DOI QR코드

DOI QR Code

Evidence for the Participation of ATP-sensitive Potassium Channels in the Antinociceptive Effect of Curcumin

  • Paz-Campos, Marco Antonio De (Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute) ;
  • Chavez-Pina, Aracely Evangelina (Laboratory of Pharmacology, Institutional Program in Molecular Biomedicine, National School of Medicine and Homeopathy, National Polytechnic Institute) ;
  • Ortiz, Mario I (Academic Area of Medicine and Health Sciences, Autonomous University of the State of Hidalgo) ;
  • Castaneda-Hernandez, Gilberto (Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute)
  • 투고 : 2012.07.19
  • 심사 : 2012.09.04
  • 발행 : 2012.10.01

초록

Background: It has been reported that curcumin, the main active compound of Curcuma longa, also known as turmeric, exhibits antinociceptive properties. The aim of this study was to examine the participation of ATP-sensitive potassium channels ($K_{ATP}$ channels) and, in particular, that of the L-arginine-nitric oxide-cyclic GMP-$K_{ATP}$ channel pathway, in the antinociceptive effect of curcumin. Methods: Pain was induced by the intraplantar injection of 1% formalin in the right hind paw of Wistar rats. Formalin-induced flinching behavior was interpreted as an expression of nociception. The antinociceptive effect of oral curcumin was explored in the presence and absence of local pretreatment with L-NAME, an inhibitor of nitric oxide synthase, ODQ, an inhibitor of soluble guanylyl cyclase, and glibenclamide, a blocker of $K_{ATP}$ channels. Results: Oral curcumin produced a dose-dependent antinociceptive effect in the 1% formalin test. Curcumin-induced antinociception was not altered by local L-NAME or ODQ, but was significantly impaired by glibenclamide. Conclusions: Our results confirm that curcumin is an effective antinociceptive agent. Curcumin-induced antinociception appears to involve the participation of $K_{ATP}$ channels at the peripheral level, as local injection of glibenclamide prevented its effect. Activation of $K_{ATP}$ channels, however, does not occur by activation of the L-arginine-nitric oxide-cGMP-$K_{ATP}$ channel pathway.

