TTAB와 다른 계면활성제(DTAB, CTAB, Tween-20, Tween-40 및 Tween-80)와의 후한미셀화에 대한 연구

이남민 · 이병환* 한국기술교육대학교 응용화학공학과 (접수 2012. 4. 17; 게재확정 2012. 8. 9)

Mixed Micellizations of TTAB with Other Surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80)

Nam-Min Lee and Byung-Hwan Lee*

Department of Applied Chemical Engineering, Korea University of Tech. & Education, Cheonan, Chungnam 333-860, Korea. *E-mail: bhwanlee@kut.ac.kr (Received April 17, 2012; Accepted August 9, 2012)

요 약. 25 °C, 4클로로벤조산의 묽은 수용액(0.5 mM)에서 양이온성 계면활성제인 TTAB(tetradecyltrimethylammonium bromide) 와 다른 종류의 계면활성제들(DTAB, CTAB, Tween-20, Tween-40 및 Tween-80)과의 혼합미셀화 현상을 분광광도법과 전도도 법으로 조사하였다. 각 혼합계면활성제에서 TTAB의 겉보기몰분율(α_1)의 변화에 따른 임계미셀농도값(CMC)과 반대이온결합 상수값(B)의 변화를 측정하여 비이상적 혼합미셀모델을 적용함으로써 여러 가지 열역학적 함수값들($X_i, \gamma_i, C_i, \alpha_i^M, \beta$ 및 ΔH_{mix})을 계산하고 비교분석하였다. 그 결과, TTAB/DTAB 혼합시스템은 이상적 혼합미셀화로 부터 큰 양의 벗어남을 보였으며, 다른 혼합시스템들은 모두 이상적 미셀모델로부터 큰 음의 벗어남을 보였다.

주제어: 임계미셀농도, 반대이온결합상수, 혼합미셀화, 가용화현상, 비이상적 혼합미셀모델

ABSTRACT. The critical micelle concentration (CMC) and the counter-ion binding constant (B) for the mixed micellizations of TTAB (tetradecyltrimethylammonium bromide) with other surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80) in aqueous solution of 4-chlorobenzoic acid (0.5 mM) at 25 °C were determined as a function of α_1 (the overall mole fraction of TTAB) by using the spectrophotometric method and the conductivity method. Various thermodynamic parameters (X_i , Y_i , C_i , a_i^M , β , and ΔH_{mix}) were calculated for each mixed surfactant systems by means of the equations derived from the nonideal mixed micellar model. The results show that TTAB/DTAB mixed system has a great positive deviation from the ideal mixed micellar model and the other mixed systems have great negative deviations from the ideal mixed model.

Key words: Critical micelle concentration, Counter-ion binding constant, Mixed micellization, Solubilization, Non-ideal mixed micellar model

서 론

계면활성제분자들은 수용액에서 분자들 간의 상호인 력과 반발력에 의하여 미셀이라는 집합체를 이루며, 미셸은 전하를 띠는 표면, 극성을 띠는 palisade 층 및 소수성을 띠는 중심부분으로 이루어진다. 1.2 계면활성제는 한 성분만으로 사용되기보다는 혼합계면활성제로서 많이 이용되며 또한 여러 가지의 유기물 혹은 무기물이 첨가되어 사용된다. 그것은 두 종류이상의 혼합계면활성제를 사용하면 단일 성분의 계면활성제가 나타낼 수 없는 특수한물리적 및 화학적인 성질을 나타낼 수 있기 때문이다. 36 현

재까지 혼합계면활성제의 미셀화에 대하여 많은 연구가 진행되고 있으며, 68 혼합계면활성제의 미셀화 현상을 연구하기 위하여 유사상태분리모델을 기초로 하는 비이상 적 혼합미셀모델을 많이 이용하고 있다. 9-12 미셀은 유기성 혹은 이온성 분자들과 상호작용에 의하여 미셀표면혹은 미셀내부로 이들 분자들을 가용화시키게 된다. 어떤물질이 미셀 속으로 녹아들어가는 가용화현상은 평형반응으로서 가용화되는 물질과 미셀의 상호작용의 세기에따라 크게 변하게 된다. 13-15 본 실험실에서는 지금까지 여러 가지 혼합계면활성제의 미셀화에 대하여 측정하였으며, 9.10 또한 양이온성 계면활성제를 사용하여 벤조산 이

성질체들의 가용화에 대하여 연구한 바 있다. 16,17 본 논문 에서는 이런 유기물질의 가용화현상으로 인하여 미셀의 구조와 표면전하가 어떤 영향을 받는지를 그리고 혼합계 면활성제의 미셀화현상이 어떻게 달라지는지를 조사하기 위하여 분광광도법과 전도도법을 이용하여 측정하였다. 분광광도법을 이용하기 위하여 가용화되는 물질로서 4-클 로로벤조산을 선정하였으며, 혼합계면활성제로는 TTAB와 다른 양이온성 계면활성제인 DTAB(dodecyltrimethylammonium bromide) 및 CTAB(cetyltrimethylammonium bromide)과의 혼합시스템을 그리고 TTAB과 polyoxyethylene 계열의 비 이온성 계면활성제인 Tween-20(polyoxyethylene(20) sorbitan monolaurate), Tween-40(polyoxyethylene(20) sorbitan monopalmitate) 및 Tween-80(polyoxyethylene(20) sorbitan monooleate)과의 혼합시스템을 이용하였다. 25 ℃에서 각 혼합시스템에 대 하여 측정한 CMC와 B값을 비이상적 혼합미셀모델에 대 입함으로써 여러 가지 열역학적 함수값들을 계산하고 서 로 비교분석하였다.

