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Abstract
In this study, we propose definitions for the one-sided variance for asymmetric distribution. We consider

to apply the one-sided variance to the construction to define modified Cpk, which is a definition for the process
capability index for the asymmetric process distribution. Then we consider to obtain the consistent estimation
for the one-sided variance and to apply to the various industrial fields.
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1. Introduction

Let X be a random variable having an unknown but continuous distribution function F with finite
second moment. Then the mean µ and variance σ2 are defined as

µ = E(X) =
∫ ∞

−∞
x dF(x) and σ2 = E

{
(X − µ)2

}
=

∫ ∞

−∞
(x − µ)2dF(x).

We note that the variance σ2 is defined as the mean of the square of the deviation from the mean
µ. Therefore, σ2 is an average for the square of the deviation for both sides around the mean µ.
Then if F is symmetric, this definition for σ2 reveals no problem when we define any concept that
should be represented by limits for both sides around µ based on σ2. However for the non-symmetric
or asymmetric case, the definition for σ2 may incur some inconvenient or absurd situations. For
example, one may consider to apply the process capability index(PCI) to assess the state of the ability
for the production process and use the following Cpk among the various definitions for the PCI when
the process distribution F is non-symmetric.

Cpk = min
{
µ − LSL

3σ
,

USL − µ
3σ

}
, (1.1)

where LSL and USL are the lower and upper specification limits, respectively. To get some more
specific insight for the motivation of this study, we consider to provide the numerical values of Cpk for
the Weibull distributions, that consist of a family for the skewed distributions. The probability density
function(pdf) for any Weibull distribution has the following form: for any α > 0,

f (x) =
{
αxα−1 exp [−xα] , x > 0,
0, x ≤ 0.

In Table 1, we tabulated the values of Cpk by varying the value of α. We considered three cases such
as 1/2, 1 and 2 for the values of α. In addition, we considered LSL = w0.005 and USL = w0.995, where
wp means the pth quantile point for each Weibull distribution.
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Table 1: Values of Cpk based on σ2

α mean variance LSL USL (µ − LSL)/3σ (USL − µ)/3σ Cpk
1/2 2 20 0.0000 28.0722 0.1491 1.9433 0.1491
1 1 1 0.0050 5.2983 0.3317 1.4328 0.3317
2

√
π/2 1 − π/4 0.0708 2.3018 0.5867 1.0186 0.5867

Table 2: A criterion for the assessment of process for Cp

Range of Cp Cp ≥ 1.33 1 ≤ Cp < 1.33 0.67 ≤ Cp < 1 Cp < 0.67
Grade of Cp A B C D

Figure 1: The shape of pdf of Weibull distributions

¿From Table 1, we note that the value of Cpk varies with a wide range(from 0.1491 to 0.5867) by
the value of α. Therefore it would be difficult to establish an effective criterion for Cpk to assess the
production process unlike Cp, which is also a PCI used mainly under the assumption of the normality
for the process distribution. We note that Cp has a general criterion, which can play a useful role
in monitoring the ability of the production process, with some specific values for the assessment of
the ability of the process (Park and Park, 2005). In Table 2, we summarized such a criterion for
Cp. Then the wide range of the value of Cpk in Table 1 may be because the shape of the Weibull
distribution changes abruptly with the change of the value of as shown in Figure 1. We note that as α
increases, the shape of the pdf moves toward the symmetry and the difference between (µ − LSL)/3σ
and (USL− µ)/3σ decreases. From this, one may conjecture that this phenomenon may happen since
the shape of the pdf changes toward symmetry.

We note that the symmetry of F means that the deviations for the left and right sides from µ are
equal. However, they are different when F is not symmetric. Therefore, since Cpk has been defined
with the ordinary variance σ2, it seems that the variation with such a wide range for the values of Cpk

shown in Table 1 would be inevitable. Therefore in order to prevent or at least alleviate the excessive
variation for the value of Cpk from σ2 and help set up any criterion to easily monitor the production
process, we will introduce a new definition for the variance that may measure the deviation with the
sidewise manner for any given point. In the next section, we propose definitions for the one-sided
variance by defining the modified Cpks and comparing Cpk with the modified Cpks by obtaining the
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Table 3: The values of Cm1
pk based on σ2

L(µ) and σ2
R(µ)

α mean σ2
L(µ) σ2

R(µ) LSL USL
µ − LSL

3σL

USL − µ
3σR

Cm1
pk

1/2 2 2.6737 40 + 24
√

2 0.0000 28.0722 0.5130 1.0131 0.5130
1 1 0.4180 2 0.0050 5.2983 0.3317 1.4328 0.3317
2

√
π/2 0.1630 0.2762 0.0708 2.3018 0.6733 0.8979 0.6733

values from the Weibull distributions used for Table 1. In Section 3, we consider the estimation and
discuss some interesting features.

