
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.3, SEPTEMBER, 2012 http://dx.doi.org/10.5573/JSTS.2012.12.3.331

Efficient Use of Unused Spare Columns for Reducing

Memory Miscorrections

Jihun Jung*, Umair Ishaq*, Jaehoon Song**, and Sungju Park*

Abstract—In the deep sub-micron ICs, growing

amounts of on-die memory and scaling effects make

embedded memories increasingly vulnerable to

reliability and yield problems. Spare columns are

often included in memories to repair defective cells or

bit lines during production test. In many cases, the

repair process will not use all spare columns. Schemes

have been proposed to exploit these unused spare

columns to store additional check bits which can be

used to reduce the miscorrection probability for triple

errors in single error correction–double error

detection (SEC-DED). These additional check bits

increase the dimensions of the parity check matrix

(H-matrix) requiring extra area overhead. A method

is proposed in this paper to efficiently fill the extra

rows of the H-matrix on the basis of similarity of logic

between the other rows. Optimization of the whole H-

matrix is accomplished through logic sharing within a

feasible operating time resulting in reduced area

overhead. A detailed implementation using fuse

technology is also proposed in this paper.

Index Terms—Memory ECC, SEC-DED, logic sharing,

parity check matrix, misscorrection probability, built-

in self repair

I. INTRODUCTION

With the scaling of process technologies into the

nanometer regime, the reliability of embedded memory

systems becomes an increasingly important concern for

digital system designers. Nano-scale components

themselves are increasingly likely to fail, and the

growing amount of on-chip memory creates more

possible points of failure. As designers integrate more of

the memory hierarchy onto the processing die, the

number and size of memory arrays on these system-on-

chip (SoC) and microprocessors will increase [1].

Therefore, errors occurring in the embedded memory

systems are a growing threat to the overall SoC and

processor reliability and yield.

To protect the integrity of the data in the memory,

error correcting code (ECC) plays a vital role [2]. The

most common codes used are single error correction-

double error detection codes. The most popular are

Hamming [3], and Hsiao [4]. These codes can correct

single bit errors in a codeword and can detect double bit

errors. These codes require storing additional check bits

in the memory. It is desired that a SEC-DED code

reduces the probability of miscorrection for triple bit

errors. Miscorrection occurs when an erroneous word is

decoded in a wrong codeword without signaling an error.

The majority of memories do not possess an exact

number of data bits; hence, shortened codes must be used.

The right choice of the columns of the check matrix of

the shortened codes offers an opportunity to reduce the

probability of miscorrection. In [5] a unique search

procedure was described for the selection of columns in

the H-matrix such that there is at least one even-weight

column in the check matrix. It was also shown that how

Manuscript received Dec. 15, 2011; revised Jun. 29, 2012.

* Dept. of Computer Science & Engineering, Hanyang University

ERICA Campus, Ansan-si, Gyunggi-do, Korea

** TranSono Inc., Seoul, Korea

S. Park (parksj@mslab.hanyang.ac.kr) is a corresponding author.

Earlier version of this paper has been presented in the Asian Test

Symposium 2011.

332 JIHUN JUNG et al : EFFICIENT USE OF UNUSED SPARE COLUMNS FOR REDUCING MEMORY MISCORRECTIONS

codes for larger code length with a small triple bit error

miscorrection can be generated from smaller matrix

already determined. Along with the columns needed to

carry out ECC, the memory includes additional spare

columns for repair. In some cases, check bits are used

along with spare rows and columns to provide a

combined fault-tolerance. Current memory designs

contain redundant rows, columns, and sub-arrays to

tolerate manufacture-time hard errors and thus improve

yields [6, 7]. When faulty bits are detected during

product testing, the faulty addresses are remapped to

redundant spare rows or columns using built-in self

repair (BISR) techniques [8]. While in the worst-case

most defective memories on the tail end of the statistical

curve may use all of the spare resources, most memories

will have unused spare resources after the repair.

A methodology has been proposed to exploit these

unused resources, when available, to improve the

reliability of the memory by enhancing its existing error

coding [9]. This scheme exploited unused spare columns

to store additional check bits which significantly reduced

the miscorrection probability (MP) for triple-errors in

SEC-DED codes. The additional check bits add extra

rows to the H-matrix and increase the dimension of the

syndrome. The increase in the dimension adds extra area

and delay overhead to the entire system.

