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Abstract
These days the interest of quality leads to the necessity of control charts for monitoring the process in various

fields of practical applications. The X̄ chart is one of the most widely used tools for quality control that also
performs well under the normality of quality characteristics. However, quality characteristics tend to have non-
normal properties in real applications. Numerous recent studies have tried to find and explore the performance
of X̄ chart due to non-normality; however previous studies numerically examined the effects of non-normality
and did not provide any theoretical justification. Moreover, numerical studies are restricted to specific type
of distributions such as Burr or gamma distribution that are known to be flexible but can hardly replace other
general distributions. In this paper, we approximate the false alarm rate(FAR) of the X̄ chart using the Edgeworth
expansion up to 1/n-order with the fourth cumulant. This allows us to examine the theoretical effects of non-
normality, as measured by the skewness and kurtosis, on X̄ chart. In addition, we investigate the effect of skewness
and kurtosis on X̄ chart in numerical studies. We use a skewed-normal distribution with a skew parameter to
comprehensively investigate the effect of skewness.

Keywords: Average run length, X̄ chart, Edgeworth expansion, simulation.

1. Introduction

The X̄-chart has been widely used to monitor an independent univariate process as a useful tool of
quality control. In theory, the X̄-chart assumes that the quality characteristic is from normal distri-
bution or the number of its observations is large enough for the central limit theorem to hold. As
previous authors, such as Bai and Choi (1995), Roes and Does (1995), Janacek and Meikle (1997),
have remarked the observations are often from a non-normal distribution and its size is not large in
practice. Moreover, the control parameters such as µ and σ2 are usually unknown and therefore es-
timated. These situations influence the performance of the X̄ chart. It is usually evaluated by the
average run length(ARL) where the run length indicates the number of subgroups taken until an alarm
is signaled by the control chart.

Several authors study the control limits of the X̄ chart when the observations are not normal.
Burr (1967) showed that the control limits in this chart are very robust to normal assumptions, that
were examined by Burr distribution. Similarly, Schilling and Nelson (1976) investigated the effect
of nonnormality on the control limits and they report that samples of size 4 or 5 in the X̄ chart are
sufficient to ensure reasonable robustness for the normal assumption. This is investigated by well-
known distributions such as uniform or gamma distribution. Chan et al. (1988) concluded that the
non-normality of data has little effect on the control limits of the X̄-chart and this was studied by
Tukey’s λ-family of symmetric distribution. Wheeler and Chambers (1992) reported that the control
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limits do not change appreciably even when the data are non-normal. These remarks all agree with
Shewhart’s original assumption in which the standard normal based-control limits are appropriate for
X̄ chart Shewhart (1931).

Others (e.g., Burrows, 1962; Yourstone and Zimmer, 1992; Chakraborti et al., 2004) have re-
marked that the X̄ chart is significantly affected by non-normality in terms of the performance. Bur-
rows (1962) studied the effect of skewed distributions on X̄ charts and found that the ARLs of moder-
ately skewed distributions significantly differ from the stated ARLs based on the normal distribution.
He concluded that non-normal data may lead to asymmetric control limits rather than symmetric ones.
Yourstone and Zimmer (1992) developed the asymmetric X̄ charts based on probability limits using
the Burr distribution and showed that Shewhart-type control chart can lead to inappropriate decisions
especially for skewed distribution.

There has been a great deal of research on the performance of X̄ chart; however, most studies
are limited in several points. First, they are restricted to a specific type of distributions such as the
Burr, gamma, and Weibull distributions. Even though some distributions are known to be flexible,
they can hardly replace other general distributions. In particular, the skewness and kurtosis in theirs
tend to confound each other and it is hard to investigate their unique effect on the ARLs. Second,
previous works numerically investigate the effects of non-normality on the ARLs and do not provide
any theoretical justification.

In this paper, we assume the information about the third and forth moments of underlying distribu-
tion and we will approximate the FAR of the X̄ chart using the Edgeworth expansion up to 1/n-order
with the fourth cumulant. The approximation shows how the FAR and also the ARL depend on the
third and the fourth cumulants (or the skewness and kurtosis) of the underlying distribution.

