DOI QR코드

DOI QR Code

Response of Phytotoxicity on Rice Varieties to HPPD-inhibiting Herbicides in Paddy Rice Fields

HPPD 저해 제초제에 대한 벼 품종별 약해 반응

  • Kwon, Oh-Do (Jeonnam Agricultural Research and Extension Service) ;
  • Shin, Seo-Ho (Jeonnam Agricultural Research and Extension Service) ;
  • An, Kyu-Nam (Jeonnam Agricultural Research and Extension Service) ;
  • Lee, Yeen (Jeonnam Agricultural Research and Extension Service) ;
  • Min, Hyun-Kyeng (Jeonnam Agricultural Research and Extension Service) ;
  • Park, Heung-Gyu (Jeonnam Agricultural Research and Extension Service) ;
  • Shin, Hae-Ryoung (Jeonnam Agricultural Research and Extension Service) ;
  • Jung, Ha-Il (Department of Crop and Soil Sciences, Cornell University) ;
  • Kuk, Yong-In (Dept. of Development in Resource Plants, College of Life Science and Natural Resources, Sunchon National University)
  • 권오도 (전남농업기술원 쌀연구소) ;
  • 신서호 (전남농업기술원 쌀연구소) ;
  • 안규남 (전남농업기술원 쌀연구소) ;
  • 이인 (전남농업기술원 쌀연구소) ;
  • 민현경 (전남농업기술원 쌀연구소) ;
  • 박흥규 (전남농업기술원 쌀연구소) ;
  • 신해룡 (전남농업기술원 쌀연구소) ;
  • 정하일 (코넬대학교 작물 및 토양학과) ;
  • 국용인 (순천대학교 생명산업과학대학 한약자원개발학과)
  • Received : 2012.08.22
  • Accepted : 2012.09.19
  • Published : 2012.09.30

Abstract

The objectives of this study were to investigate the levels of phytotoxicity of rice varieties to HPPD (4-hydroxy phenylpyruvate dioxygenase)-inhibiting herbicides known for their efficiency to control the sulfonylureas-resistant weed species:mestrione, benzobicyclone, and tefuryltrione. The twenty-six rice varieties (8-Japonica ${\times}$ Indica-type varieties and 18-Japonica-type varieties) were grown for 25 days on seedling trays and then transplanted to paddy rice fields followed by herbicide treatment i.e. standard and double doses of there respective herbicides at 5, 10, and 15 days after transplanting. Although mestrione, benzobicyclone and tefuryltrione are all HPPD-inhibiting herbicides, the phytotoxicity symptoms of the different rice varieties based on the timing of application and doses of the herbicides were significantly different. The Japonica ${\times}$ Indica-type varieties showed much more phytotoxicity symptoms than Japonica-type varieties in all applied herbicides. Increasing herbicidal doses of mesotrione, and an earlier application of and increasing herbicidal doses of benzobicyclon caused severe phytotoxicity symptoms. On the other hand, phytotoxicity due to tefuryltrione did not exhibit significant differences between rice varieties in either the timing of application or dose of the herbicide. Regardless of timing of application and dose of the herbicides, Hangangchalbyeo-1, Hyangmibyeo-1 and high-yield rice varieties such as Namcheonbyeo, Dasanbyeo, Areumbyeo, and Hanareumbyeo, which belong to the Japonica ${\times}$ Indica-type varieties, showed 5 to 8 levels of phytotoxicity symptoms including albinism, browning, detached leaf, and necrosis to mesotrione and benzobicyclon whereas only 1 to 3 levels of phytotoxicity symptoms (chlorosis, albinism, and browning) were seen with to tefuryltrione application. The Japonica-type varieties exhibited only slight phytotoxicity symptoms (1~2 levels) in conformity with the timing of application and doses of the herbicides. However, there were significant differences among the Japonica-type rice varieties, depending on the type of herbicide. Thirteen-Japonica type rice varieties were sensitive to benzobicyclone while 4-Japonica-type and 7-Japonica-type varieties showed phytotoxicity symptoms such as chlorosis and albinism with mestrione and tefuryltrione application, respectively. Therefore, we suggest that the combined-type herbicides including mestrione, benzobicyclone and tefuryltrione should be rejected in paddy fields where rice is grown for either human consumption (functional or processed rice) or livestock feed because of severe phytotoxicity symptoms on the various rice varieties seen regardless of the timing of application and doses of the herbicides.