In this paper we propose a method to efficiently fill the

additional rows of the H-matrix on the basis of similarity

amongst the other rows of the H-matrix. For 16 bits of

data our proposed method reduces the number of

combination to 25 in comparison to 216 for an exhaustive

search. For larger codes such as 32 or 64 bits, exhaustive

search is not possible. The proposed method plays a vital

role in drastically reducing the number of combinations

in selecting a best combination for additional row.

Furthermore, we present a logic sharing method that not

only reduces the hardware area but also delay of the

overall design. Lastly, a new improved fuse base

architecture design for the whole system is also proposed.

The paper is organized as follows. Section II provides

a background and properties of SEC-DED codes. Section

III describes the proposed methods. Experimental results

are shown in Section IV and Section V concludes our

discussion.

II. BACKGROUND

In this section we focus our attention on the

conventional systematic linear block SEC-DED codes [3,

4, 10, 11]. The length of the code words, the number of

information bits and the number of check bits are

denoted by n, k and () ,= −r n k respectively. The H-

matrix is:

 [|]T

n k
H −= Α Ι (1)

Where A is a k-by-(n-k) parity check generator matrix

and In-k is an (n-k)-by-(n-k) identity matrix. The code

generator matrix denoted as G is defined as follows:

 [|]
k

G = Ι Α (2)

If u is a 1-by-k data bit vector, then its corresponding n

bit codeword vector x is formed as x = u·G. In this paper,

the codes are described by their (r-by-n) parity check

matrix (H-matrix). C is a codeword of the code if and

only if:

 . 0TH C = (3)

An error vector E is defined as an r-bit vector where

the bits that are in error have a value 1 and all the other

bits are 0. An erroneous message Werror can be

represented as follows:

 error
W C E= ⊕ (4)

The syndrome, S, is defined as follows:

 ()
error

S H W H C E H E= ⋅ = ⋅ ⊕ = ⋅ (5)

The value of the syndrome is equal to zero if the

transmitted codeword is not corrupted. If the received

codeword contains detectable errors then the syndrome is

non-zero. If the received codeword contains correctable

errors, then the syndrome identifies the error pattern

corrupting the transmitted codeword, and these errors can

then be corrected.

For single error correction (SEC) Hamming code, each

column vector in the H-matrix is non-zero and distinct

[3]. This ensures that the syndrome for any single bit

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.3, SEPTEMBER, 2012 333

error will result in a unique syndrome. By decoding the

syndrome, it is possible to determine which bit the error

is in and flip the value of that bit to correct the error.

For a double-bit error, the syndrome is equal to the

XOR of two columns of the H-matrix.

1 2 1 2(,)i i jh h S i i h⊕ = = (6)

Similarly, for triple-bit errors, the syndrome is formed

from three columns being XORed together.

1 2 3 1 2 3(, ,)i i i jh h h S i i i h⊕ ⊕ = = (7)

If hj is equal to the syndrome for any single bit error

(i.e., equal to any column in the H-matrix), then the

double-bit or triple-bit error syndrome, in Eq. (6) and (7)

respectively, would be the alias with the single-bit error

syndrome resulting in a miscorrection.

Hsiao provides a solution for double bit error

miscorrection by using an H-matrix in which every

column has an odd number of 1’s and is distinct. The

XOR of any 2 columns with odd 1’s results in a

syndrome with even number of 1’s, ensuring syndrome

different from any single column.

A major problem for Hsiao codes is the miscorrected

triple bit errors. The number of possible triple-bit errors

is 3

nC . For most conventional SEC-DED codes this

percentage exceeds 50% [9]. The scheme proposed in [9]

exploited unused spare columns to store additional check

bits which significantly reduced the MP for triple-errors

in SEC-DED codes

III. PROPOSED METHODS

In this paper we propose the following four methods;

1. Logic Sharing Method

2. Check Bit Addition(CBA) Method

3. Local Augmentation (LA) of Miscorrection

4. Probability

5. Spare Memory Architecture

1. Logic Sharing Method

In this section, an iterative method is proposed to find

shared terms to minimize the circuit area built by H-

matrix equations.

As discussed earlier, the additional check bits add

extra rows to the H-matrix and increase the dimensions

of the H-matrix as shown Fig. 1 and Fig. 2 [9].

The additional extra row affects the circuit area as well

as the miscorrection rate; thus, logic sharing is proposed

in this paper to fill the extra row with meticulous care to

minimize both area and timing penalties. Our proposed

method consists of six basic steps.

In the Step 1, output equations are transformed into an

(n-by-m) matrix. In the Step 2, we compute the similarity

matrix taking each row and checking the degree of

similarity between the other rows. In the Step 3, we

simply repeat the second step for all the following rows.

In the Step 4, we optimize the similarity matrix by

sorting it and deleting the duplicate rows and also the

rows containing less than two 1’s. In the Step 5 equations

are replaced by the optimized variables. We further

check the number of the optimized similarity matrix rows

that we obtained. If the number of optimized rows is not

0 or 1 then the process from the Step 2 to the Step 5 is

repeated again on the optimized similarity matrix to

further optimize the matrix and equations will be further

replaced by the optimized variables. Otherwise, the loop

breaks and jumps to the Step 6 in which we get the

optimized output equations which can be used instead of

the original equations.

To better understand our method, an example is

explained in detail. Let us consider a generalized matrix

that produces a certain set of equations as follows;

1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 1

H

 
 
 =
 
 
 

Fig. 1. Example of (7,3) SEC-DED Hsiao Code.

1 1 0 1 0 0 0 0

0 1 1 0 1 0 0 0

1 0 1 0 0 1 0 0

1 1 1 0 0 0 1 0

0 1 0 0 0 0 0 1

H

 
 
 
 =
 
 
 
 

Fig. 2. Adding One Row to Example in Fig. 1.

334 JIHUN JUNG et al : EFFICIENT USE OF UNUSED SPARE COLUMNS FOR REDUCING MEMORY MISCORRECTIONS

 (8)

Step 1: Transform the output equations in matrix form.

O[0] = b[1]⊕ b[3]⊕ b[4]⊕ b[5]⊕ b[8]

O[1] = b[3]⊕ b[4]⊕ b[5]⊕ b[6]⊕ b[7]⊕ b[8]

O[2] = b[0]⊕ b[1]⊕ b[2]⊕ b[3]⊕ b[6]⊕ b[7]⊕ b[8]

O[3] = b[0]⊕ b[1]⊕ b[2]⊕ b[6]

O[4] = b[0]⊕ b[4]⊕ b[7]

O[5] = b[2]⊕ b[5]⊕ b[8] (9)

These output equations are transformed as equation

matrix shown in Table 1.

Table 1. Equation Matrix

 b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8]

D0,0 0 1 0 1 1 1 0 0 1

D0,1 0 0 0 1 1 1 1 1 1

D0,2 1 1 1 1 0 0 1 1 1

D0,3 1 1 1 0 0 0 1 0 0

D0,4 1 0 0 0 1 0 0 1 0

D0,5 0 0 1 0 0 1 0 0 1

Step 2: Compute the similarity matrix, take each row and

check degree of similarity between other rows. For

example, the 1st row is taken and similarity between the

1st row and the 2nd row is b[3]⊕ b[4]⊕ b[5]⊕ b[8].

Similarly, check similarity between the 1st and other

rows. The similarities we get between 1st and other rows

are

 b[3]⊕ b[4]⊕ b[5]⊕ b[8]

 b[1]⊕ b[3]⊕ b[8]

 b[1]

 b[4]

 b[5]⊕ b[8] (10)

Step 3: Repeat Step 2 for D0,1, D0,2, D0,3, D0,4 and D0,5

and map all these similarities into a matrix form, called a

similarity matrix as shown in Table 2.

Table 2. Similarity Matrix

Step 4: Optimizes the similarity matrix.

Step 4-1: Sort the similarity matrix in ascending order

based upon the number of 1s in each row.

Step 4-2: Delete duplicate rows and rows containing less

than two 1’s. This is depicted in Table 3.

Similarity b[0] b[1] b[2] b[3] b[4] b[5] b[3] b[4] b[5]

D0,0 & D0,1 0 0 0 1 1 1 0 0 1

D0,0 & D0,2 0 1 0 1 0 0 0 0 1

D0,0 & D0,3 0 1 0 0 0 0 0 0 0

D0,0 & D0,4 0 0 0 0 1 0 0 0 0

D0,0 & D0,5 0 0 0 0 0 1 0 0 1

D0,1 & D0,2 0 0 0 1 0 0 1 1 1

D0,1 & D0,3 0 0 0 0 0 0 1 0 0

D0,1 & D0,4 0 0 0 0 1 0 0 1 0

D0,1 & D0,5 0 0 0 0 0 1 0 0 1

D0,2 & D0,3 1 1 1 0 0 0 1 0 0

D0,2 & D0,4 1 0 0 0 0 0 0 1 0

D0,2 & D0,5 0 0 1 0 0 0 0 0 1

D0,3 & D0,4 1 0 0 0 0 0 0 0 0

D0,3 & D0,5 0 0 1 0 0 0 0 0 0

D0,4 & D0,5 0 0 0 0 0 0 0 0 0

Fig. 3. Algorithm to find shared logics.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.3, SEPTEMBER, 2012 335