Most previous works focused on the ARL based on numerical studies with well-known distribu-
tions in order to examine the effect of departures from normality on X̄ chart. For instance, Chakraborti
et al. (2004) investigated the gamma, t or uniform distributions. However, as noted by their paper,
the run length may go to infinity (depending on the distributional properties) and it may not be ap-
propriate to simulate the run length directly. Hence, we provide numerical studies about the ARL via
the FAR to see how the ARL is influenced by the skewness with a small subgroup. In particular, we
consider the class of skew-normal distribution where the departure of the underlying distribution from
the normal distribution can be relatively well regulated by the skewness parameter.

The paper is organized as follows. In Section 2, we approximate the false alarm rate of the X̄ chart
using the Edgeworth expansion. In Section 3, we numerically investigate the effect of the skewness
on the in-control ARL of X̄ chart. Here, we employ the class of the skew-normal distribution as true
underlying distributions. We numerically compute the distribution of the ARL using the approximate
FAR obtained in Section 3. Conclusions and discussions are given in Section 4.

2. Edgeworth Expansion of the False Alarm Rate

Suppose that the parameters µ and σ represent the in-control process mean and standard deviation,
respectively. The upper and lower control limits, LCL and UCL, are given by

UCL = µ + F−1
(
1 − α

2

)
σ
√

n
(2.1)

and

LCL = µ − F−1
(
α

2

)
σ
√

n
, (2.2)
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where the distribution F(·) represents the sampling distribution of the sample mean, X̄, and is generally
used with the standard normal distribution Φ(·) according to the central limit theorem. To monitor and
control the process mean µ, we will collect the test sample xt1, xt2, . . . , xtn at each inspection time
t = 1, 2, 3, . . . and compute the test statistic X̄t from the sample. If a sample mean falls outside of
these limits in (2.1) or (2.2), it indicates that the process is out of control. If it remains within the
control limits, it is regarded under control. Let N be the run length of the control statistic X̄ defined as

N = min
{
t : X̄t < LCL or X̄t > UCL

}
(2.3)

for t = 1, 2, . . . . Then the average run length is given by

E(N) =
∞∑

l=0

P(N > l).

Here, by the definition of the run length N in (2.3),

P(N > l) = P
(
LCL < X̄1 < UCL, . . . ,LCL < Xl < UCL

)
= P

(
LCL < X̄1 < UCL

)l
.

Thus, the ARL for the control statistic X̄1 becomes

E[N] =
∞∑

l=0

P(N > l)

=

∞∑
l=0

P
(
LCL < X̄1 < UCL

)l

=
1

1 − P
(
LCL ≤ X̄1 ≤ UCL

) (2.4)

=
1

1 + P
(
X̄1 ≤ LCL

)
− P

(
X̄1 ≤ UCL

) . (2.5)

As shown in (2.4), the ARL is given by the reciprocal of the FAR which means the probability that any
point exceeds the control limits. To evaluate the performance of the control chart based on the ARL,
we need to calculate the in-control ARL and out-of-control ARL that correspond to the conditional
expectation of the run length; given that the process is under control and out-of-control, respectively.
Efficient charts have the larger in-control ARL and smaller out-of-control ARL. Based on the rela-
tionship between ARL and FAR in (2.4), we will evaluate the ARL by improving FAR on the normal
approximation of X̄. To do this, we consider two cases for the Edgeworth expansion of the FAR: (i)
the process parameters µ and σ are known (ii) the process parameters µ and σ are unknown.

2.1. The case where both µ and σ are known

Let us first consider the control limits when µ and σ are known. As discussed earlier, the previous
works show that the in-control ARL is affected by the skewness and the kurtosis but they do not
provide any theoretical justification. In order to evaluate the effect of the skewness and the kurtosis
on the ARL, we approximate the ARL via improving the probability of a subgroup X̄ falling outside
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control limits, UCL and LCL. As displayed in (2.5), the probability exceeding lower limit, P(X̄ ≤
LCL), plays an important role in improving in the FAR. If we let this probability of exceeding lower
limit with mean shift from µ0 to µ = µ0 + δ/

√
n, it is represented as

A(k, δ) = P
(
X̄ ≤ µ0 − k

σ
√

n

∣∣∣∣∣ µ = µ0 +
δ
√

n

)
.