2. Definitions of the One-Sided Variance and Applications

In this section we define two types of the one-sided variance in the sequel. First of all, we propose the
first definition for the one-sided variance from any given point u ∈ (−∞,∞) as follows:

σ2
L(u) =

∫ u

−∞
(x − u)2d

F(x)
F(u)

=
1

F(u)

∫ u

−∞
(x − u)2dF(x)

and

σ2
R(u) =

∫ ∞

u
(x − u)2d

F(x)
1 − F(u)

=
1

1 − F(u)

∫ ∞

u
(x − u)2dF(x).

We note that σ2
L(u) and σ2

R(u) measure scales for the left and right side from u and may be called
the left- and right-side variances from u, respectively. One may choose the point u according to the
purpose of the application. For the application to Cpk, one should take u = µ. If one considers a
control chart based on a median, one has to choose a median for u. We note that if F is symmetric
with mean µ, then we see that

σ2
L(µ) = σ2

R(µ) = σ2.

Thus the one-sided variances σ2
L(u) and σ2

R(u) can be considered as a generalization of σ2. Based
on this definition for the one-sided variances, one may propose a modified definition Cm1

pk of Cpk as
follows:

Cm1
pk = min

{
µ − LSL
3σL(µ)

,
USL − µ
3σR(µ)

}
.

In Table 3, we summarized the values of Cm1
pk for the three Weibull distributions considered in Section

1 to compare with those of Cpk. We note that the variability of the value of Cm1
pk is considerably

mitigated compared with that of Cpk. Therefore one may provide a sensible guideline to assess the
production process with some common criterion at least within this Weibull distribution family.

Another concept for the one-sided variance can be defined as follows. For this, for any given point
u ∈ (−∞,∞), let

µL(u) =
1

F(u)

∫ u

−∞
xdF(x) and µR(u) =

1
1 − F(u)

∫ ∞

u
xdF(x).

We note that when u = ∞ or u = −∞, we see that

µL(∞) = µR(−∞) = µ.
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Table 4: The values of Cm2
pk based on σ2

L(µL) and σ2
R(µR)

α mean σ2
L(µL) σ2

R(µR) LSL USL
µ − LSL

3σL

USL − µ
3σR

Cm2
pk

1/2 2 0.2683 28 + 16
√

2 0.0000 28.0722 1.2870 1.2214 1.2214
1 1 0.0793 1 0.0050 5.2983 1.1776 1.4328 1.1776
2

√
π/2 0.0459 0.1094 0.0708 2.3018 1.2691 1.4263 1.2691

Thus µL and µR can be considered as the means of the truncated distributions from right and left at u.
Then the one-sided variances for the left and right side, σ2(µL(u)) and σ2(µR(u)) can be defined as

σ2(µL(u)) =
∫ u

−∞
(x − µL(u))2d

F(x)
F(u)

=
1

F(u)

∫ u

−∞
(x − µL(u))2dF(x)

and

σ2(µR(u)) =
∫ ∞

u
(x − µR(u))2d

F(x)
1 − F(u)

=
1

1 − F(u)

∫ ∞

u
(x − µR(u))2dF(x).

Then we note that if u = ∞ or u = −∞, since

σ2(µL(u)) = σ2(µR(u)) = σ2

one may considerσ2(µL(u)) andσ2(µR(u)) generalizations ofσ2. With this definition for the one-sided
variance, we may propose another modified definition Cm2

pk for Cpk by taking u = µ as follows.

Cm2
pk = min

{
µ − LSL
3σL(µL)

,
USL − µ
3σR(µR)

}
.

Using this definition for the one-sided variance, we have summarized the values of Cm2
pk for the Weibull

distributions considered in the previous section in Table 4. Then we note that the values of Cm2
pk main-

tain quite stable phase within the Weibull distribution family. In addition, we note that the two compo-
nents comprised Cm2

pk show very little difference for each distribution and furthermore the variability
of Cm2

pk becomes very stabilized. Therefore it would be possible to set up a guideline for PCI to easily
control the production process.

3. Estimation of the One-Sided Variance

For this let X1, . . . , Xn be a sample from a production process having the unknown but continuous
distribution function F with the finite variance σ2. First, we consider the estimation of σ2

L and σ2
R.