Table 3. Optimized Similarity Matrix

 b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8]

D1,0 0 0 0 0 0 1 0 0 1

D1,1 0 0 0 0 1 0 0 1 0

D1,2 0 0 0 1 0 0 1 1 1

D1,3 0 0 0 1 1 1 0 0 1

D1,4 0 0 1 0 0 0 0 0 1

D1,5 0 1 0 1 0 0 0 0 1

D1,6 1 0 0 0 0 0 0 1 0

D1,7 1 1 1 0 0 0 1 0 0

Step 5: After replacing equations by optimized variables,

we get four equations for D0,0. We may represent D0,0 by

using any one of these four equations. D0,1, D0,2, D0,3, D0,4

and D0,5 can be obtained using the same procedure as that

of D0,0.

In Step 5 we further check the size of the optimized

similarity matrix rows that we obtained. If the number of

optimized rows is not 0 or 1 then the process from Step 2

to Step 5 is repeated again on the optimized similarity

matrix to further optimize the matrix.

Step 6: We get the optimized set of output equations.

 O[0] = D1,5⊕ b[3]

 O[1] = D1,7

 O[2] = D1,3

 O[3] = D1,5⊕ b[2]

 O[4] = D1,6⊕ b[3]

 O[5] = D1,7⊕ b[2] (11)

Compared with the output equations in Step 1, it can

be observed the XOR gates are considerably reduced. In

building expanded H-matrix utilizing spare columns

which are left after production test, the logic minimi-

zation technique described in this section will be

extensively applied.

2. Check Bit Addition Method

The space of H-matrices that provide SEC-DED

capability is very large. As the number of message bits

gets larger, an exhaustive search may no longer be

possible. Hence it becomes important to derive a method

that efficiently fills the extra rows of the H-matrix in a

tractable amount of time. To narrow down the selection

criteria, we add extra rows on the basis of similarity

between the pre-determined rows of the H-matrix.

Moreover, the H-matrix must satisfy the following

conditions;

1. There are no all 0 columns.

2. Every column is distinct.

3. The total number of 1’s in the H-matrix should be a

minimum.

4. The number of 1’s in each row of the H-matrix is

equal or as close as possible to the average number

(total number of 1’s in H-matrix divided by the

number of rows).

5. All the 1’s in the extra row depict similarity with the

1’s in the pre-existed rows.

Condition 1 ensures that no single bit error case

matches the error free case ensuring non-zero error

syndrome. Condition 2 ensures that the syndromes of all

single bit errors are unique. Every single error syndrome

matches one of the columns of the H-matrix. Since all the

columns of the H-matrix are distinct, single bit errors are

uniquely identified and hence corrected. Condition 2 also

ensures that double bit errors are detected.

Conditions 1, 2 and 3 collectively ensure the H-matrix

that is selected should be such that if no spare columns

are available and no extra row is added, it still retains the

SEC-DED property.

Conditions 3 and 4 ensure that the code requires less

hardware for implementation. Thus, it guarantees lower

cost and better reliability. Furthermore, a balanced

number of 1’s in each row of the H-matrix minimizes the

delay of the H-matrix (the delay is constrained by the

maximum weight row).

As the number of message bits gets larger, however,

then an exhaustive search to find the best combination of

1’s and 0’s for the extra row is no longer possible.

Condition 5 ensures that the countable number of

combinations, to develop an extra row, on the basis of

similarity of logic between the pre-existed rows are

searched. The MP is computed, and the combination that

minimizes the MP is then selected for the extra row.

We know that each row in the H-matrix represents a

linear equation involving the bits of the message. Fig. 4

shows a 16 bit Hsiao code with an extra row to be added.

Our mission is to fill the spare row with a combination of

1’s and 0’s providing minimal area as well as MP in a

tractable time. If simply the MP is considered, the best

way is to exhaustibly calculate the MP for all possible 216

cases, however area optimization is not guaranteed. More

importantly the exhaustive calculation is not possible for

336 JIHUN JUNG et al : EFFICIENT USE OF UNUSED SPARE COLUMNS FOR REDUCING MEMORY MISCORRECTIONS

the message whose length is like 64.