When the process is under control, it is approximated by the Edgeworth expansion as

A(k, 0) = P
(
X̄ ≤ µ0 − k

σ
√

n

∣∣∣∣∣ µ = µ0

)
= P

(
X̄ − µ0

σ/
√

n
≤ −k

)
= Φ(−k) − 1

6
√

n
κ1

{
(−k)2 − 1

}
ϕ(−k)

−
[

1
24n

κ2

{
(−k)3 − 3(−k)

}
+

1
72n

κ2
1

{
(−k)5 − 10(−k)3 + 15(−k)

}]
ϕ(−k) + O

(
n−

3
2

)
, (2.6)

where κ1 = E
[
(X − µ)/σ

]3 and κ2 = E
[
(X − µ)/σ

]4 − 3 stand for skewness and kurtosis, respectively.
This reveals how the probability of detecting mean shift is affected by the degrees of skewness and
kurtosis when the sample mean is based on n observations. The term of order n−1/2 in (2.6) corrects
the basic normal approximation for the main effect of skewness, while the term of order n−1 corrects
the main effect of kurtosis and the secondary effect of skewness. Similarly, we can get the Edgeworth
expansion of P(X̄ ≥ UCL) under control. Due to the symmetry of Φ(·) and ϕ(·), the in-control ARL is
then approximated by

E
[
N | µ = µ0

]
=

[
2Φ(−k) +

1
n

{
1
12
× κ2

(
k3 − 3k

)
+

1
36
× κ2

1

(
k5 − 10k3 + 15k

)}
ϕ(−k) + O

(
n−

3
2

)]−1

showing how the ARL is affected by skewness and kurtosis theoretically. Interestingly, the ARL has
no contribution from the skewness of order n−1/2 but is affected by the skewness and kurtosis of order
n−1.

Suppose that the process is out-of-control, and the process mean has shifted to µ = µ0 + δ/
√

n.
Then the probability A(k, δ) is approximated as

A(k, δ) = P
(
X̄ ≤ µ0 − k

σ
√

n

∣∣∣∣∣ µ = µ0 +
1
√

n
δ

)
= P

(
X̄ − µ
σ/
√

n
≤ µ0 − {µ0 + (1/

√
n)δ}

σ/
√

n
− k

)
= P

(
X̄ − µ
σ/
√

n
≤ −k − δ

σ

)
= Φ

(
−k − δ

σ

)
− 1
√

n
1
6
κ1

{(
−k − δ

σ

)2

− 1
}
ϕ
(
−k − δ

σ

)
− 1

n

[
1
24
κ2

{(
−k − δ

σ

)3

− 3
(
−k − δ

σ

)}
+

1
72
κ2

1

{(
−k − δ

σ

)5

− 10
(
−k − δ

σ

)3

+ 15
(
−k − δ

σ

)}]
ϕ
(
−k − δ

σ

)
+ O

(
n−

3
2

)
.
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Therefore, we can get out-of-control ARL as

E
[
N

∣∣∣∣∣ µ = µ0 +
1
√

n
δ

]
= {1 + A(k, δ) − A(−k, δ)}−1 . (2.7)

Unlike the in-control ARL, the out-of-control ARL is affected by the skewness of order n−1/2.

2.2. The case where µ is unknown but σ is known

In practice, the control limits in (2.1) and (2.2) are estimated from a reference sample to apply prospec-
tively to monitor the changes of the process mean since the control parameters are generally unknown.
Here we assume that the mean of the underlying distribution is unknown, but the variance is known.
Suppose that a reference random sample of m subgroups, xi1, xi2, . . . , xin, for i = 1, 2, . . . ,m is avail-
able from an in-control process. Then, the in-control process mean µ and standard deviation σ are
estimated from reference samples. Here, ¯̄X, is the mean of means of subgroups X̄i in the m reference
subgroups and R̄ is the mean of ranges of subgroups Ri in the ith reference subgroup each containing
n observations. With µ̂ = ¯̄X in control limits, the probability A(k, 0) is approximated by