본 연구의 목적은 설포닐우레아계 제초제에 대한 저항성 잡초종 방제에 효과적인 HPPD(4-hydroxy phenylpyruvate dioxygenase) 저해 제초제, mestrione, benzobicyclone 및 tefuryltrion에 대한 벼 품종 간의 약해정도를 구명하기 위하여 수행하였다. 총 26 벼 품종(통일형 8품종 그리고 일본형 18품종)은 육묘상자에서 25일 동안 생육시킨 후 이앙하였고, 이앙 후 5, 10, 그리고 15일에 각각의 제초제를 표준량 그리고 배량을 처리하였다. 비록 mestrione, benzobicyclone 및 tefuryltrion 제초제가 동일한 HPPD 저해 제초제들이지만 이들 제초제의 처리 시기나 약량에 따라 벼 품종별 약해정도와 증상은 서로 상이하였다. 시험약제 모두에서 통일형 품종이 일본형 품종보다 약해가 심하게 발생하였다. Mesotrione은 약량이 증가할수록, benzobicyclon은 처리시기가 빠르고 약량이 증가할수록 약해가 심하였다. 반면에 tefuryltrion은 처리시기와 약량에 따라 품종간의 약해변이는 크지 않았다. Mesotrione과 benzobicyclon에 대한 통일형 품종인 한강찰벼 1호와 향미벼 1호, 초다수성 품종인 남천벼, 다산벼, 아름벼, 그리고 한아름벼 품종들의 약해는 처리시기 및 약량에 관계없이 백화, 잎과 줄기의 갈변, 잎 꺾임, 괴사를 동반한 5~8 정도의 약해 증상을 보인 반면에 tefuryltrion은 단지 1~3 정도의 황화 및 백화, 갈변 증상만을 보였다. 일본형 품종에 대한 약해는 제초제의 처리시 기와 약량에 따라 1~2 정도의 가벼운 약해 증상을 보였지만 제초제 종류에 따라 품종간에 유의적인 차이를 나타냈다. 13개의 일본형 품종들은 benzobicyclone에 대해 민감하였으며, 일본형 4품종과 7품종들은 각각의 mestrione과 tefuryltrion에 대해 황화 및 백화를 동반한 증상이 나타났다. 그러므로 mestrione과 benzobicyclone, 그리고 tefuryltrion 성분이 함유된 혼합제는 처리시기 및 처리약량에 관계없이 벼 생태형 간에 심각한 약해 증상을 나타내므로 식용(기능성용 및 가공용 벼) 또는 사료용을 위한 벼 재배 포장에서의 사용을 지양해야 할 것으로 사료된다.