In this paper we try to find the similarity between the

positions of 1’s within the rows of the H-matrix, which

can provide maximal logic sharing in implementing H-

matrix linear equations. In Fig. 4, by keeping the

similarity of logic between the rows of H-matrix in mind,

the spare row is to be filled with chunk of 1’s and 0’s

which gives the least MP. An example is depicted to

show how the extra row on the basis of similarity of logic

is achieved satisfying condition 5.

We highlight the similarity of logic in terms of 1’s

between the rows of the H-matrix. We then number these

highlighted similarities from a to e, in this case, to find

the best combination for the extra row. Each number

depicts a chunk of three 1’s or 0’s in this example. Now

we check all the 25 combinations to find the best

combination that produces the minimum MP, instead of

216 for exhaustive search. Similarly same procedure can

be followed to fill other spare row if available. The

proposed method plays a critical role in managing the

calculation time while minimizing the area and

miscorrection ratio when message bits get larger or there

is more number of extra rows to be added to the H-matrix.

3. Local Augmentation of Miscorrection Probability

So far spare rows have been filled with chunk of 1’s

and 0’s in a tractable time to minimize the area overhead

while providing a reduced MP. Since all the solution

space is not exhaustively searched, the minimization of

the MP is not guaranteed, thus a local augmentation (LA)

algorithm is proposed. For an assignment to a spare row,

the bits located between 1’s and 0’s chunks are targeted

to be flipped for possibly augmented MP while maxi-

mally preserving the area optimization.

The MP relies on the structure of the H-matrix, but is

independent of the sequence of each column. In other

words, the MP is not changed by rearranging the

columns. Therefore two important properties not

requiring expensive calculation time can be observed in

H-matrix which does not change the MP.

1. The sequence of chunks of columns can be changed

2. The sequence of columns in each chunk can also be

changed.

Starting from the current local optimal assignment on

extra rows, we try to further augment the MP by locally

rearranging the chunks and columns according to the

above properties. In Fig. 4, it can be observed that the

neighboring two columns between chunks (b,c), (c,d),

and (f,e) include only one (11) cluster, and (a,b), (d,f)

include two (11) clusters. In Fig. 5 obtained by

rearranging the chunks of columns, it can be seen that all

neighbors of (a,b), (b,e), (e,d), (d,c), and (c,f) include two

(11) clusters. Since both H-matrices in Fig. 4 and Fig. 5

are isomorphic, they require the same circuit area and

result in the same MP. Instead of assigning all the a-f

chunks as 1s or 0s, the constraint is relaxed such that the

neighboring two cells are allowed to be (11) or (00) for

possible improvement on the MP with the hope that the

area is not at least increased further. For example chunks

a and b which were assigned as (000/000) are assigned as

(00/11/00). Section IV shows the experimental results

with significant improvement.

4. Spare Memory Architecture

The use of a large number of MUXes at the input and

output of the memory may be a burden in real implemen-

tation [9]. To enhance the ECC, we implement the

Fig. 5. Hsiao Matrix after rearranging.

Fig. 4. Hsiao Matrix with a Spare Row.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.3, SEPTEMBER, 2012 337

additional check bits using a fuse technology by which

the spare cells are reconfigured through BISR during the

production test stage.

The block diagram of the proposed spare memory

architecture is shown in Fig. 6. Block A in Fig. 6 consists

of the fuse architecture used to improve the performance

of the whole architecture. The internal architecture of the

block A is shown in Fig. 7 and Fig. 8 as described in the

patents [12, 13]. If the flag fuse in Fig. 8 is burned, it

suggests that the spare is used for repair. Whereas, if the

fuse is intact and disables the EN signal then the spare

can be used to store the check bit. The output EN signals

from the block A are used as the control signal for the

MUXes placed between the memory and check bit

generator.

The control signals for the MUXes will be ‘1’ if the

spare is used for repair or if the spare column itself has a

defect. If this control signal is a ‘0’, then the spare is

available for storing the extra check bit. If the spare is

not used for repair, then the extra check bit generated by

the check bit generator is stored in the spare column,

otherwise, it is simply ignored.