실 험

실험 방법은 전편의 논문에서 사용한 것과 같이 4-클로로벤조산의 가용화현상을 이용하여 분광광도법으로 임계미셀농도값(CMC)을 측정하였다. 16.17 우선 농도가 0.5 mM인 4-클로로벤조산의 저장용액을 만들었으며, 이 저장용액에 혼합계면활성제를 녹여 전체 계면활성제의 농도가 서로 다른 13개 용액을 제조하여 흡광도변화를 측정하였다. 4-클로로벤조산이 미셀 속으로 가용화됨으로써 주위환경의 변화로 용액의 흡광도는 변하게 된다. 파장은 용액의 흡광도변화가 가장 크게 일어나는 245 nm로고정시키고 측정하였으며, 계면활성제의 농도는 0 M에서 0.01 M까지 점차적으로 증가시켰다. 용액의 흡광도변화는 임계미셀농도(CMC)를 전후로 크게 변하였으며, 그런 흡광도변화로부터 각 혼합계면활성제의 CMC값을 구하였다. 또한 계면활성제의 반대이온결합상수값(B)은 용액들의 전도도값을 측정하여 계면활성제의 농도에 대하

여 도시하였을 때 CMC값 전후로 생기는 두 직선의 기울 기의 비로부터 구하였다. 9.10 온도를 25 °C로 일정하게 유 지하였으며, 이를 위하여 모든 용액을 항온조에 15분 이 상 담가서 온도평형이 이루어진 후 측정하였다. 본 실험 에서 사용한 모든 물질들은 순도가 98% 이상인 Aldrich 제품을 더 이상 정제하지 않고 바로 사용하였다.

결과 및 고찰

TTAB와 탄소사슬의 길이가 서로 다른 양이온성 계면 활성제들(DTAB 및 CTAB)과의 혼합미셀화에 대하여 그 리고 TTAB와 head-그룹은 같지만 탄소사슬의 길이가 서 로 다른 비이온성 계면활성제들(Tween-20, Tween-40 및 Tween-80)과의 혼합미셀화에 대하여 연구하였다. 즉, 4-클로로벤조산의 묽은 저장용액에 계면활성제를 녹이면, 4-클로로벤조산들은 미셀 속으로 가용화가 일어난다. 17,18 그 결과, 4-클로로벤조산의 최대 흡수피이크(순수 물에서 290 nm)는 단파장 쪽으로 이동하게 되며, 특정한 파장에 서 계면활성제의 농도에 따라 흡광도의 변화가 일어나게 된다. 그런 흡광도의 변화로부터 혼합계면활성제의 CMC 값을 측정하였으며, 측정온도는 25 ℃로 일정하게 유지하 였다. TTAB의 겉보기몰분율(α1)의 변화에 따라 각 혼합 계면활성제의 CMC값의 변화를 측정하였으며, 그 결과를 Table 1~5에 각각 나타내었다. 또한 Fig. 1에는 각 혼합계 면활성제의 CMC값을 α_1 에 대하여 도시하였다. 여기서 알 수 있듯이 TTAB/DTAB 혼합시스템은 α₁의 증가에 따 라 CMC값이 크게 감소하였으며, TTAB/CTAB 혼합시스 템과 TTAB/비이온성 혼합시스템들은 오히려 증가하는 경향을 보였다. 이것은 TTAB분자가 탄소사슬의 길이가 자신보다 짧은 DTAB분자와 혼합미셀을 이루기가 어렵 다는 것을 나타내며, 탄소사슬의 길이가 긴 CTAB분자나 비이온성 계면활성제분자들과는 혼합미셀화를 이루기가 쉽다는 것을 의미한다.

