DOI QR코드

DOI QR Code

2-Hexylthieno[3,2-b]thiophene-substituted Anthracene Derivatives for Organic Field Effect Transistors and Photovoltaic Cells

  • Jo, So-Young (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Hur, Jung-A (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Kim, Kyung-Hwan (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Lee, Tae-Wan (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Shin, Ji-Cheol (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Hwang, Kyung-Seok (Department of Polymer Science and Engineering, Center for Photofunctional Energy Materials, Dankook University) ;
  • Chin, Byung-Doo (Department of Polymer Science and Engineering, Center for Photofunctional Energy Materials, Dankook University) ;
  • Choi, Dong-Hoon (Department of Chemistry, Research Institute for Natural Sciences, Korea University)
  • Received : 2012.05.31
  • Accepted : 2012.06.27
  • Published : 2012.09.20

Abstract

Novel 2-hexylthieno[3,2-b]thiophene-containing conjugated molecules have been synthesized via a reduction reaction using tin chloride in an acidic medium. They exhibited good solubility in common organic solvents and good self-film and crystal-forming properties. The single-crystalline objects were fabricated by a solvent slow diffusion process and then were employed for fabricating field-effect transistors (FETs) along with thinfilm transistors (TFTs). TFTs made of 5 and 6 exhibited carrier mobility as high as 0.10-0.15 $cm^2V^{-1}s^{-1}$. The single-crystal-based FET made of 6 showed 0.70 $cm^2V^{-1}s^{-1}$ which was relatively higher than that of the 5-based FET (${\mu}=0.23cm^2V^{-1}s^{-1}$). In addition, we fabricated organic photovoltaic (OPV) cells with new 2-hexylthieno [3,2-b]thiophene-containing conjugated molecules and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester ($PC_{61}BM$) without thermal annealing. The ternary system for a bulk heterojunction (BHJ) OPV cell was elaborated using $PC_{61}BM$ and two p-type conjugated molecules such as 5 and 7 for modulating the molecular energy levels. As a result, the OPV cell containing 5, 7, and $PC_{61}BM$ had improved results with an open-circuit voltage of 0.90 V, a short-circuit current density of 2.83 $mA/cm^2$, and a fill factor of 0.31, offering an overall power conversion efficiency (PCE) of 0.78%, which was larger than those of the devices made of only molecule 5 (${\eta}$~0.67%) or 7 (${\eta}$~0.46%) with $PC_{61}BM$ under identical weight compositions.

Keywords

References

  1. Zhang, Y.; Petta, J. R.; Ambily, S.; Shen, Y.; Ralph, D. C.; Malliaras, G. G. Adv. Mater. 2010, 15, 1632.
  2. Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W. J. Appl. Phys. 2002, 92, 5259. https://doi.org/10.1063/1.1511826
  3. Jurchescu, O. D.; Baas, J.; Palstra, T. T. M. Appl. Phys. Lett. 2004, 84, 3061. https://doi.org/10.1063/1.1704874
  4. Zhang, L.; Tan, L.; Wang, Z.; Hu, W.; Zhu, D. Chem. Mater. 2009, 21, 1993. https://doi.org/10.1021/cm900369s
  5. Gao, P.; Beckmann, D.; Tsao, H. N.; Feng, X.; