DOI QR코드

DOI QR Code

Detecting cell cycle-regulated genes using Self-Organizing Maps with statistical Phase Synchronization (SOMPS) algorithm

SOMPS 알고리즘을 이용한 세포주기 조절 유전자 검출

  • Kang, Yong-Seok (Department of Vehicle Engineering, Korea Polytechnics) ;
  • Bae, Cheol-Soo (Department of Biomedical Engineering, Kwandong University)
  • 강용석 (한국폴리텍대학 자동차학과) ;
  • 배철수 (관동대학교 의료공학과)
  • Received : 2012.08.07
  • Accepted : 2012.09.06
  • Published : 2012.09.30

Abstract

Developing computational methods for identifying cell cycle-regulated genes has been one of important topics in systems biology. Most of previous methods consider the periodic characteristics of expression signals to identify the cell cycle-regulated genes. However, we assume that cell cycle-regulated genes are relatively active having relatively many interactions with each other based on the underlying cellular network. Thus, we are motivated to apply the theory of multivariate phase synchronization to the cell cycle expression analysis. In this study, we apply the method known as "Self-Organizing Maps with statistical Phase Synchronization (SOMPS)", which is the combination of self-organizing map and multivariate phase synchronization, producing several subsets of genes that are expected to have interactions with each other in their subset (Kim, 2008). Our evaluation experiments show that the SOMPS algorithm is able to detect cell cycle-regulated genes as much as one of recently reported method that performs better than most existing methods.

세포주기조절유전자를 식별하는 계산방법을 개발하는 것은 시스템 생물학의 중요한 주제중 하나이다. 이전 방법의 대부분은 세포주기 조절 유전자를 식별하는 표현신호의 주기적인 특성으로 간주한다. 그러나, 세포주기 조절유전자는 상대적으로 세포 네트워크를 기반으로 서로 활성화된 상대적으로 많은 상호 작용을 일으킨다고 가정한다. 본 연구에서는 세포주기 분석에 변수 위상동기화 이론을 적용하여, "통계적상 동기화를 이용한 자가조직지도 (SOMPS)", 즉, 자가조직지도와 다변수 통계 동기화 방법으로 이루어진 방법을 사용하여 여러 개의 하위집합과의 상호작용을 발생시키고자 한다. 평가방법으로 SOMPS방법 알고리즘이 세포주기조절 유전자를 방법으로 기존에 사용되는 방법들과 같이 유용할 것으로 보인다.