혼합미셀 상에서 반대이온(Br)들의 결합상수(B)값을 전도도법으로 측정하였으며,²⁰⁻²³ 각 혼합시스템에 대하여

Table 1. Values of critical micelle concentrations (CMC, ±0.02 mM) and thermodynamic parameters for the micellization of TTAB/DTAB mixed surfatant systems, measured by using a spectrophotometric method in an aqueous solution of 4-chlorobenzoic acid (0.5 mM) at 25 °C

α_1	CMC (mM)	X_1	β	½ 1	<i>γ</i> 2	a_1^M	a_2^M	C ₁ (mM)	C ₂ (mM)	ΔH _{mix} (cal/mol)	В	ΔG_m^o (kcal/mol)
1	2.25	1	-	1	0	1	0	2.25	0	-	0.78	-10.7
0.8	2.50	0.89	-0.10	0.98	0.92	0.87	0.10	2.20	0.50	-5.80	0.74	-10.3
0.6	3.25	0.77	-0.90	0.95	0.59	0.73	0.14	2.07	1.30	-74.4	0.70	-10.0
0.4	4.50	0.67	-0.68	0.92	0.73	0.61	0.24	1.85	2.70	-72.2	0.68	-9.6
0.2	6.50	0.51	-0.37	0.91	0.90	0.46	0.44	1.30	5.20	-54.7	0.73	-9.5
0	9.50	0	-	0	1	0	1	0	9.50	-	0.75	-9.0

558 이남민ㆍ이병환

Table 2. Values of critical micelle concentrations (CMC, ±0.02 mM) and thermodynamic parameters for the micellization of TTAB/CTAB mixed surfatant systems, measured by using a spectrophotometric method in an aqueous solution of 4-chlorobenzoic acid (0.5 mM) at 25 °C

α_1	CMC (mM)	X_1	β	½ 1	γ_2	a_1^M	a_2^M	C ₁ (mM)	C ₂ (mM)	ΔH_{mix} (cal/mol)	В	ΔG_m^o (kcal/mol)
1	2.25	1	-	1	0	1	0	2.25	0	-	0.78	-10.7
0.8	1.45	0.49	-0.19	0.95	0.96	0.47	0.49	1.16	0.29	-28.1	0.77	-11.0
0.6	0.90	0.31	-0.53	0.78	0.95	0.24	0.66	0.54	0.36	-67.1	0.74	-11.4
0.4	0.75	0.21	-0.72	0.64	0.97	0.13	0.77	0.30	0.45	-70.1	0.76	-11.7
0.2	0.65	0.12	-0.94	0.48	0.99	0.06	0.87	0.13	0.53	-58.8	0.79	-12.0
0	0.58	0	-	0	1	0	1	0	0.58	-	0.80	-12.2

Table 3. Values of critical micelle concentrations (CMC, ± 0.02 mM) and thermodynamic parameters for the micellization of TTAB/Tween-20 mixed surfactant systems, measured by using a spectrophotometric method in an aqueous solution of 4-chlorobenzoic acid (0.5 mM) at 25 °C

α_1	CMC (mM)	X_1	β	γı	γ 2	a_1^M	a_2^M	C ₁ (mM)	C ₂ (mM)	ΔH _{mix} (cal/mol)	В	ΔG_m^o (kcal/mol)
1	2.25	1	-	1	0	1	0	2.25	0	-	0.78	-10.7
0.8	1.15	0.42	-0.16	0.95	0.97	0.41	0.32	0.92	0.23	-23.2	0.75	-11.2
0.6	0.70	0.28	-0.78	0.67	0.94	0.19	0.49	0.42	0.28	-93.1	0.71	-11.4
0.4	0.50	0.21	-1.35	0.43	0.94	0.09	0.59	0.20	0.31	-132	0.68	-11.5
0.2	0.44	0.12	-1.45	0.33	0.98	0.04	0.76	0.09	0.35	-90.7	0.65	-11.5
0	0.41	0	-	0	1	0	1	0	0.42	-	0	-7.0

Table 4. Values of critical micelle concentrations (CMC, ± 0.02 mM) and thermodynamic parameters for the micellization of TTAB/Tween-40 mixed surfactant systems, measured by using a spectrophotometric method in an aqueous solution of 4-chlorobenzoic acid (0.5 mM) at 25 °C

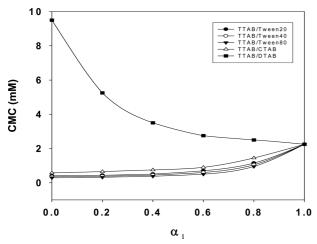
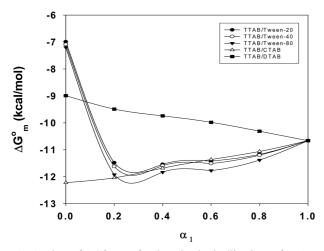

α_1	CMC (mM)	X_1	β	<i>7</i> 1	<i>γ</i> 2	a_1^M	a_2^M	C ₁ (mM)	C ₂ (mM)	ΔH_{mix} (cal/mol)	В	$\Delta G_m^{\ o}$ (kcal/mol)
1	2.25	1	-	1	0	1	0	2.25	0	-	0.78	-10.7
0.8	1.05	0.40	-0.17	0.96	0.98	0.37	0.36	0.84	0.21	-21.1	0.74	-11.2
0.6	0.60	0.27	-0.88	0.59	0.93	0.16	0.50	0.36	0.24	-114	0.70	-11.5
0.4	0.45	0.19	-1.36	0.41	0.95	0.07	0.62	0.18	0.27	-124	0.67	-11.6
0.2	0.38	0.11	-1.49	0.31	0.98	0.03	0.78	0.08	0.30	-86.4	0.65	-11.6
0	0.35	0	-	0	1	0	1	0	0.35	-	0	-7.1