A(k, 0) = P
(
X̄ ≤ µ̂ − k

σ
√

n

)
= P

(
X̄ − µ0

σ/
√

n
≤ −k +

1
σ

U
√

m

)
= EU

[
P

(
X̄ − µ0

σ/
√

n
≤ −k +

1
σ

u
√

m

) ∣∣∣∣∣ U = u
]
.

where µ̂ = µ0 + U/
√

mn and U = µ0 + Op((mn)−1/2). Given U = u,

P
(

X̄ − µ0

σ/
√

n
≤ −k +

1
σ

u
√

m

)
= Φ

(
−k +

1
σ

u
√

m

)
− 1

6
√

n
κ1


(
−k +

1
σ

u
√

m

)2

− 1

 ϕ
(
−k +

1
σ

(
u
√

m

))

− 1
24n

κ2


(
−k +

1
σ

u
√

m

)3

− 3
(
−k +

1
σ

u
√

m

) × ϕ
(
−k +

1
σ

(
u
√

m

))

− 1
72n

κ2
1


(
−k +

1
σ

u
√

m

)5

− 10
(
−k +

1
σ

u
√

m

)3

+ 15
(
−k +

1
σ

u
√

m

) × ϕ
(
−k +

1
σ

u
√

m

)
+ o

(
n−1

)
=

{
Φ(−k) + ϕ(−k)

1
σ

u
√

m
+

1
2
ϕ′(−k)

1
σ2

u2

m
+ O

(
m−

3
2

)}
− 1

6
√

n
κ1

{(
(−k)2 − 1

)
+

1
σ2

u2

m

}
×

{
ϕ(−k) + ϕ′(−k)

1
σ

u
√

m
+

1
2
ϕ′′(−k)

1
σ2

u2

m
+ O

(
m−

3
2

)}
− 1

24n
κ2

{(
(−k)3 − 3(−k)

)
+ 3(−k)

1
σ2

u2

m
+ O

(
m−

3
2

)}
×

{
ϕ(−k) + ϕ′(−k)

1
σ

(
u
√

m

)
+

1
2
ϕ′′(−k)

1
σ2 ·

u2

m
+ O

(
m−

3
2

)}
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− 1
72n

κ2
1

{(
(−k)5 − 10(−k)3 + 15(−k)

)
+ 10(−k)3 1

σ2 ·
u2

m
− 30(−k)

1
σ2 ·

u2

m

}
×

{
ϕ(−k) + ϕ′(−k)

1
σ

u
√

m
+

1
2
ϕ′′(−k)

1
σ2 ·

u2

m
+ O

(
m−

3
2

)}
+ o

(
n−1

)
.

Taking expectation with respect to U and A(k, 0) becomes

EU

[
P

(
X̄ − µ0

σ/
√

n
≤ −k +

1
σ

u
√

m

∣∣∣∣∣ U = u
)]

=

Φ(−k) +
1
2
ϕ′(−k)

1
σ2

σ2
U

m

 + O
(
m−

3
2

) − 1
6
√

n
κ1

((−k)2 − 1
)
+

1
σ2

σ2
U

m
+ O

(
m−

3
2

) ϕ(−k)

− 1
24n

κ2

((−k)3 − 3(−k)
)
+ 3(−k)

1
σ2

σ2
U

m

 ϕ(−k) + O
(
m−

3
2

)
− 1

72n
κ2

1

((−k)5 − 10(−k)3 + 15(−k)
)
+ 10(−k)3 1

σ2

σ2
U

m
− 30(−k)

1
σ2

σ2
U

m

 ϕ(−k) + O
(
m−

3
2

)
= Φ(−k) +

1
2
ϕ′(−k)

1
σ2

σ2
U

m
− 1

6
√

n
κ1

((−k)2 − 1
)
+

1
σ2

σ2
U

m

 ϕ(−k)

− 1
24n

κ2

((−k)3 − 3(−k)
)
+ 3(−k)

1
σ2

σ2
U

m

 × ϕ(−k)

− 1
72n

κ2
1

((−k)5 − 10(−k)3 + 15(−k)
)
+

(
10(−k)3 − 30(−k)

)
× 1
σ2

σ2
U

m

 × ϕ(−k) + O
(
m−

3
2

)
.