In the proposed architecture it is made certain that the

spare column associated with the highest check bit is used first for repair. If, for example, there are three spare

columns then the third spare column should be used for

repair before the second and first. In this way the

remaining spare columns that are left unused may be

used to store check bits. Different from the architecture

[9] using MUXes for all outputs as well as all inputs of

the memory block, which are used to redirect the data

paths for faulty columns to repair columns, only the

inputs for the spare columns are connected to MUXes in

our technique. In production testing the faulty columns

are replaced by spare columns using laser fuses in wafer

level or electrical fuses in package level [13]. In memory

read and write operations, the address is compared with

the fused repair addresses of the Fig. 8, and if matched,

then the corresponding spare column is chosen for the

operation instead of faulty data column. Therefore if our

technique is implemented for the memory using fuse

based repair [12, 13], as shown in Fig. 6 only inputs for

spares need to be attached with MUXes. The data outputs

of the memory which are internally redirected by spare

columns drive “n” read values in order externally, hence

the data inputs of the syndrome generator are directly

connected to the outputs. And the spare columns of the

Fig. 6. Block diagram of proposed spare memory architecture.

Fig. 7. Fuse architecture.

FUSE BOX

FUSE BOX

FUSE BOX

FUSE BOX

Address
Redundancy Signal

Generation

Redundancy Signal

Generation

Redundancy Signal

Generation

Redundancy Signal

Generation

Normal Word Line

Interruption

Word

Line

Control

Block

Redundancy

WL

Normal

WL

BLOCK A

Fig. 8. Internal architecture of the block A.

338 JIHUN JUNG et al : EFFICIENT USE OF UNUSED SPARE COLUMNS FOR REDUCING MEMORY MISCORRECTIONS

memory, which are not externally available but internally

available, are also directly connected to the syndrome

generator which is designed to take variable number of

check bits.

Our architecture clearly suggests a significant reduc-

tion in the area overhead caused by the use of large

number of MUXes in the implementation to the fuse

based memories.

IV. EXPERIMENTAL RESULTS

For our experiment, we selected common data sizes to

reflect the performance of the proposed methods. For the

proposed schemes, the results are shown for the case

where one, two, and three spare columns are available for

repair. At first H-matrices with one spare, two spares,

and three spares respectively are generated according to

the proposed check bit addition method. Then, the

proposed methods are applied to the newly created H-

matrices, producing an optimized set of equations. Which

are then implemented with Verilog HDL.

Table 4 shows the best results of [9]. Table 5 shows

the results using the CBA proposed. Table 6 shows the

results by applying LA and CBA. In our proposed

method, LA uses number of chunks to find out

combinations (timing required) required to compute the

output. To compute combinations, we used chunks in

three ways, i.e. by converting them to all 0’s, all 1’s and

without any change. For LA, if number of chunks is n,

then the total combinations required to compute output

will be 3n, which is approximately equal to 21.6*n.

In our proposed method, combinations are the sum of

combinations for LA and CBA, but the combinations for

CBA are so small as compared to combinations for LA,

that it is negligible. In Table 6, for 64 bit data number of

chunks “n” is 15, which implies that combinations

required to compute output will be equal to 216+315,

which is approximately equal to 216+224, but the

combinations for CBA i.e. 216 is so small as compared to

combinations for LA i.e. 224, that it can be neglected.

The results of Table 6 are compared with Table 4 and

are displayed in Table 7. For each code, the number of 2-

input XOR gates and the triple bit error MP is shown

along with the combinations required to establish a

particular extra row. As can be seen, not only the number

of XOR gates but also the number of combinations to

formulate the best combination of row is reduced

considerably. It is worth noticing that the number of

spares as well as the size of the matrices enables the code

to detect nearly all the triple errors thus reducing the MP

to the minimum.

Table 7 compares the area, timing complexity, and MP

of Table 4 with Table 6 for 64 bit data. It can be seen that

the area overhead as the number of XOR gates are

significantly improved for all the cases. Our CBA

followed by the logic sharing contributes to reduce the

area as well as the searching combinations but some

increase in MP as shown in Table 5. Additionally by

applying the LA, which aims to minimize MP with minor

sacrifices on searching combinations and area, spares can

be added efficiently as shown in Table 7. The timing

complexity which depends on the number of combi-

nations to check the MP becomes drastically reduced as

224 in our approach than the 264 which is almost

impossible with current computing systems. Also it can

Table 4. Results of triple-Error Miscorrection Probability for

Previous Research [9]

1 Spare 2 Spares 3 Spares

Data

bits # of
XORs

Combi-
nations

(Timing

required)

MP
(%)

of
XORs

Combi-
nations

(Timing

required)

MP
(%)

of
XORs

Combi-
nations

(Timing

required)

MP
(%)

