DOI QR코드

DOI QR Code

대기 이산화탄소 증가와 질소 시비가 백합나무 유묘의 생장과 탄소 흡수에 미치는 영향

Effects of Elevated Atmospheric CO2 and Nitrogen Fertilization on Growth and Carbon Uptake of Yellow Poplar Seedlings

  • 정미숙 (국립산림과학원 산림유전자원부) ;
  • 한심희 (국립산림과학원 산림유전자원부) ;
  • 김두현 (국립산림과학원 산림유전자원부) ;
  • 이재천 (국립산림과학원 산림유전자원부) ;
  • 김판기 (경북대학교 산림환경자원학과)
  • Chung, Mi-Sook (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Du-Hyun (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Jae-Cheon (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Pan-Gi (Department of Forest Resources and Environment, Kyungpook National University)
  • 투고 : 2012.02.15
  • 심사 : 2012.09.07
  • 발행 : 2012.09.30

초록

본 연구는 기후변화 하에서 우리나라 기후와 산림토양에 적합한 수종을 개발하기 위해서, 상부 개방형 온실(Open Top Chamber)을 이용하여, $CO_2$ 농도를 대기보다 1.4배와 1.8배 증가시킨 상태에서, 질소 농도에 따른 백합나무의 생리적 반응을 조사하고자 실시하였다. 백합나무 유묘의 건중량은 모든 $CO_2$ 농도 하에서, 질소 시비량의 증가와 함께 증가하였다. 그러나 $CO_2$ 농도 증가에 따른 백합나무 건중량 변화는 질소 시비 농도에 따라 다른 결과를 보였다. 총 엽록소와 카로테노이드 함량은 모든 질소 시비구에서 $CO_2$ 농도 증가와 함께 증가하였으나, 질소 시비에 대한 효과는 $CO_2$ 농도에 따라 차이가 있었다. 백합나무의 광합성 특성은 $CO_2$ 측정 농도, $CO_2$ 처리 농도 및 질소 시비 농도에 따라 차이를 보였으며, 기공전도도와 증산속도는 $CO_2$ 처리에 의해 증가하였다. 백합나무의 탄소고정효율은 $CO_2$ 농도 증가와 함께 증가하는 경향을 보였으나, 질소 시비구에서는 $CO_2$ 농도 증가에 의해 오히려 감소하였다. 백합나무의 잎, 줄기, 뿌리에 축적된 질소와 탄소 함량은 $CO_2$ 증가와 질소 시비와 함께 증가하였다. 결론적으로 $CO_2$ 농도가 높은 상태에서 백합나무의 생리적 특성과 탄소 흡수 능력은 질소 시비에 의해서 개선되거나 증가하였지만, $CO_2$ 농도에 따라 크게 영향을 받았다.

To investigate the responses of yellow poplar (Liriodendron tulipifera L.) seedlings to the interactive effects of the elevated atmospheric $CO_2$ level and nitrogen addition, we measured biomass, photosynthetic pigments, photosynthesis, and the contents of nitrogen (N) and carbon (C) from the seedlings after 16 weeks of the treatments. Yellow poplar seedlings were grown under the ambient ($400{\mu}mol\;mol^{-1}$) and the elevated (560 and $720{\mu}mol\;mol^{-1}$) CO2 concentratoins with three different N addition levels (1.2, 2.4, and $3.6g\;kg^{-1}$) in the Open Top Chambers (OTC). The dry weight of the seedlings enhanced with the increased N levels under the elevated $CO_2$ concentrations and the increment of the dry weight differed among the different N levels. Photosynthetic pigment content of the yellow poplar leaves also increased with the increase of the $CO_2$ concentration levels. The effects of the N levels on the photosynthetic pigment content, however, were significantly different among the $CO_2$ levels. Photosynthetic rates were affected by the levels of $CO_2$ and N concentrations. Stomatal conductance and transpiration rates increased with increasing $CO_2$ concentration. The carboxylation efficiency of the seedlings without N addition increased under the higher $CO_2$ concentrations whereas that with N addition decreased under the elevated $CO_2$ concentrations. Nitrogen and carbon uptake in leaf, stem, and root increased with the elevated $CO_2$ concentration level and N addition. In conclusion, under the elevated $CO_2$ concentrations, physiological characteristics and carbon uptake of the yellow poplar seedling were improved and increased with N addition.