키워드

참고문헌

  1. Rivera-Espinoza Y, Muriel P. Pharmacological actions of curcumin in liver diseases or damage. Liver Int 2009; 29: 1457-1466. https://doi.org/10.1111/j.1478-3231.2009.02086.x
  2. Basnet P, Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011; 16: 4567-4598. https://doi.org/10.3390/molecules16064567
  3. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen to clinic. Biochem Pharmacol 2008; 75: 787-809. https://doi.org/10.1016/j.bcp.2007.08.016
  4. Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 2009; 30: 85-94. https://doi.org/10.1016/j.tips.2008.11.002
  5. Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 2003; 9: 161-168. https://doi.org/10.1089/107555303321223035
  6. Burgos-Moron E, Calderon-Montano JM, Salvador J, Robles A, Lopez-Lazaro M. The dark side of curcumin. Int J Cancer 2010; 126: 1771-1775.
  7. Kapoor S. Curcumin and its emerging role in pain modulation and pain management. Korean J Pain 2012; 25: 202-203. https://doi.org/10.3344/kjp.2012.25.3.202
  8. Agarwal KA, Tripathi CD, Agarwal BB, Saluja S. Efficacy of turmeric (curcumin) in pain and postoperative fatigue after laparoscopic cholecystectomy: a double-blind, randomized placebo-controlled study. Surg Endosc 2011; 25: 3805-3810 https://doi.org/10.1007/s00464-011-1793-z
  9. Sharma S, Kulkarni SK, Agrewala JN, Chopra K. Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pharmacol 2006; 536: 256-261. https://doi.org/10.1016/j.ejphar.2006.03.006
  10. Zhao X, Xu Y, Zhao Q, Chen CR, Liu AM, Huang ZL. Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: descending monoamine system and opioid receptors are differentially involved. Neuropharmacology 2012; 62: 843-854. https://doi.org/10.1016/j.neuropharm.2011.08.050
  11. Tajik H, Tamaddonfard E, Hamzeh-Gooshchi N. The effect of curcumin (active substance of turmeric) on the acetic acidinduced visceral nociception in rats. Pak J Biol Sci 2008; 11: 312-314. https://doi.org/10.3923/pjbs.2008.312.314
  12. Yeon KY, Kim SA, Kim YH, Lee MK, Ahn DK, Kim HJ, et al. Curcumin produces an antihyperalgesic effect via antagonism of TRPV1. J Dent Res 2010; 89: 170-4. https://doi.org/10.1177/0022034509356169
  13. Mittal N, Joshi R, Hota D, Chakrabarti A. Evaluation of antihyperalgesic effect of curcumin on formalin-induced orofacial pain in rat. Phytother Res 2009; 23: 507-512. https://doi.org/10.1002/ptr.2662
  14. Leamy AW, Shukla P, McAlexander MA, Carr MJ, Ghatta S. Curcumin ((E,E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6- heptadiene-3,5-dione) activates and desensitizes the nociceptor ion channel TRPA1. Neurosci Lett 2011; 503: 157-162. https://doi.org/10.1016/j.neulet.2011.07.054
  15. Du X, Wang C, Zhang H. Activation of ATP-sensitive potassium channels antagonize nociceptive behavior and hyperexcitability of DRG neurons from rats. Mol Pain 2011; 7: 35. https://doi.org/10.1186/1744-8069-7-35
  16. Lazaro-Ibanez GG, Torres-Lopez JE, Granados-Soto V. Participation of the nitric oxide-cyclic GMP-ATP-sensitive K(+) channel pathway in the antinociceptive action of ketorolac. Eur J Pharmacol 2001; 426: 39-44. https://doi.org/10.1016/S0014-2999(01)01206-7
  17. Ortiz MI, Granados-Soto V, Castaneda-Hernandez G. The NO-cGMP-K+ channel pathway participates in the antinociceptive effect of diclofenac, but not of indomethacin. Pharmacol Biochem Behav 2003; 76: 187-195. https://doi.org/10.1016/S0091-3057(03)00214-4
  18. Leon-Reyes MR, Castaneda-Hernandez G, Ortiz MI. Pharmacokinetics and pharmacodynamics of diclofenac in the presence and absence of glibenclamide in the rat. J Pharm Pharm Sci 2008; 11: 68-76.
  19. Ocana M, Del Pozo E, Barrios M, Robles LI, Baeyens JM. An ATP-dependent potassium channel blocker antagonizes morphine analgesia. Eur J Pharmacol 1990; 186: 377-378. https://doi.org/10.1016/0014-2999(90)90466-J
  20. Ocana M, Baeyens JM. Differential effects of K+ channel blockers on antinociception induced by alpha 2-adrenoceptor, GABAB and kappa-opioid receptor agonists. Br J Pharmacol 1993; 110: 1049-1054. https://doi.org/10.1111/j.1476-5381.1993.tb13919.x
  21. Robles LI, Barrios M, Del Pozo E, Dordal A, Baeyens JM. Effects of K+ channel blockers and openers on antinociception induced by agonists of 5-HT1A receptors. Eur J Pharmacol 1996; 295: 181-188. https://doi.org/10.1016/0014-2999(95)00643-5
  22. Kweon TD, Kim JY, Kwon IW, Choi JB, Lee YW. Participation of K(ATP) channels in the antinociceptive effect of pregabalin in rat formalin test. Korean J Pain 2011; 24: 131-136. https://doi.org/10.3344/kjp.2011.24.3.131
  23. Soares AC, Leite R, Tatsuo MA, Duarte ID. Activation of ATP-sensitive K(+) channels: mechanism of peripheral antinociceptive action of the nitric oxide donor, sodium nitroprusside. Eur J Pharmacol 2000; 400: 67-71. https://doi.org/10.1016/S0014-2999(00)00355-1
  24. White RE, Lee AB, Shcherbatko AD, Lincoln TM, Schonbrunn A, Armstrong DL. Potassium channel stimulation by natriuretic peptides through cGMP-dependent dephosphorylation. Nature 1993; 361: 263-266. https://doi.org/10.1038/361263a0
  25. Ocana M, Barrios M, Baeyens JM. Cromakalim differentially enhances antinociception induced by agonists of alpha(2)- adrenoceptors, gamma-aminobutyric acid(B), mu and kappa opioid receptors. J Pharmacol Exp Ther 1996; 276: 1136-1142
  26. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983; 16: 109-110. https://doi.org/10.1016/0304-3959(83)90201-4
  27. Jeong HJ, Lee SH, Cho SY, Lee CS, Jeong CW, Yoon MH, et al. Roles of serotonergic and adrenergic receptors in the antinociception of selective cyclooxygenase-2 inhibitor in the rat spinal cord. Korean J Pain 2011; 24: 179-184. https://doi.org/10.3344/kjp.2011.24.4.179
  28. Ortiz MI, Lozano-Cuenca J, Granados-Soto V, Castaneda- Hernandez G. Additive interaction between peripheral and central mechanisms involved in the antinociceptive effect of diclofenac in the formalin test in rats. Pharmacol Biochem Behav 2008; 91: 32-37. https://doi.org/10.1016/j.pbb.2008.06.008
  29. Lozano-Cuenca J, Castaneda-Hernandez G, Granados- Soto V. Peripheral and spinal mechanisms of antinociceptive action of lumiracoxib. Eur J Pharmacol 2005; 513: 81-91. https://doi.org/10.1016/j.ejphar.2005.02.049
  30. Ortiz MI, Ramirez-Montiel ML, Gonzalez-Garcia MP, Ponce- Monter HA, Castaneda-Hernandez G, Carino-Cortes R. The combination of naproxen and citral reduces nociception and gastric damage in rats. Arch Pharm Res 2010; 33: 1691-1697. https://doi.org/10.1007/s12272-010-1020-9
  31. Jimenez-Andrade JM, Ortiz MI, Perez-Urizar J, Aguirre- Banuelos P, Granados-Soto V, Castaneda-Hernandez G. Synergistic effects between codeine and diclofenac after local, spinal and systemic administration. Pharmacol Biochem Behav 2003; 76: 463-471. https://doi.org/10.1016/j.pbb.2003.09.001
  32. Gil-Flores M, Ortiz MI, Castaneda-Hernandez G, Chavez- Pina AE. Acemetacin antinociceptive mechanism is not related to NO or K+ channel pathways. Methods Find Exp Clin Pharmacol 2010; 32: 101-105.
  33. Ocana M, Cendan CM, Cobos EJ, Entrena JM, Baeyens JM. Potassium channels and pain: present realities and future opportunities. Eur J Pharmacol 2004; 500: 203-219. https://doi.org/10.1016/j.ejphar.2004.07.026
  34. Alves DP, Soares AC, Francischi JN, Castro MS, Perez AC, Duarte ID. Additive antinociceptive effect of the combination of diazoxide, an activator of ATP-sensitive K+ channels, and sodium nitroprusside and dibutyryl-cGMP. Eur J Pharmacol 2004; 489: 59-65. https://doi.org/10.1016/j.ejphar.2004.02.022
  35. Soares AC, Duarte ID. Dibutyryl-cyclic GMP induces peripheral antinociception via activation of ATP-sensitive K(+) channels in the rat PGE2-induced hyperalgesic paw. Br J Pharmacol 2001; 134: 127-131. https://doi.org/10.1038/sj.bjp.0704224
  36. Distrutti E, Sediari L, Mencarelli A, Renga B, Orlandi S, Antonelli E, et al. Evidence that hydrogen sulfide exerts antinociceptive effects in the gastrointestinal tract by activating KATP channels. J Pharmacol Exp Ther 2006; 316: 325-335.
  37. Han YK, Lee SH, Jeong HJ, Kim MS, Yoon MH, Kim WM. Analgesic effects of intrathecal curcumin in the rat formalin test. Korean J Pain 2012; 25: 1-6. https://doi.org/10.3344/kjp.2012.25.1.1
  38. Tsai YM, Chien CF, Lin LC, Tsai TH. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration. Int J Pharm 2011; 416: 331-338. https://doi.org/10.1016/j.ijpharm.2011.06.030