16 58 216 25.3 70 216*2 8.7 76 216*3 2.3

32 118 232 25.8 129 232*2 11.3 138 232*3 5.1

64 265 264 26.0 308 264*2 14.1 351 264*3 11.0

Table 5. Results of triple-Error Miscorrection Probability using

Check Bit Addition

1 Spare 2 Spares 3 Spares

Data

bits # of

XORs

Combi-

nations

(Timing
required)

MP

(%)

of

XORs

Combi-

nations

(Timing
required)

MP

(%)

of

XORs

Combi-

nations

(Timing
required)

MP

(%)

16 54 25 27 60 25*2 11 66 25*3 5.5

32 112 210 23.8 127 210*2 10.7 138 210*3 4.7

64 212 216 26.5 246 216*2 12.6 274 216*3 6.3

Table 6. Results of triple-Error Miscorrection Probability using

Proposed Method

1 Spare 2 Spares 3 Spares

Data

bits # of

XORs

Combi-

nations

(Timing
required)

MP

(%)

of

XORs

Combi-

nations

(Timing
required)

MP

(%)

of

XORs

Combi-

nations

(Timing
required)

MP

(%)

16 41 < 29.6 26.9 43 < 29.6 * 2 10.0 45 < 29.6 * 3 4.7

32 84 < 216 23.8 88 < 216 * 2 10.3 94 < 216 * 3 4.5

64 171 < 224 26.0 179 < 224 * 2 12.2 187 < 224 * 3 5.7

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.3, SEPTEMBER, 2012 339

be seen that the miscorrection ratios are improved up to

5.3% in our approach. Note that the efficiency of the

proposed methods is heavily dependent upon the

selection of the H-matrix type.

Non-adjacent double-error (NADE) miscorrection

ratios and areas are analyzed in Table 8. Similar as triple

error cases, less MPs are achieved for the NADE with

reduced area overheads by applying our technique. Since

our approach does not exhaustively search all the

combinations, it can be noted that the MPs for 16 bits

data are slightly increased than [9] as in Table 4, Table 5,

Table 6, and Table 8.

V. CONCLUSIONS

This paper proposes a method to efficiently fill the

extra rows of the H-matrix. Especially for the increased

number of spare rows and data size, the results depict a

significant reduction in calculation time and area

overhead. Instead of using MUXes for all outputs as well

as all inputs of the memory block, only the inputs for the

spare columns are connected to MUXes in the

implementation to the fuse based memory. Optimization

of the whole H-matrix is accomplished through logic

sharing resulting in the reduced area overhead while

keeping the miscorrection ratio relatively low.

ACKNOWLEDGMENTS

This research was supported in part by the National

Research Foundation of Korea (NRF) grant (MEST) (No.

2010-0026822).

REFERENCES

[1] U. Schlichtmann, “Tomorrows high-quality SoCs

require high-quality embedded memories today”. In

International Symposium on Quality Electronic

Design, Mar., 2002.

[2] J. I. Park, et al, “High-Speed Low-Complexity

Reed-Solomon Decoder using Pipelined Berlekamp-

Massey Algorithm and Its Folded Architecture,”

Journal of Semiconductor Technology and Science,

pp. 193-202, Vol. 10, No. 3, Sep., 2010.

[3] R. Hamming, “Error Correcting and Error Detecting

Codes”, Bell Sys. Tech. Journal, Vol. 29, pp.147-

160, Apr., 1950.

[4] M. Y. Hsiao, “A Class of Optimal Minimum

Oddweight-column SEC-DED codes”, IBM Journal

of Research and Development, Vol. 14, pp. 395-

401, 1970.

[5] M. Richter, et al, “New Linear SEC-DED Codes

with Reduced Triple Error Miscorrection Proba-

bility,” Proc. of International On-Line Testing

Symposium, pp. 37-42, 2008.

[6] I. Kim, et al, “Built In Self Repair for Embedded

High Density SRAM,” Proc. of International Test

Conference, pp. 1112-1119, 1998.

[7] Y. Zorian, et al, “Embedded-Memory Test and

Repair: Infrastructure IP for SOC Yield,” IEEE

Design & Test of Computers, Vol. 20, Issue 3, pp.

58-66, May 2003.

[8] W. Jeong, et al, “An Advanced BIRA for

Memories with and Optimal Repair Rate and Fast

Analysis Speed by Using a Branch Analyzer,”

IEEE Transactions on Computer Aided-Design,

Vol. 29, No. 12, pp. 2014-2026, Dec. 2010

[9] R. Datta, et al, “Exploiting Unused Spare Columns

to Improve Memory ECC,” VLSI Test Symposium,

27th IEEE, pp. 47-52, 2009.

[10] W. Peterson, et al, Error Correcting Codes, MIT

Press, Cambridge, MA, 1972.

[11] D. K. Pradhan, Fault-Tolerant Computer System

Table 7. Improvement of Area, Timing Complexity and

Miscorrection Ratio for 64 data bits

1 Spare 2 Spares 3 Spares

64

Data bits # of

XORs

Combi-

nations
(Timing

required)

MP

(%)

of

XORs

Combi-

nations
(Timing

required)

MP

(%)

of

XORs

Combi-

nations
(Timing

required)

MP

(%)

Original

Method[9] 265 264 26.0 308 264*2 14.1 351 264*3 11.0

Proposed

Method
171 < 224 26.0 179 < 224 * 2 12.2 187 < 224 * 3 5.7

Improved 35.5 240 times 0 41.9 240 times 1.9 46.7 240 times 5.3

Table 8. Comparison of Non-Adjacent Double-Error

Miscorrection Probability with Previous Research [9]

Previous Research [9] Proposed Method

1 Spare 2 Spares 3 Spares 1 Spare 2 Spares 3 Spares Data

bits
of

XORs

MP

(%)

of

XORs

MP

(%)

of

XORs

MP

(%)

of

XORs

MP

(%)

of

XORs

MP

(%)

of

XORs

MP

(%)

16 57 18.2 66 3.2 70 0.0 46 20.8 50 7.9 56 2.2

32 117 27.4 130 13.8 140 8.8 84 24.0 91 10.4 100 4.0

64 263 26.9 306 17.8 353 14.6 188 24.7 201 11.9 224 5.5

340 JIHUN JUNG et al : EFFICIENT USE OF UNUSED SPARE COLUMNS FOR REDUCING MEMORY MISCORRECTIONS

Design, Prentice Hall, Upper Saddle River, NJ,

1996.

[12] Y. K. Kim, et al, “Redundancy fuse control circuit

and semiconductor memory device having the same

and redundancy process method,” U. S. Patent

7,184,331, Oct. 27, 2005.

[13] S. H. Kang, “Redundancy circuit in semiconductor

memory device,” U.S. Patent 7,257,037, Nov. 2,

2006.

Jihun Jung received the B.S. in

computer science and engineering

from Hanyang University, Gyunggi -

do, Korea in 2010. Since 2010 he has

been working toward the M.S. and

Ph.D. degree in computer science and

engineering at the same University.

His interests include Design for Testability, Memory

Test, Memory ECC, 3D IC Test, and NoC Design.

Umair Ishaq received the M.S. in

computer science and engineering

from Hanyang University, Gyunggi -

do, Korea in 2011. Since 2011 he has

been working for Horizon Tech.,

Lahore, Pakistan. His interests include

Design for Testability, Memory Test,

and Memory ECC.

Jaehoon Song received the B.S.,

M.S., and Ph.D. degrees in computer

science and engineering from Hanyang

University, Gyunggi-do, Korea in

2000, 2002, and 2009 respectively.

Since 2009 he has been working for

TranSono Inc., Seoul, Korea. In 2003,

he worked for the System-on-a-Chip (SoC) Design

Center at Seoul National University in Korea, where he

was on the Development Staff in charge of platform-

based design. His main research interests are in Design-

for-Testability (DfT), signal integrity, and low-power

design. Mr. Song is a member of the Institute of

Electronics Engineers of Korea and the Korea Infor-

mation Science Society. He received the Best Paper

Award from the Korea Test Association at the Korea

Test Conference in 2007.

Sungju Park received the B.S.

degree in electronics from Hanyang

University, Korea, in 1983 and the

M.S and Ph.D. degrees in electrical

and computer engineering from the

University of Massachusetts at

Amherst in 1988 and 1992, respec-

tively. From 1983 to 1986, he was with the Gold Star

Company in Korea. From 1992 to 1995, he worked for

IBM Microelectronics, Endicott, NY as a Development

Staff in charge of boundary scan and LSSD scan design.

Since then, he has been a Professor in the department of

computer science and engineering in Hanyang University,

Korea. His research interests lie in the area of VLSI

testing including scan design, built-in self test, test

pattern generation, fault simulation, and synthesis of test.

Additional interests include graph theory and design

verification. Prof. Park is a member of IEEE, the Institute

of Electronics Engineers of Korea, the Korea Information

Science Society, and the Institute of Electronics and

Information and Communication Engineers.