키워드

참고문헌

  1. Baxter, R., T. W. Ashenden, and J. Farrar, 1997: Effect of elevated carbon dioxide and nutrient status on growth, dry matter partitioning and nutrient content of Poa alpina var. vivpara L. Journal of Experimental Botany 48, 1477-1486. https://doi.org/10.1093/jxb/48.7.1477
  2. Bazzaz, F. A., and E. D. Fajer, 1992: Plant life in a $CO_{2}$- rich world. Scientific American 266, 68-74.
  3. Billes, G., H. Rouhier, and P. Bottner. 1993: Modifications of the carbon and nitrogen allocations in the plant (Triticum aestivum L.) soil system in response to increased atmospheric $CO_{2}$ concentration. Plant and Soil 157, 215-225. https://doi.org/10.1007/BF00011050
  4. Bowes, G., 1996: Elevated carbon dioxide. Advances in Photosynthesis, Vol. 3. Environmental Stress and Photosynthesis, N. Baker, (Ed.) Academic Press, Dordrecht Canadian, 387-407.
  5. Bowler, J. M., and M. C. Press, 1996: Effects of elevated carbon dioxide, nitrogen form and concentration on growth and photosynthesis of a fast- and slow-growing grass. New Phytologist 132, 391-401. https://doi.org/10.1111/j.1469-8137.1996.tb01859.x
  6. Brouwer, R., 1962: Nutrient influences on the distribution of the dry matter in the plant. Netherlands Journal of Agricultural Sciences 10, 399-408.
  7. Cao, B., Q. L. Dang, X. Yü, and S. Zhang, 2008: Effects of $CO_{2}$ and nitrogen on morphological and biomass traits of white birch (Betula papyrifera) seedlings. Forest Ecology and Management 254, 217-224. https://doi.org/10.1016/j.foreco.2007.08.002
  8. Ceulemans, R., and M. Mousseau, 1994: Tansley Review No. 71. Effects of elevated atmospheric $CO_{2}$ on woody plants. New phytologist 127, 425-446. https://doi.org/10.1111/j.1469-8137.1994.tb03961.x
  9. Cotrufo, M. F., P. Ineson, and A. Scott, 1998: Elevated $CO_{2}$reduces the nitrogen concentration of plant tissues. Global Change Biology 4, 43-54. https://doi.org/10.1046/j.1365-2486.1998.00101.x
  10. DeLucia, E. H., T. W. Sasek, and B. R. Strain, 1985: Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosynth Res 7, 175-184. https://doi.org/10.1007/BF00037008
  11. Drake, B. G., M. A. Gonzalez-Meler, and S. P. Long, 1997: More efficient plants: a consequence of elevated carbon dioxide? Annual Review of Plant Physiology and Plant Molecular Biology 48, 607-640.
  12. Fichtner, K., and E. D. Schulze, 1992: The effect of nitrogen nutrition on annuals originating from habitats of different nitrogen availability. Oecologia 92, 236-241. https://doi.org/10.1007/BF00317370
  13. George, V., D. Gerant, and P. Dizengremel, 1996: Photosynthesis, Rubisco activity and mitochondrial malate oxidation in peduculate oak seedlings grown under present and elevated atmospheric carbon dioxide concentrations. Annales Des Sciences Forestrieres (Paris) 53, 469-474. https://doi.org/10.1051/forest:19960228
  14. Grime, J. P., B. D. Campbell, J. M. L. Mackey, and J. C. Crick, 1991: Root plasticity, nitrogen capture and competitive ability. Plant Root Growth: an Ecological Perspective, D. Atkinson (Ed.), Blackwell Scientific Publications, Oxford, UK, 381-397.
  15. Hiscox, J. D., and G. F. Israelstam, 1978: A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57, 1332-1334
  16. Huang, J. G., Y. Bergeron, B. Denneler, F. Berninger, and J. Tardif, 2007: Response of Forest Trees to Increased Atmospheric $CO_{2}$. Critical Reviews in Plant Sciences, 26, 265-283. https://doi.org/10.1080/07352680701626978
  17. IPCC, 2007: Climate Change 2007. The Physical Science Basis, Cambridge University Press.
  18. Johnson, D. W., 2006: Progressive N limitation in forests. Review and implications for long-term responses to elevated $CO_{2}$. Ecology 87, 64-75. https://doi.org/10.1890/04-1781
  19. Johnson, R. H., T. Ball, and R. F. Walker, 1995: Effects of elevated $CO_{2}$ and nitrogen on nutrient uptake in ponderosa pine seedlings. Plant and Soil 168-169, 535-545. https://doi.org/10.1007/BF00029366
  20. Kim, P. G., and E. J. Lee, 2001: Ecophysiology of Photosynthesis 1: Effects of light intensity and intercellular $CO_{2}$pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3, 126-133.
  21. Lee, J. C., D. H. Kim, G. N. Kim, P. G. Kim, and S. H. Han, 2012: Long-term climate change research facility for trees: $CO_{2}$-enriched open top chamber system. Korean Journal of Agricultural and Forest Meteorology 14, 19- 27. https://doi.org/10.5532/KJAFM.2012.14.1.019
  22. Lewis, J. D., M. Lucash, D. M. Olszyk, and D. T. Tingey, 2004: Relationships between needle nitrogen concentration and photosynthetic responses of Douglas-fir seedlings to elevated $CO_{2}$ and temperature. New Phytologist 162, 355-364. https://doi.org/10.1111/j.1469-8137.2004.01036.x