For this let F̂n be the empirical distribution function from X1, . . . , Xn such as

F̂n(x) =
1
n

n∑
i=1

I(Xi ≤ x),

where I(·) is an indicator function. Then for any given real number u ∈ (−∞,∞), estimates σ̂2
L and σ̂2

R
of σ2

L and σ2
R can be proposed as follows:

σ̂2
L(u) =

1
F̂n(u)

∫ u

−∞
(x − u)2dF̂n(x) =

1
nF̂n(u)

n∑
i=1

(Xi − u)2I(Xi ≤ u)
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and

σ̂2
R(u) =

1
1 − F̂n(u)

∫ ∞

u
(x − u)2dF̂n(x) =

1

n
(
1 − F̂n(u)

) n∑
i=1

(Xi − u)2I(Xi > u).

Theorem 1. With the condition of the finiteness for σ2, σ̂2
L and σ̂2

R are the consistent estimates of
σ2

L and σ2
R.

Proof: We only prove the consistency for σ̂2
L. The proof for σ̂2

R follows the same arguments used for
σ̂2

L. Then first of all, we note that

E
{
(Xi − u)2I(Xi ≤ u)

}
=

∫ u

−∞
(x − u)2dF(x) < ∞.

Thus due to the Khintchine’s weak convergence (Chung, 1974), we see that

1
n

n∑
i=1

(Xi − u)2I(Xi ≤ u)
p
→

∫ u

−∞
(x − u)2dF(x),

where
p
→ means the convergence in probability. In addition, it is well-known that from the law of

large numbers for every u ∈ (−∞,∞),

F̂n(u)
p
→ F(u).

Then from the Slutsky’s theorem (Bickel and Doksum, 1977), we obtain that for any given real number
u ∈ (−∞,∞)

σ̂2
L(u)

p
→ σ2

L(u).

For the applications to the real situation, u may be the mean of F or a median. In general, since
they are unknown, one should estimate u to complete an estimate for the one-sided variance. Then for
any consistent estimate û of u, consistent estimates σ̂2

L and σ̂2
R can be proposed as follows:

σ̂2
L(û) =

1
nF̂n(û)

n∑
i=1

(Xi − û)2 I (Xi ≤ û) and σ̂2
R(û) =

1

n
(
1 − F̂n(û)

) n∑
i=1

(Xi − û)2 I (Xi > û) .

The proof for the consistency would be straightforward if we apply the same arguments used for the
proof of Theorem 1. For the consistent estimates of σ2(µL(u)) and σ2(µR(u)), first, we have to estimate
µL(u) and µR(u). For this, let û be any consistent estimate of u. Then consistent estimates of µL(u) and
µR(u) can be proposed as

µ̂L(û) =
1

nF̂n(û)

n∑
i=1

XiI(Xi ≤ û) and µ̂R(û) =
1

n
(
1 − F̂n(û)

) n∑
i=1

XiI (Xi > û) .

Then we may propose consistent estimate for σ2(µL(u)) and σ2(µR(u)) as follows:

σ̂ (µ̂L(û)) =
1

nF̂n(û)

n∑
i=1

(Xi − µ̂L(û))2 I(Xi ≤ û)
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and

σ̂ (µ̂R(û)) =
1

n
(
1 − F̂n(û)

) n∑
i=1

(Xi − µ̂R(û))2 I(Xi > û).

The proof for the consistency would be straightforward if one uses the same arguments with the proof
of Theorem 1. �

4. More Applications and Some Concluding Remarks

We have already applied the concept of the one-sided variance to define new PCIs for the asymmetric
process distributions. The main purpose of the introduction of this concept was to be able to set up
some useful criteria to grasp easily and quickly the situation of the production process with grading
the modified Cpk that uses one of the proposed one-sided variances as we may have done for the case
of Cp in Table 2. Then based on this point of view, the second definition would be more appropriate
than the first one from the results of Table 3 and Table 4 since the values of Cm2

pk appear more evenly
than those of Cm1

pk . The reasons for this are unclear; however, it may be because the one-sided variance
from the second definition can be considered as the true variance for that side while that from the first
one, as the variance of the symmetric distribution centered at u for each side.

As another application, one may consider to use to construct the control charts for the asymmetric
underlying distributions. As an example, we consider the Weibull distribution with α = 1 introduced
in Section 1 with the sample size n = 9. Then from Table 1, the lower control limit(LSL) and upper
control limit(USL) may be chosen as

LCL = µ − 3σ
√

n
= 1 − 1 = 0,

UCL = µ +
3σ
√

n
= 1 + 1 = 2,

when we consider 3 − σ control limits. Then we note that we come to fail to control the lower part of
the quality of product since LCL = 0. In addition, we note that the product based on this control chart
cannot satisfy the LCL, either. Noting that 9X̄ has the gamma distribution with parameters 1 and 9 for
the respective scale and shape, we have that

Pr
{
0 < X̄ < 2

}
= 0.9929.