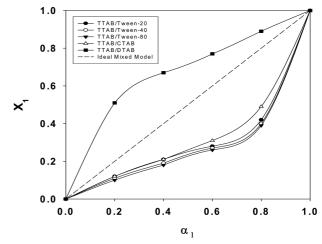
Table 5. Values of critical micelle concentrations (CMC, ± 0.02 mM) and thermodynamic parameters for the micellization of TTAB/Tween-80 mixed surfactant systems, measured by using a spectrophotometric method in an aqueous solution of 4-chlorobenzoic acid (0.5 mM) at 25 °C


α_1	CMC (mM)	X_1	β	<i>γ</i> 1	y 2	a_1^M	a_2^M	C ₁ (mM)	C ₂ (mM)	ΔH_{mix} (cal/mol)	В	ΔG_m^o (kcal/mol)
1	2.25	1	-	1	0	1	0	2.25	0	-	0.78	-10.7
0.8	0.95	0.39	-0.19	0.86	0.94	0.34	0.37	0.76	0.19	-26.8	0.73	-11.4
0.6	0.50	0.26	-1.22	0.51	0.92	0.13	0.51	0.30	0.20	-139	0.69	-11.8
0.4	0.38	0.18	-1.46	0.37	0.95	0.06	0.64	0.15	0.23	-127	0.67	-11.8
0.2	0.32	0.10	-1.55	0.28	0.98	0.02	0.79	0.06	0.26	-82.6	0.65	-11.9
0	0.29	0	-	0	1	0	1	0	0.29	-	0	-7.2

측정한 결과를 각 Table에 함께 나타내었다. Table 1과 2에 의하면 TTAB와 다른 양이온성 계면활성제들(DTAB 및 CTAB)과의 혼합시스템에 대한 B값은 α_1 의 증가에 따라 모두 감소하다가 다시 증가하는 현상을 보였다. 이것은

두 종류의 양이온성 계면활성제를 혼합하였을 때 탄소사슬의 길이가 서로 다름으로써 조밀하고 표면이 규칙적인 미셀을 형성하지 못하기 때문인 것으로 생기는 현상이다. 한편 *Table* 3~5에 의하면 *TTAB*와 비이온성 계면활성제

Fig. 1. Plot of CMC vs α_1 for the mixed micellizations of TTAB with the other surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80) in an aqueous solution of 4-chlorobenzoic acid (0.5 mM) at 25 °C: (■) TTAB/DTAB; (△) TTAB/CTAB; (●) TTAB/Tween-20; (○) TTAB/Tween-40; (▼) TTAB/Tween-80.


Fig. 2. Plots of ΔG_m^o vs α_1 for the mixed micellizations of TTAB with the other surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80) in an aqueous solution of 4-chlorobenzoic acid (0.5 mM) at 25 °C: (■) TTAB/DTAB; (△) TTAB/CTAB; (●) TTAB/Tween-20; (○) TTAB/Tween-40; (▼) TTAB/Tween-80.

들(Tween-20, Tween-40 및 Tween-80)과의 혼합시스템에 대하여 측정된 B값들은 서로 비슷한 값을 보였으며, 이들 세혼합시스템의 B값은 모두 α_1 의 증가에 따라 증가하는 현상을 보였다. 각 혼합시스템에 대하여 측정한 CMC와 B 값을 이용하면 각 혼합계면활성제의 미셀화에 대한 Gibbs 자유에너지의 변화량(ΔG_m^o)을 식 (1)에 의하여 계산할 수있다. ^{9,10} 각 혼합계면활성제의 미셀화에 대하여 계산한 ΔG_m^o 값들은 모두 음의 값을 나타내었으며, 그 결과를 각 Table에 나타내었다. Fig. 2에는 각 혼합시스템에 대한 ΔG_m^o 값을 α_1 에 대하여 도시하였다. Fig. 2를 보면 TTAB/

DTAB 시스템에 대한 ΔG_{m} 값은 α_{1} 의 증가에 따라 감소하는 경향을 그리고 TTAB/CTAB 시스템에 대한 ΔG_{m} 값은 오히려 증가하는 경향을 보였다. 이에 반하여 TTAB/비이 온성 혼합시스템에 대한 ΔG_{m} 값은 모두 감소하다가 증가하는 경향을 보였으며, α_{1} 이 0.3 근처에서 ΔG_{m} 값들은 모두 최소값을 나타내었다. 이것은 TTAB/비이온성 혼합시스템이 단일 종류의 계면활성제보다 열역학적으로 더욱 안정함을 나타낸다. 또한 ΔG_{m} 값의 크기는 혼합미셀을 이루는 비이온성 계면활성제의 탄소사슬길이가 길수록 더욱 작은 값을 나타내었으며, 이것은 탄소사슬의 길이가 긴 비이온성 계면활성제일수록 TTAB분자와 소수성 인력이 더욱 증가함으로써 혼합미셀을 더 잘 이루기 때문이다.