Here, take m = nα. In particular, for α > 2, we can obtain A(k, 0) as

A(k, 0) ≈ Φ(−k) − 1
6
√

n
κ1

{
(−k)2 − 1

}
ϕ(−k)

− 1
n

{
1
24
κ2

(
(−k)3 − 3(−k)

)
+

1
72
κ2

1

(
(−k)5 − 10(−k)3 + 15(−k)

)}
ϕ(−k).

If a reference subgroup size is large enough satisfying m = n2+α for α > 0, this corresponds to the
case where the process mean and variance are known. Similarly, the out-of-control ARL can be given
as in (2.7) under the estimated control limits. Consequently, we examine that the in-control ARL is
affected by the skewness and kurtosis of order n−1 while the out-of-control ARL is by the skewness
of order n−1/2.

3. Numerical Studies

In the previous section, we presented the asymptotic in-control ARL and out-of-control ARL based
on the Edgeworth expansion of the false alarm rate. In this section, we consider the behavior of
ARL in small subgroups under control based on simulation studies. Particularly we focus on the
in-control ARL values according to the changes of a skewness for a skew-normal distribution. For
numerical evaluation concerning out-of-control ARL, it needs to make and adjustment of control
limits to a prespecified FAR; therefore, we do not deal with out-of-control ARL here. Depending on
the knowledge of the process parameters µ and σ, we divide simulation studies into two cases: (1)
both are known and (2) µ is unknown but σ is known.
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To explain how the in-control ARL values are affected by the degrees of skewness, we assume that
the process follows a skew-normal distribution where the departure of the underlying distribution from
the normal distribution is purely regulated by the skewness. For these distributions, refer to Azzalini
(1985, 1986), Azzalini and Dalla-Valle (1996), and Azzalini and Capitanio (1999). The skew-normal
distribution, denoted by SN(µ, σ2, α), has the probability density function

f
(
x | µ, σ2, α

)
=

(
2
σ

)
ϕ
( x − µ
σ

)
Φ

(
α
( x − µ
σ

))
, (3.1)

where µ, σ and α are the location, scale, and skewness parameters, respectively. The skewness pa-
rameter α regulates the skewness in (−∞,∞). Note that, if α = 0, the density of X in (3.1) reduces
to the density of the standard normal distribution. For simplicity, we assume that µ = 0 and σ = 1
throughout numerical studies in this paper. Some properties of this distribution include:

E(X) =

√
2
π
δσ, Var(X) = 1 − 2

π
δ2

with skewness and kurtosis measures given by

κ3 =
1
2

(4 − π)
(

E2(X)
Var(X)

) 3
2

, κ4 = 2(π − 3)
(

E2(X)
Var(X)

)2

where δ = α/
√

1 + α2.

3.1. The case where both µ and σ are known

In this subsection, we assume that the process mean and standard deviation, µ and σ are known. We
evaluate the performance of the X̄ control chart with the changes of skewness while the sample size
is set at n = 5, 7, 9 and 25. For this purpose, the quality characteristics are assumed to follow the
skew-normal distribution for various skewness parameter α. The control limits are set by Shewhart
type with 3σ that makes the false alarm rate equal to 0.0027; therefore, the ARL values correspond
to 370. In order to estimate the false alarm rate, 100,000 subgroups of size n were generated from
the assumed distribution and compute the number of samples whose means are out-of-control limits.
We repeated this process based on the same distribution with an increasing skewness parameter. The
in-control ARL values are finally computed by the reciprocal of mean value of FARs’.

In Figure 1, skewness parameter α varies from 0 to 8 by 0.5 for the skew-normal distribution to
examine the effect of skewness on the in-control ARL for sample sizes n = 5, 7, 9 and 25. These
skew parameters produce the skewness, κ3, from 0.00 to 0.93 with kurtosis between 0.00 to 0.80. The
kurtosis increases moderately as the data become skewed. Note that the skew-normal distribution
with α = 0 corresponds to a normal distribution. In Figure 1(a), the in-control ARL tends to fall
considerably as the skewness parameter becomes larger than 1.5. We observe that the in-control ARL
decreases greatly as the skewness parameter α goes up to suggest that the data tends to be increasingly
skewed. The gap between ARL values and 370 shown in Figure 1(b)–(d); however, it is reduced as
the sample size increases.