The portion of the acceptability in quality of the product in the process based on the above control
limits would be 99.3% when the process works normally. The purpose of choosing 3−σ for the limit
controls is to maintain the process with 99.9% for the acceptable quality of the product. Thus for the
exponential case, i.e., α = 1, it would be difficult to keep this in the process. If we consider to use the
one-sided variance, then the first definition would produce the following LSL and USL, respectively.
From Table 3, we have that

LCL = µ − 3σL(1)
√

n
= 1 −

√
0.418 = 0.3535,

UCL = µ +
3σR(1)
√

n
= 1 +

√
2 = 2.4142.
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Then we obtain that from the gamma distribution

Pr
{
0.3535 < X̄ < 2.4142

}
= 0.9938.

Thus about 99.4% of the product in the process would be controlled as the acceptable product in
quality. This increase in the controlled portion would be negligible but we note that LSL has moved
significantly from 0. This means that there may remain some rooms for LSL to modify the control
chart to improve the portion for the acceptable product. Especially we note that both the control limits
may also satisfy both specification limits. From the second definition of the one-sided variance, we
have from Table 4

LCL = µ − 3σL(µL)
√

n
= 1 −

√
0.0793 = 0.7184,

UCL = µ +
3σR(µR)
√

n
= 1 + 1 = 2.

In addition, we have

Pr
{
0.7184 < X̄ < 2

}
= 0.7886.

About 78.9% of the product can be controlled as the acceptable one in the process if we use this
control chart, whose control limits are obtained by the one-sided variance from the second definition.
Thus for the case of the control chart, it would seem to be more appropriate to use the first definition
for the one-sided variance. In passing we note that the proportion of any part(lower or upper part)
from the center line in those control charts do not represent 50% of the process when the process
distribution is asymmetric. In this case, one may consider to use a median as the center line and may
expect to contain a more acceptable proportion in the process. With this line of argument, we propose
a more modified definition for Cpk based on a median θ as follows:

Cpk(θ) = min
{
θ − LSL
3σL(θ)

,
USL − θ
3σR(θ)

}
.

Already Park (2011) has discussed the modified Cpk(θ) based on the ordinary variance σ2. For further
discussion of the inference for Cpk(θ) you may refer to Park (2011).

The concept for the one-sided variance may be applied to obtain the confidence intervals for the
location parameters when the underlying distribution are not symmetric and any pivot is not available
with the same arguments used for the control chart. However in this case, the study for the coverage
probability should be followed to justify the exactness and correctness of that interval.

We have proposed two types of one-sided variance. The first type has been defined as the variance
for the distribution that is symmetric around u while the second one is the variance for the truncated
distribution at u. As we have seen the results from the two cases, each definition of the one-sided
variance has its own peculiar point to be applied. Thus the choice for the applications should depend
on the purpose of the application or the shape of the underlying distribution.

For the choice for u, it should also depend on the purpose of the applications. For example if we
are interested in the mean, u must be the mean of the distribution. However, for Cpk(θ) introduced
previously we have to choose a median for u. Especially when one considers the first definition of the
one-sided variance, one may choose the mode of the underlying distribution as u for the purpose of
the symmetry point of each side variance. This in turn involves the estimation of the mode when one
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applies the one-sided variance to the real data. Even though the burden of the estimation of the mode,
one may expect that the modified definition of Cpk using the one-sided variance based on the mode
would bring us more stable values of Cpk.

A referee for this paper brought the terminology of the semi-variance (Bond and Satchell, 2002)
to my attention. A version of the definition for the semi-variance can be expressed as

SVu =

∫ u

−∞
(x − u)2dF(x),

which has similar form to our first definition of the one-sided variance. To my knowledge concerns,
only the lower part for u has been defined for the semi- variance. In addition, the semi-variance
have been applied to finance and geophysics with the risk theory and decision of direction not to the
problem with skewed distribution.

Finally, we would like to comment about the motivation of this study. As mentioned before, the
goal to introduce the one-sided variance is mainly to set up some criterion or criteria for Cpk to easilty
assess the ability of the process. Therefore for the applications of the Statistics and Probability theory
to industrial fields, the application of one-sided variance should be seriously considered and in additon
a study for the theoretical aspects and properties for the definition and estimation must be followed.
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