$$\Delta G_m^{\ o} = (1+B)RT \ln \text{CMC} \tag{1}$$

임의의 α_1 에서 측정한 혼합시스템의 CMC값을 비이상적 혼합미셀모델인 식 (2)에 대입하면 미셀상에서 TTAB 분자의 몰분율(X_1)의 값을 계산할 수 있다. $^{9\cdot 11}$ 이 식을 이용하여 각 혼합시스템에 대하여 임의의 α_1 에서 X_1 을 계산하여 각 Table에 나타내었으며, 또한 α_1 에 따른 Table에 나타내었으며, 또한 table이 반하여 각 table에 나타내었다. 여기서 보듯이 TTAB/DTAB 혼합시스템은 이상적 혼합미셀화(대각선)로부터 양의 벗어남을 보였다. 이것은 TTAB분자가 탄소사슬의 길이가 자신보다 짧은 DTAB분자보다 혼합미셀 속으로 더 많이 들어감을 그리고 탄소사슬의 길이가 긴 CTAB분자 혹은 전하를 띠지않는 비이온성 계면활성제분자들보다는 혼합미셀 속으

Fig. 3. Plot of X_1 vs α_1 for the mixed micellizations of TTAB with the other surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80) in an aqueous solution of 4-chlorobenzoic acid (0.5 mM) at 25 °C: (■) TTAB/DTAB; (△) TTAB/CTAB; (●) TTAB/Tween-20; (○) TTAB/Tween-40; (▼) TTAB/Tween-80.

560 이남민ㆍ이병환

로 덜 들어감을 나타낸다. 계면활성제분자의 head-그룹들 사이에는 정전기적 반발력이 작용하거나 이온-쌍극자 상 호작용을 일으키며 또한 tail-그룹들 사이에는 강한 소수 성 상호인력이 작용함으로써 계면활성제분자들은 혼합 미셀을 이루게 된다. 이와 같이 TTAB분자와 다른 종류의 계면활성제들 사이에 이루어지는 상호인력작용의 세기 는 DTAB<CTAB<Tween-20<Tween-40<Tween-80 순서임을 알 수 있다.

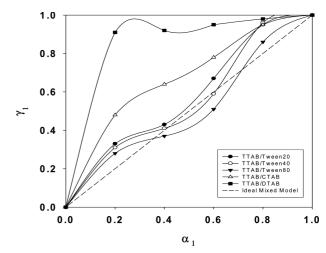
lnCMC =

$$\frac{X_2^2}{(X_1^2 - X_2^2)} \ln \left[\frac{\alpha_2}{(X_2 \text{CMC}_2)} \right] - \frac{X_1^2}{(X_1^2 - X_2^2)} \ln \left[\frac{\alpha_1}{(X_1 \text{CMC}_1)} \right]$$
(2)

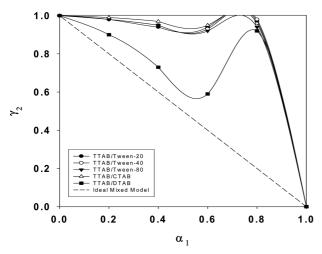
혼합미셀 상에서 두 종류의 계면활성제분자들 사이에 소수성 인력 혹은 정전기적 반발력과 같은 상호작용의 세기를 나타내는 상호인력상수(β)값은 X₁과 CMC값의 함 수로서 식 (3)과 같이 표현된다.9-11 각 혼합시스템에 대해 임의의 α_1 에서 β 값들을 계산하였으며, 그 결과를 각 Table에 나타내었다. 모든 혼합시스템에 대한 β값들은 모 두 음의 값을 나타내었으며, TTAB/DTAB 혼합시스템을 제외한 다른 시스템들은 모두 αι의 증가에 따라 약간 증 가하는 경향을 보였다. 각 혼합시스템의 β값을 평균하였 으며, 그 결과를 Table 6에 나타내었다. Table 6에 의하면 TTAB/양이온성 혼합시스템에 대한 β값은 TTAB/비이온 성 혼합시스템에 대한 β값보다 더 큰 값을 나타내었으며, 탄소사슬의 길이가 긴 계면활성제일수록 더 작은 β값을 나타내었다. TTAB분자와 다른 양이온성 계면활성제(DTAB 와 CTAB)분자의 head-그룹들 사이에는 같은 양의 하전을 띰으로써 정전기적 반발력이 서로 작용하게 되며, 그 결과 이들 분자들의 혼합미셀화는 방해받게 된다. 그러나 TTAB 분자와 전하를 띠지 않는 polyoxyethylene 계열의 비이온 성 계면활성제분자의 head-그룹들 사이에는 이온-쌍극자 상호인력이 작용하게 됨으로써 혼합미셀화는 촉진된다. 또한 계면활성제분자의 소수성 tail-그룹들 사이에는 소 수성 상호인력이 작용함으로써 혼합미셀화가 더욱 촉진 하게 되며, 그런 상호인력의 세기는 소수성 탄소사슬의

