Gel Sci. Technol. 2009, 49, 112. https://doi.org/10.1007/s10971-008-1845-6
  28. Lim, M. H.; Blanford, C. F.; Stein, A. J. Am. Chem. Soc. 1997, 119, 4090. https://doi.org/10.1021/ja9638824
  29. Pereira, C.; Alves, C.; Monteiro, A.; Magen, C.; Pereira, A. M.; Ibarra, A.; Ibarra, M. R.; Tavares, P. B.; Araujo, J. P.; Blanco, G.; Pintado, J. M.; Carvalho, A. P.; Pires, J.; Pereira, M. F. R.; Freire, C. ACS Appl. Mater. Interfaces 2011, 3, 2289. https://doi.org/10.1021/am200220x