Keywords

References

  1. Abit, M. J. M., and K. Al-Khatib. 2009. Absorption, translocation and metabolism of mesotrione in grain sorghum. Weed Sci. 57:563-566. https://doi.org/10.1614/WS-09-041.1
  2. Barta, I. C., and P. Boger. 1996. Purification and characterization of 4-hydroxyphenylpyruvate dioxygenase from maize. Pestic. Sci. 48:109-116. https://doi.org/10.1002/(SICI)1096-9063(199610)48:2<109::AID-PS447>3.0.CO;2-7
  3. Han S. S., K. Y. Yoo, M. S. Park, and D. W. Kang. 2009. Reactivity of herbicide benzobicyclon in rice and weed rice. Korean J. Weed Sci. 29 (Supp. 2):105.
  4. Im, I. B., S. Kim, S. H. Ahn, X. H. An, and S. H. Cho. 2008. Control characteristics of weed (red) rice (Oryza sativa L.) by benzobicyclon application. Korean J. Weed Sci. 28(2):181-188.
  5. Kim, S. Y., J. Y. Lee, U. S. Yeo, S. H. Oh, S. T. Park, J. H. Lee, K. H. Jeong, J. H. Cho, Y. C. Song, and H. W. Kang. 2010. Differential tolerance of rice cultivars to mesotrione-contained herbicides. Korean J. Weed Sci. 30(3):300-307. https://doi.org/10.5660/KJWS.2010.30.3.300
  6. Komatsubara, K., K. Sekino, Y. Yamada, H. Koyanagi, and S. Nakahara. 2009. Discovery and development of a new herbicide, benzobicyclon. J. Pestic. Sci. 34(2):113-114. https://doi.org/10.1584/jpestics.J09-01
  7. Korea Crop Protection Association (KCPA). 2011. Guide book of using the agrochemicals. Sam Jeong Press Co., Seoul. 1309p.
  8. Lee, D. L., M. P. Prisbylla, T. H. Cromatie, D. P. Dagarin, S. W. Howard, W. M. Provan, M. K. Ellis, T. Fraser, and L. C. Mutter. 1997. The discovery of P-hydroxyphenylpyruvate dioxygenase. Weed Sci. 45:601-609.
  9. Lee, I. Y., C. S. Kim, J. Lee, B. C. Moon, and Y. G. Jeong. 2011. Biological characteristics of bromobutide+ imazosulfuron+mefenacet GR using paddy fields. Korean J. Weed Sci. 31(4):401-404.
  10. Pallett, K. E., J. P. Little, P. Veerasekaran, and F. Viviani. 1997. Inhibition of 4-hydroxyphenylpyruvate dioxygenase:the mode of action of the herbicide RPA 201772 (isoxaflutole). Pestic. Sci. 50:83-84. https://doi.org/10.1002/(SICI)1096-9063(199705)50:1<83::AID-PS554>3.0.CO;2-S
  11. Park, T. S, I. Y. Lee, K. Y. Seong, H. S. Cho, H. K. Park, J. K. Ko, and U. G. Kang. 2011. Status and prospect of herbicide resistant weeds in rice field of Korea. Korean J. Weed Sci. 31(2):119-133. https://doi.org/10.5660/KJWS.2011.31.2.119
  12. Ryang, H. S., and I. K. Kim. 1986. Studies on factors affecting the injury caused by simetryne to rice plants of Tongil variety. Korean J. Weed Sci. 6(1): 48-58.
  13. Ryang, H. S., S. S. Han, and J. S. Kim. 1981. Weeding effect and phytotoxicity variable in herbicide treatment in mechanically transplanted paddy field 1. Effect of application time on weeding effect and phytotoxicity. Korean J. Weed Sci. 1(1):69-77.
  14. Sekino, K. 2002. Discovery study of new herbicides from the inhibition of photosynthetic pigments biosynthesis (development of a new plastoquinone biosynthetic inhibitor, benzobicyclon as a herbicide). Japanese J. Weed Sci. 27:388-391.
  15. Sekino, K., H. Koyanagi, E. Ikuta, and Y. Yamada. 2008. Herbicidal activity of a new paddy bleaching herbicide, benzobicyclon. J. Pestic. Sci. 33(4), 364-370. https://doi.org/10.1584/jpestics.G08-11
  16. Song, J. E., M. S. Park, J. H. Jeong, E. H. Park, and C. K. Jeong. 2011. Herbicidal efficacy affected by different formulation of benzobicyclon-mixtures herbicides in paddy rice field. Korean J. Weed Sci. 31(4):384-393. https://doi.org/10.5660/KJWS.2011.31.4.384
  17. 양원하, 한희석, 안종웅, 곽창길, 이충근, 손지영, 김준환, 이미현, 이은형, 안치중. 2010. 제초제 벤조비 사이클론(Benzobicyclon)에 대한 초다수성벼와 특수미의 약해정도. 한국작물학회지 55(S1):40.
  18. 한국작물보호협회. 2012. 작물보호제 지침서. 1351p.

Cited by

  1. Selectivity of Tefuryltrione between Rice and Eleocharis kuroguwai vol.5, pp.4, 2016, https://doi.org/10.5660/WTS.2016.5.4.191
  2. Phytotoxicity of Whole Crop Forage Rice to Benzobicyclon vol.3, pp.3, 2014, https://doi.org/10.5660/WTS.2014.3.3.225
  3. Characteristics of Sensitive HIS1 Genes to the 4-HPPD Inhibiting Rice Herbicides Isolated from Several Rice Cultivars vol.5, pp.4, 2016, https://doi.org/10.5660/WTS.2016.5.4.187
  4. Benzobicyclon as a Post-Flood Option for Weedy Rice Control vol.32, pp.04, 2018, https://doi.org/10.1017/wet.2018.32