Table 6. Mean values of β and ΔH_{mix} , calculated for the mixed micellizations of TTAB with the other surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80) in an aqueous solution of 4-chlorobenzoic acid (0.5 mM) at 25 °C

Mixed systems	β	ΔH_{mix} (cal/mol)
TTAB/DTAB	-0.51	-51.8
TTAB/CTAB	-0.59	-56.2
TTAB/Tween-20	-0.93	-84.7
TTAB/Tween-40	-0.98	-86.4
TTAB/Tween-80	-1.10	-93.7


길이가 길수록 더욱 강하게 작용한다.

$$\beta = \frac{1}{(1 - X_1)^2} \ln \left[\frac{(\alpha_1 \text{CMC})}{(X_1 \text{CMC}_1)} \right]$$
 (3)


혼합미셀 상에서 각 성분들이 서로 혼합됨으로써 생기는 엔탈피 변화값(ΔH_{mix})은 X_1 과 β 값의 함수로서 식 (4)와 같이 계산할 수 있다. ¹¹ 각 혼합시스템의 미셀화에 대하여 ΔH_{mix} 값을 계산하였으며, 그 값들을 각 Table에 나타내었다. 여기서 알 수 있듯이 각 혼합시스템에 대한 ΔH_{mix} 값들은 β 값처럼 모두 음의 값을 나타내었다. 이것은 혼합미셀상에서 두 성분들이 서로 혼합됨으로써 열역학적으로 더욱 안정화됨을 의미한다. 또한 각 Table을 보면 α_1 의 증가에 따라 ΔH_{mix} 값은 미소하게 감소하다가 증가하는 경향을 보였으며, 특히 α_1 의 값이 0.4 혹은 0.6일 때 최소값을 보였다.

$$\Delta H_{mix} = X_1 (1 - X_1) \beta RT \tag{4}$$

각 혼합시스템에 대한 ΔH_{mix} 값의 평균값을 구하여 β값과 함께 Table 6에 나타내었다. 여기서 알 수 있듯이 TTAB분자는 양이온성 계면활성제보다는 비이온성 계면활성제와 혼합될 때 더욱 열역학적으로 안정화되며, 또한 탄소사슬의 길이가 긴 계면활성제분자와 혼합될 때 더욱 열역학적으로 안정화됨을 알 수 있다. 이것은 β값과 마찬가지로 TTAB분자가 미셀 상에서 양이온성 계면활성제보다는 비이온성 계면활성제와 강한 결합을 이루며 또한 탄소사슬의 길이가 긴 계면활성제와 더욱 강한 상호인력작용을 이루기 때문이다.

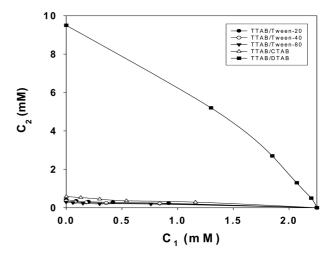


Fig. **4.** Plot of γ_1 *vs* α_1 for the mixed micellizations of TTAB with the other surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80) in an aqueous solution of 4-chlorobenzoic acid (0.5 mM) at 25 °C: (■) TTAB/DTAB; (△) TTAB/CTAB; (●) TTAB/Tween-20; (○) TTAB/Tween-40; (▼) TTAB/Tween-80.

Fig. 5. Plot of γ_2 vs α_1 for the mixed micellizations of TTAB with the other surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80) in an aqueous solution of 4-chlorobenzoic acid (0.5 mM) at 25 °C: (■) TTAB/DTAB; (△) TTAB/CTAB; (●) TTAB/Tween-20; (○) TTAB/Tween-40; (▼) TTAB/Tween-80.