Keywords

References

  1. Albert,B., Bray,D., Lewis,J., Raff,M., Roberts,K. and Watson,J.D. Molecular Biology of the Cell. Garland Publishing, New York & London.
  2. Allefeld,C. and Kurths,J. An approach to multivariate phase synchronization analysis and its application to event-related potentials., Int. J. Bifurcation and Chaos, 14, pp.417-426. 2004. https://doi.org/10.1142/S0218127404009521
  3. Bhattacharya,J."Reduced degree of long-range phase synchrony in pathological human brain",, Acta Neurobiol. Exp., 61, 309-318.2001.
  4. Cho,R.J., Campbell,M.Jm, Winzeler,E.A., Steinmetz,L., Conway,A., Wodicka,L., Wolfsberg,T.G., Gabrielian,A.E., Landsman,D., Lockhart,D.J., et al."A genome-wide transcriptional analysis of the mitotic cell cycle"., Mol. Cell, 2, 65-73.1998. https://doi.org/10.1016/S1097-2765(00)80114-8
  5. Cho,R.J., Huang,M., Campbell,M.J., Dong,H., Steinmetz,L., Sapinoso,L., Hampton,G., Elledge,S.J., Davis,R.W. and Lockhart,D.J. "Transcriptional regulation and function during the human cell cycle"., Nat. Genet., 27, 48-54. 2001.
  6. de Lichtenberg,U., Jensen,L.J., Fausboll,A., Jensen,T.S., Bork,P. and Brunak,S. "Comparison of computational methods for the identification of cell cycle-regulated genes"., Bioinformatics, 21, 1164-1171.2005. https://doi.org/10.1093/bioinformatics/bti093
  7. Gabor,D. Theory of communication., JIEE (London), 93, 429-457.1946.
  8. Huygens,Ch.Horologium Oscillatorium. Apud F. Muguet, Parisiis, France.
  9. Johannson,D., Lindgren,P., and Berglund,A. "A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcriptio"n., Bioinformatics, 19, 467-473. 2003. https://doi.org/10.1093/bioinformatics/btg017
  10. Kim, C.S. "Self-Organizing Maps with Statistical Phase Synchronization (SOMPS) for analyzing cell cycle-specific gene expression data., Statistical Applications in Genetics and Molecular Biology", 7:Iss. 1, Article 1.2008.
  11. Kohonen,T. Self-Organizing Maps. Springer-Verlag, Berlin. 1995.
  12. Lee,T.I., Rinaldi,N.J., Robert,F., Odom,D.T., Bar-Joseph,Z., Gerber,G.K., Hannett,N., Harbison,C.T., Thompson,C.M., Simon,I., et al. "Transcriptional regulatory networks in Saccharomyces cerevisiae"., Science, 298, 799-804.2002. https://doi.org/10.1126/science.1075090
  13. Lu,X., Zhang,W., Qin,Z.S., Kwasi,K.E. and Liu,J.S.Statistical resynchronization and Bayesian detection of peridically expressed genes., Nucleic Acids Res., 32, 447-455. 2004. https://doi.org/10.1093/nar/gkh205
  14. Luan,Y. and Li,H. "Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data"., Bioinformatics, 20, 332-339.2004. https://doi.org/10.1093/bioinformatics/btg413
  15. Mewes,H.W., Frishman,D., Güldner,U., Mannhaupt,G., Mayer,K., Mokrejs,M., Morgenstern,B., Münsterkoetter,M., Rudd,S. and Weil,B. MIPS: a database for genomes and protein sequences., Nucleic Acids Res., 30, 31-34.
  16. Pikovsky,A.S. "On the interaction of strange attractors"., Phys. B, 55, 149-154. 1984a. https://doi.org/10.1007/BF01420567
  17. Pikovsky,A.S. "Synchronization and stochastization of the ensemble of autogenerators by external noise"., Radiophys. Quant. Electron, 27, 576-581. 1984b.
  18. Pikovsky,A., Rosenblum,M. and Kurths,J. Synchronization: a universal concept in nonlinear science. . Cambridge University Press. 2001.
  19. Qian,J., Dolled-Filhart,M., Lin,J., Yu,H. and Gerstein,M. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions., J. Mol. Biol., 314, 1053-1066. 2001. https://doi.org/10.1006/jmbi.2000.5219
  20. Rosenblum,M.G., Pikovsky,A.S. and Kurths,J. "Phase synchronization of chaotic oscillators"., Phys. Rev. Lett., 76, 1804-1807. 1996. https://doi.org/10.1103/PhysRevLett.76.1804
  21. Rustici,G., Mata,J., Kivinen,K., Lió,P., Penkett,C.J., Burns,G., Hayles,J., Brazma,A., Nurse,P. and Bahler,J. Periodic gene expression program of the fission yeast cell cycle., Nat. Genet., 36, 809-817. 2004. https://doi.org/10.1038/ng1377
  22. Simon,I., Barnett,J., Hannett,N., Harbison,C.T., Ranaldi,N.J., Volkert,T.L., Wyrick,J.J., Zeitlinger,J., Gifford,D.K., Jaakola,T.S., et al."Serial regulation of transcriptional regulators in the yeast cell cycle"., Cell, 106, 697-708. 2001. https://doi.org/10.1016/S0092-8674(01)00494-9
  23. Spellman,P.T., Sherlock,G., Zhang,M.Q., Lyer,V.R., Anders,K., Eisen,M.B., Brown,P.Q., Botstein,D. and Futcher,B. "Comprehensive identification of cell cycle-regulated genes of the yeast S. cerevisiae by microarray hybridization"., Mol. Biol. Cell, 9, 3273-3297. 1998. https://doi.org/10.1091/mbc.9.12.3273
  24. Strogatz,S.H. "From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators"., Physica D, 143, 1-20. 2000. https://doi.org/10.1016/S0167-2789(00)00094-4
  25. Whitfield, M. L., Sherlock, G., Saldanha, A. J., Murray, J. I., Ball, C. A., Alexander, K. E., Matese, J. C., Perou, C. M., Hurt, M. M., Brown, P. O., et al. "Identification of gene periodically expressed in the human cell cycle and their expression in tumors"., Mol. Biol. Cell, 13, 1977-2000, 2002. https://doi.org/10.1091/mbc.02-02-0030.
  26. Zhao,L.P., Prentice,R. and Breeden,L. "Statistical modeling of large microarray data sets to identifying stimulus-response profiles"., Proc. Natl. Acad. Sci. USA, 98, 5631-5636, 2001. https://doi.org/10.1073/pnas.101013198
  27. Ik-Hyun Lee, Tae-Sun Choi, "Shape From Focus Algorithm with Optimization of Focus Measure for Cell Image" Journal of Korea Institute of Information, Electronics, and Communication Technology, Vol.3, No.3, pp.8-13, 2010.