  23. McGuire, A. D., J. M. Melillo, and L. A. Joyce, 1995: The Role of nitrogen in the response of forest net primary production to elevated atmospheric carbon diozide. Annual Review of Ecology and Systematics 26, 473-503. https://doi.org/10.1146/annurev.es.26.110195.002353
  24. Norby, R. J., E. G. O'Niell, and R. J. Luxmore, 1986: Effects of atmospheric $CO_{2}$ enrichment on growth and mineral nutrition of Quercus alba seedlings in a nutrient poor soil. Plant Physiology 82, 83-89. https://doi.org/10.1104/pp.82.1.83
  25. Norby, R. J., and E. G. O'Neill, 1991: Leaf area com- pensation and nutrient interactions in $CO_{2}$-enriched seedlings of yellow poplar (Liriodendron tulipifera L.) New Phytologist 117, 515-528. https://doi.org/10.1111/j.1469-8137.1991.tb00956.x
  26. O'Neill, E. G., R. J. Luxmoore, and R. J. Norby, 1987: Elevated atmospheric $CO_{2}$ effects on seedling growth, nutrient uptake, and rhizosphere bacterial population of Lirodendron tulipifera L. Plant and Soil 104, 3-11. https://doi.org/10.1007/BF02370618
  27. Oberbauer, S. F., N. Sionit, S.J., Hastings, and W.C. Oechel, 1986: Effects of $CO_{2}$ enrichment and nutrition on growth, photosynthesis and nutrient concentration of Alaskan tundra plant species. Journal of Botany 64, 2993-2998. https://doi.org/10.1139/b86-396
  28. Pettersson, R., and J. S. MacDonald, 1994: Effects of nitrogen supply on the acclimation of photosynthesis to elevated $CO_{2}$. Photosynthesis Research 39, 389-400. https://doi.org/10.1007/BF00014593
  29. Roberntz, P., and J. Stockfors, 1998: Effects of elevated $CO_{2}$and nitrogen on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees. Tree Physiology 18, 233-241. https://doi.org/10.1093/treephys/18.4.233
  30. Roy, J., B. Saugier, and H. A. Mooney, 2001: Terrestrial Global Productivity, Academic Press, 529pp.
  31. Ryu, K. O., S. S. Jang, W. Y. Choi, and H. E. Kim, 2003: Growth performance and adaptation of Liriodendron tulipifera in Korea. Jour. Korean For. Soc. 92(6), 515-525.
  32. Ryu, K. O., U. J. Kim, I. S. Kim, H. S. Choi, D. H. Lee, and Y. W. Kim, 2008. Liriodendron tulipifera L.-Growth characteristics and utilization technique-. Korea Forest Research Institute Research Note No. 320. 286pp.(in Korean).
  33. Sage, R. F., T. D. Sharkey, and J. R. Seemann, 1989: Acclimation of photosynthesis to elevated $CO_{2}$ in five $C_{3}$ species. Plant Physiology 89, 590-596. https://doi.org/10.1104/pp.89.2.590
  34. Stitt, M., 1991: Rising $CO_{2}$ levels and their potential significance for carbon flow in photosynthetic cells. Plant, Cell and Environment 14, 741-762. https://doi.org/10.1111/j.1365-3040.1991.tb01440.x
  35. Stitt, M., and A. Krapp, 1999: The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell and Environment 22, 583-621. https://doi.org/10.1046/j.1365-3040.1999.00386.x
  36. Thomas, R. Q., C. D. Canham, K. C. Weathers, and C. L. Goodale, 2010: Increased tree carbon storage in response to nitrogen deposition in the U.S. Nature Geoscience 3, 13-17. https://doi.org/10.1038/ngeo721
  37. Tissue, D. T., R. B. Thomas, and B. R. Strain, 1993: Longterm effects of elevated $CO_{2}$ and nutrients on photosynthesis and Rubisco in loblolly pine seedlings. Plant, Cell and Environment 16, 859-865. https://doi.org/10.1111/j.1365-3040.1993.tb00508.x
  38. Tissue, D. T., R. B. Thomas, and B. R. Strain, 1997: Atmospheric $CO_{2}$ enrichment increases growth and photosynthesis of Pinus taeda, a 4 year experiment in the field. Plant, Cell and Environment 20, 1123-1134. https://doi.org/10.1046/j.1365-3040.1997.d01-140.x
  39. Van de Werf, A., and O. W. Nagel, 1996: Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose. Opinion in Plant Soil 185, 21-32. https://doi.org/10.1007/BF02257562
  40. Van Oosten, J., and R. T. Besford, 1994: Sugar feeding mimics effect of acclimation to high $CO_{2}$− rapid down regulation of Rubisco small subunit transcripts but not of the large subunit transcripts. Journal of Plant Physiology 143, 306-312. https://doi.org/10.1016/S0176-1617(11)81636-6
  41. Wong, S. C., 1979: Elevated atmospheric partial pressure of $CO_{2}$ and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants. Oecologia 44, 68-74. https://doi.org/10.1007/BF00346400

피인용 문헌

  1. Effects of Elevated CO2Concentration and Temperature on Physiological Characters of Liriodendron tulipifera vol.15, pp.3, 2013, https://doi.org/10.5532/KJAFM.2013.15.3.145
  2. Influence of Elevated CO2and Air Temperature on Photosynthesis, Shoot Growth, and Fruit Quality of 'Fuji'/M.9 Apple Tree vol.15, pp.4, 2013, https://doi.org/10.5532/KJAFM.2013.15.4.245