3.2. The case where µ is unknown but σ is known

In this subsection we consider the case that the process mean µ is unknown but standard deviation
σ is known. To compute the control limits, we estimate the process mean µ based on two kinds of
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(a) In-control ARL with subgroup of size 5
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(b) In-control ARL with subgroup of size 7
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(c) In-control ARL with subgroup of size 9
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(d) In-control ARL with subgroup of size 25

Figure 1: The in-control ARL values for X̄ chart against the increase of skewness parameter α, α = 0, . . . , 8 by
0.5 that makes the skewness vary from 0.0 to 0.9.

reference samples with m = 20 and m = 200 of size n. Let X̄1, X̄2, . . . , X̄m be the average of each
sample. Then ¯̄X are used as an estimate of the population µ. In this situation, the Shewhart-type
control limits are written as

LCL = ¯̄X − 3
σ
√

n
(3.2)

and

UCL = ¯̄X + 3
σ
√

n
. (3.3)
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(a) In-control ARL with subgroup of size 5

0 1 2 3 4 5 6 7 8

10
0

20
0

30
0

40
0

50
0

60
0

skewness parameter

In
−c

on
tro

l A
R

L
(b) In-control ARL with subgroup of size 7
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(c) In-control ARL with subgroup of size 9
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(d) In-control ARL with subgroup of size 25

Figure 2: In-control ARL of X̄ chart with the increase of skewness generated by the skew normal distribution
with unknown µ but known σ. To compute control limits, the mean µ is estimated based on m = 20 reference

group

To estimate of the process mean µ with ¯̄X, reference samples of size m are collected and then 100,000
samples of size n are generated from the same distribution to calculate the false alarm rate. We
compute the number of samples whose means exceed the control limits in (3.2) and (3.3). We simulate
this process for 100 kinds of reference samples in order to average out false alarm rates and this
procedure is repeated by increasing skewness parameter.

Figure 2 shows the in-control ARL with the skew-normal distribution with m = 20 reference
samples for sample sizes n = 5, 7, 9 and 25. As shown in Figure 2, the in-control ARL values differ
from 370 appreciably even when the skew parameter is equal to zero. This is same regardless of the
sample size. This may result from the inconsistent estimator from the small reference. Interestingly,
as displayed in Figure 3, these discrepancies disappear in a large reference sample of size 200. The
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(b) In-control ARL with subgroup of size 7
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(c) In-control ARL with subgroup of size 9
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(d) In-control ARL with subgroup of size 25

Figure 3: In-control ARL of X̄ chart with the increase of skewness generated by the skew normal distribution
with unknown µ but known σ. To compute control limits, the mean µ is estimated based on m = 200 reference

group.

effects of the changes of skewness on the in-control ARL look similar those in Figure 1 even though
the decreasing pattern of in-control ARL appears not smooth.

We therefore observe that the parameter estimation affects the chart performance. The in-control
ARL is significantly lower regardless of the degree of skewness when the control limits are estimated
based on small reference samples.

4. Conclusion

In this paper, we present how the ARL of X̄ chart is affected by non-normality measured by skewness
and kurtosis. They have an effect on the in-control ARL of order n−1. Numerical studies with skew-
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normal distribution also show the effect of skewness on the ARL when the subgroup size is small.
Particularly, we found that the effect of skewed data is confounded by the estimation accuracy of the
process parameters that are unknown. In such situation, the effect of deviation from normality on the
ARL cannot be well-explained because the in-control ARL may be significantly affected by estimated
control limits. To address the performance of X̄ charts on the non-normality in practice (in which
the process parameters are generally unknown) the efficient estimation of control limits (based on a
large reference sample) needs to be developed as well as the chart design. We also observe that the
in-control ARL tends to fall considerably with the changes of skewness; however, although its effect
tends to disappear as the size of subgroup, n becomes large.

To sum up, the X̄ control chart with usual subgroup size of n = 4 or 5 needs to be used carefully
in real practice where the underlying distribution is usually unknown, although the in-control ARL
have an effect in non-normality of order n−1. In order to maintain in-control ARL in real practice
to a prespecified level, the control limits need to be adjusted for the non-normality of underlying
distribution.
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