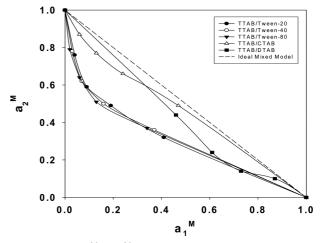

비이상적 혼합미셀모델에 의하면 혼합미셀 상에서 각 성분들의 활동도계수($\gamma = \exp\{\beta(1-X_i)^2\}$)를 X_i 와 β 값의 함 수로서 계산할 수 있으며,⁹⁻¹¹ 각 혼합시스템에 대한 결과 를 각 Table에 나타내었다. 여기서 %은 TTAB분자의 활동 도계수를 그리고 ½는 상대분자의 활동도계수를 나타낸 다. Fig. 4에는 α_1 에 따른 γ_1 의 변화를 그리고 Fig. 5에는 α_1 에 따른 α_2 의 변화를 도시하였다. Fig. 4에 의하면 TTAB/ 비이온성 혼합시스템은 이상적 혼합미셀화(대각선)로부 터 크게 벗어나지 않았지만, TTAB/양이온성 혼합시스템 은 이상적 혼합미셀화로 부터 큰 양의 벗어남을 보였다. 한편 Fig. 5에 의하면 ½값은 모든 혼합시스템에 대하여 크게 양의 벗어남을 보였으며, 특히 TTAB/DTAB 혼합시 스템은 다른 혼합시스템과는 다르게 α1의 증가에 따라 ½ 값이 크게 감소하다가 다시 증가하는 경향을 보이고 있 다. 각 혼합시스템에 대한 개과 12의 값을 서로 비교하여 보면 ½ 값보다는 ¼값이 혼합시스템의 종류에 따라 더욱 큰 차이를 보이고 있다. 비이상적 혼합미셀모델에 의하면 혼합미셀을 이루지 않고 단량체 상으로 존재하는 각 성 분들의 몰농도(Ci=YiXiCMCi)는 Yi의 값을 이용하면 쉽게 계산할 수 있다.11 각 혼합계면활성제의 미셀화에 대하여 C1(TTAB분자의 단량체상 몰농도)과 C2(상대분자의 단량 체상 몰농도)의 값을 계산하여 Table 1~5에 각각 함께 나 타내었다. Fig. 6에는 각 혼합시스템의 미셀화를 상호 비 교하기 위하여 C2값을 C1값에 대하여 도시하였다. 그래프 의 위쪽은 혼합미셀을 이루는 영역을 나타내며, 그래프의 아래쪽은 단량체로 존재하는 영역을 나타낸다. 따라서 TTAB/DTAB 혼합시스템은 다른 혼합시스템들보다 혼합

Fig. 6. Plot of C_2 vs C_1 for the mixed micellizations of TTAB with the other surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80) in an aqueous solution of 4-chlorobenzoic acid (0.5 mM) at 25 °C: (■) TTAB/DTAB; (△) TTAB/CTAB; (●) TTAB/Tween-20; (○) TTAB/Tween-40; (▼) TTAB/Tween-80.

미셀을 이루는 영역이 매우 비좁으며, 단량체로 존재하는 영역이 매우 넓음을 알 수 있다. 각 Table을 비교하여 보면 C_1 과 C_2 의 값은 모두 TTAB/양이온성 혼합시스템이 TTAB/비이온성 혼합시스템보다 큰 값을 나타내었으며 또한 TTAB과 혼합미셀을 이루는 계면활성제분자의 탄소사슬길이가 길수록 이들 값들은 더욱 작은 값을 나타내었다.

미셀 상을 열역학적으로 분리된 하나의 상으로 취급하고 순수 성분 상태를 미셀상의 표준 상태로 정하면 미셀상에서 각 성분들의 활동도 $(a_i^M=\gamma_iX_i)$ 는 γ_i 와 X_i 의 함수로

Fig. 7. Plot of $a_2^M vs \ a_1^M$ for the mixed micellizations of TTAB with the other surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80) in an aqueous solution of 4-chlorobenzoic acid (0.5 mM) at 25 °C: (■) TTAB/DTAB; (△) TTAB/CTAB; (●) TTAB/Tween-20; (○) TTAB/Tween-40; (▼) TTAB/Tween-80.

서 계산할 수 있다. 10,11 각 혼합시스템에 대한 a_1^M (TTAB분 자의 활동도)과 a_2^M (상대분자의 활동도)값을 계산하였으며, 그 결과를 Table 1~5에 함께 나타내었다. Table 1에 의하면 TTAB/DTAB 혼합시스템에 대한 a_1^M 값은 a_1 보다 큰 값을 나타내었으며, a_2^M 값은 a_2 보다 작은 값을 나타내었다. 그러나 다른 혼합시스템의 a_1^M 과 a_2^M 값(Table 2~4)은모두 TTAB/DTAB 혼합시스템의 경우와는 다른 경향들을 보였다. 각 혼합시스템에서 a_1^M 에 대하여 a_2^M 의 값을 Fig. 7에 도시하였다. 여기서 보듯이모든 혼합시스템들은 이상적 혼합미셀화(대각선)로부터 음의 벗어남을 보였으며,특히 TTAB/양이온성 혼합시스템에 대한 그래프가 TTAB/비이온성 혼합시스템들보다 대각선에서 덜 벗어남을 보였다.

