DOI QR코드

DOI QR Code

Effect of Alcohols on the Dry Etching of Sacrificial SiO2 in Supercritical CO2

초임계 이산화탄소를 이용한 웨이퍼의 건식 식각에서 알콜 첨가제의 효과

  • Kim, Do-Hoon (Department of Image Science & Engineering, Pukyong National University) ;
  • Jang, Myoung-Jae (Department of Image Science & Engineering, Pukyong National University) ;
  • Lim, Kwon-Taek (Department of Image Science & Engineering, Pukyong National University)
  • 김도훈 (부경대학교 이미지시스템 공학과) ;
  • 장명재 (부경대학교 이미지시스템 공학과) ;
  • 임권택 (부경대학교 이미지시스템 공학과)
  • Received : 2012.07.23
  • Accepted : 2012.09.12
  • Published : 2012.09.30

Abstract

The dry etching of sacrificial $SiO_2$ was performed in supercritical carbon dioxide. The etching of boron phosphor silica glass (BPSG), tetraethyl orthosilicate (TEOS), thermal $SiO_2$, and Si-nitride (SiN) was investigated by using a two chamber system with HF/py etchant and alcohol additives. The etch rate of sacrificial $SiO_2$ increased upon the addition of methanol. The etch selectivity of BPSG with respect to SiN was highest with IPA although the highest etch rate was resulted from methanol except BPSG. The etch rate increased with the temperature in HF/py/MeOH system. Especially the increase of the etch rate was much higher for BPSG with an increase in the reaction temperature. The etch residue was not reduced apparently upon the addition of alcohol cosolvents to HF/py. While the etch rate in HF/$H_2O$ was higher than HF/py/alcohol system, the rate decreased with the addition of alcohols to HF/$H_2O$. The cantilever beam structure of high aspect ratios was released by the dry ething in supercritical carbon dioxide without damage.

초임계 이산화탄소를 이용하여 희생 $SiO_2$층에 대한 건식 식각 실험을 진행하였다. HF/pyridine (HF/py) 식각액과 알콜 첨가제를 사용하여 이중 챔버 시스템 방식으로 boron phosphor silica glass (BPSG), tetraethyl orthosilicate (TEOS), thermal $SiO_2$와 Si-nitride (SiN)의 박막 층에 대한 식각 성능을 조사하였다. 메탄올의 첨가에 의하여 실리카 희생막에 대한 HF/py의 식각률이 높아지는 것을 확인할 수 있었다. BPSG를 제외하고는 메탄올이 가장 높은 식각률을 보여줬지만, BPSG의 SiN에 대한 식각 선택비는 이소프로판올이 가장 높았다. HF/py/MeOH 계의 건식 식각반응에서 반응 온도에 따라서 박막별 식각률이 증가하였다. 특히 반응 온도 증가에 따라 BPSG의 식각 속도의 증가폭이 매우 높게 나타났다. HF/py에 알콜 공용매를 첨가하여도 식각 부산물 감소에는 크게 효과가 없었다. HF/$H_2O$의 식각률이 HF/py/alcohol 보다 높게 나타났지만 HF/$H_2O$에 알콜 공용매를 첨가하였을 때는 오히려 식각률이 감소되었다. 캔틸레버 빔 구조를 초임계 이산화탄소 건식 식각으로 제조하여 높은 종횡비의 패턴구조물을 손상 없이 성공적으로 식각할 수 있었다.