피인용 문헌

  1. The effects of curcumin on musculoskeletal pain: a systematic review protocol vol.13, pp.2, 2015, https://doi.org/10.11124/jbisrir-2015-1684
  2. Zingiberaceae extracts for pain: a systematic review and meta-analysis vol.14, pp.1, 2015, https://doi.org/10.1186/s12937-015-0038-8
  3. Curcumin in turmeric: Basic and clinical evidence for a potential role in analgesia vol.43, pp.4, 2018, https://doi.org/10.1111/jcpt.12703
  4. Effects of curcumin on ion channels and transporters vol.5, pp.None, 2012, https://doi.org/10.3389/fphys.2014.00094
  5. Synergistic effect of the interaction between curcumin and diclofenac on the formalin test in rats vol.21, pp.12, 2012, https://doi.org/10.1016/j.phymed.2014.06.015
  6. Anti-allodynic effect induced by curcumin in neuropathic rat is mediated through the NO-cyclic-GMP-ATP sensitive K + channels pathway vol.20, pp.None, 2012, https://doi.org/10.1186/s12906-020-2867-z
  7. A review of therapeutic potentials of turmeric (Curcuma longa) and its active constituent, curcumin, on inflammatory disorders, pain, and their related patents vol.35, pp.12, 2012, https://doi.org/10.1002/ptr.7224