결 론

TTAB/양이온성 혼합시스템과 TTAB/비이온성 혼합시 스템에 대한 CMC 및 B값을 측정하여 비이상적 혼합미셀 모델을 적용하여 여러 가지 열역학적 함수값들을 계산하 고 비교하였다. 혼합미셀상에서 TTAB분자와 비이온성 계면활성제분자들의 head-그룹들 사이에 이온-쌍극자 상 호인력작용으로 인하여 이들 혼합시스템들은 모두 이상 적 혼합미셀화로부터 크게 음의 벗어남을 보였다. 이런 벗어남은 비이온성 계면활성제에서 탄소사슬의 길이가 길수록 더욱 크게 나타났으며 또한 TTAB분자와 더욱 강 하게 상호인력으로 결합하고 있음을 나타낸다. 한편 TTAB 분자와 다른 양이온성 계면활성제분자의 head-그룹 간에 는 정전기적 반발력이 작용함으로써 이들 혼합시스템은 이상적 미셀화로부터 덜 음의 벗어남을 보였으며, 특히 TTAB/DTAB 혼합시스템은 오히려 양의 벗어남을 보였다. 이런 양이온성 계면활성제분자들은 tail-그룹들 사이에 소수성 인력으로 인하여 혼합미셀을 이루게 됨으로써 TTAB분자들은 DTAB분자보다 CTAB분자와 더욱 안정 된 혼합미셀을 이루게 된다. 이러한 사실들은 다른 열역 학적 함수값들과 마찬가지로 각 혼합시스템에 대한 β값 과 ΔH_{mix} 값으로부터 확인할 수 있었다. 즉, TTAB/Tween-80 혼합시스템이 가장 작은 β 값과 ΔH_{mix} 값인 -1.10과 -93.7 cal/mol을 나타내었으며, TTAB/DTAB 혼합시스템이 가장 큰 값인 -0.51과 -51.8 cal/mol을 나타내었다. DTAB< CTAB<Tween-20<Tween-40<Tween-80 순서로 TTAB분자 와 강하게 상호인력작용을 이루며 또한 혼합미셀을 더욱 잘 이루었다.

Acknowledgments. 본 연구는 한국기술교육대학교의 2012년도 교육연구진흥비에 의하여 수행한 결과이며, 연구지원에 감사드립니다.

REFERENCES

- Ghosh, S.; Burman, A. D.; De, G. C.; Das. A. R. J. Phys. Chem. B 2011, 115, 11098.
- Das, A. K.; Mondal, T.; Mojumdar, S. S.; Bhattacharyya, K. J. Phys. Chem. B 2011, 115, 4680.
- 3. Jiang, Y.; Chen, H.; Mao, S.; Luo, P.; Du, Y.; Liu, M. *J. Phys. Chem. B* **2011**, *115*, 1986.
- 4. Shi, L.; Yan, H.; Gao, Y.; Zheng, L. Langmuir 2011, 27, 1618.
- Din, K.; Rub, M. A.; Naqvi, A. Z. J. Phys. Chem. B 2010, 114, 6354.
- Sakai, K.; Matsuhashi, K.; Honya, A.; Oguchi, T.; Sakai, H.; Abe, M. *Langmuir* 2010, 26, 17119.
- Almgren, M.; Garamus, V. M.; Nordstierna, L.; Blin, J. L.; Stebe, M. J. *Langmuir* 2010, 26, 5355.
- 8. Bejarpasi, N. P.; Hashemianzadeh, M.; Khoshdel, M. M.; Sohrabi, B. *Langmuir* **2010**, *26*, 13786.
- 9. Park, I. J.; Lee, B. H. J. Surfact. Deterg. 2012, 15, 41.
- 10. Park, I. J.; Lee, B. H. J. Korean Chem. Soc. 2011, 55, 379.
- Holland, P. M.; Rubingh, D. N. J. Phys. Chem. 1983, 87, 1984.
- 12. Banipal, T. S.; Sood, A. K.; Singh, K. J. Surfact. Deterg. **2011**, *14*, 235.
- Su, T. L.; Lai, C. C.; Tsai, P. C. J. Surfact. Deterg. 2011, 14, 363.
- Alehyen, S.; Bensejjay, F.; Achouri, M. E.; Perez, L.; Infante, M. R. J. Surfact. Deterg. 2010, 13, 225.
- 15. Gharanjig, K.; Kiakhani, M. S.; Bagha, A. R. T.; Khosravi, A.; Menger, F. M. J. Surfact. Deterg. 2011, 14, 381.
- 16. Lee, N. M.; Lee, B. H. Appl. Chem. Eng. 2011, 22, 473.
- Lee, N. M.; Lee, B. H. J. Korean Chem. Soc. 2012, 56, 188.
- Nazar, M. F.; Shah, S. S.; Khosa, M. A. J. Surfact. Deterg. 2010, 13, 529.
- Tah, B.; Pal, P.; Mahato, M.; Talapatra, G. B. J. Phys. Chem. B 2011, 115, 8493.
- Miraglia, D. B.; Rodriguez, J. L.; Minardi, R. M.; Schulz,
 P. C. *J. Surfact. Deterg.* 2011, *14*, 401.
- Werts, K. M.; Grady, B. P. J. Surfact. Deterg. 2011, 14, 77.
- 22. Ghosh, S.; Khatua, D.; Dey, J. Langmuir 2011, 27, 5184.
- 23. Anghel, D. F.; Saite, S.; Iovescu, A.; Baran, A.; Stinga, G. *J. Surfact. Deterg.* **2011**, *14*, 91.