Keywords

References

  1. De Moor, P., Sedky, S., and VanHoof, C., "Linear Array of Uncooled Poly SiGe Microbolometers for IR Detection," Proc. SPIE., 4028, 27-34 (2000).
  2. Monk, D. J., Soane, D. S., and Howe, R. T., "Sacrificial Layer $SiO_{2}$ Wet Etching for Micro Machining Applications," Transducer., 647-650 (1991).
  3. Judge, J. S., "A Study of the Dissolution of $SiO_{2}$ in Acidic Fluoride Solutions," J. Electrochem. Soc., 118, 1772-1775 (1971). https://doi.org/10.1149/1.2407835
  4. Monk, D. J., and Soane, D. S., "Determination of the Etching Kinetics for the Hydrofluoric Acid/Silicon Dioxide System," J. Electrochem. Soc., 140, 2339-2346 (1993). https://doi.org/10.1149/1.2220820
  5. Jafri, I., Busta, H., and Walsh, S., "Critical Point Drying and Cleaning for MEMS Technology," Proc.-SPIE Int. Soc. Opt. Eng., 3880, 51-58 (1999).
  6. Watanabe, H., Ohnishi, S., Honma, I., Kitajima, H., and Ono, H. J., "Selective Etching of Phosphosilicate Glass with Low Pressure Vapor HF," Electrochem. Soc., 142, 237-243 (1995). https://doi.org/10.1149/1.2043880
  7. Saga, K., and Hattori, T., "Wafer Cleaning Using Supercritical $CO_{2}$ in Semiconductor and Nanoelectronic Device Fabrication," Solid State Phenom., 134, 97-103 (2008). https://doi.org/10.4028/www.scientific.net/SSP.134.97
  8. Saga, K., Kuniyasu, H., Hattori T., Saito, K., Mizobata, I., Iwata, T., and Hirae, S., "Effect of Wafer Rotation on Photoresist Stripping in Supercritical $CO_{2}$," Solid State Phenom., 134, 355-358 (2008). https://doi.org/10.4028/www.scientific.net/SSP.134.355
  9. Keagy, J. A., Zhang, X., Johnston, K. P., Busch, E., Weber, F., Wolf, P. J., and Rhoad, T., "Cleaning of Patterned Porous Low-k Dielectrics with Water, Carbon Dioxide and Ambidextrous Surfactants," J. Supercrit. Fluids, 39, 277-285 (2006). https://doi.org/10.1016/j.supflu.2006.04.009
  10. Bessel, C. A., Denison, G. M., DeSimone, J. M., DeYoung, J., Gross, S., Schauer, C. K., and Visintin, P. M., "Etchant Solutions for the Removal of Cu(0) in a Supercritical $CO_{2}$-based "Dry" Chemical Mechanical Planarization Process for Device Fabrication," J. Am. Chem. Soc., 125, 4980-4981 (2003). https://doi.org/10.1021/ja034091m
  11. Hoggan, E. N., Wang, K., Flowers, D., DeSimone, J. M., and Carbonell, R. G., "Dry Lithography Using Liquid and Supercritical Carbon Dioxide based Chemistries and Processes," IEEE Trans. Semicond. Manuf., 17, 510-516 (2004). https://doi.org/10.1109/TSM.2004.837002
  12. Jones, C. A., Yang, D., Irene, E. A., Gross, S. M., Wagner, M., DeYoung, J., and DeSimone, J. M., "HF Etchant Solutions in Supercritical Carbon Dioxide for "Dry Etch Processing of Microelectronic Devices," Chem. Mater., 15, 2867-2869 (2003). https://doi.org/10.1021/cm034235w
  13. Malhouitre, S., Hoeymissen, J. V., Case, C., and Granger, P., "Etching of Thermal $SiO_{2}$ in Supercritical $CO_{2}$," ECS Transaction, 11, 71-78 (2007).
  14. Li, Y. X., Yang, D., Jones, C. A., DeSimone, J. M., and Irene, E. A., "Etching $SiO_{2}$ with HF/Pyridine-Supercritical Carbon Dioxide Solutions and Resultant Interfacial Electronic Properties," J. Vac. Sci. Technol., 25, 1139-1142 (2007). https://doi.org/10.1116/1.2743651
  15. Jung, J. M., Ganapathy, H. S., Yuvaraj, H., Johnston, K. P., and Lim, K. T., "Removal of HF/$CO_{2}$ Post-Etch Residues from Pattern Wafers using Water-in-Carbon Dioxide Microemulsions," Microelectron. Eng., 86, 165-170 (2009). https://doi.org/10.1016/j.mee.2008.09.006
  16. Jung, J. M., Yoon, E., Lim, E., Choi, B. C., Kim, S. Y., and Lim, K. T., "The Dry Etching of TEOS Oxide for Poly-Si Cantilevers in Supercritical $CO_{2}$," Microelectron. Eng., 88, 3448-3451 (2011). https://doi.org/10.1016/j.mee.2010.11.026
  17. Bae, J. H., Alam, M. Z., Jung, J. M. Gal, Y. S., Lee, H. Kim, H. G., and Lim, K. T., "Improved Etching Method for Microelectronic Devices with Supercritical Carbon Dioxide," Microelectron. Eng., 86, 128-131 (2009). https://doi.org/10.1016/j.mee.2008.10.003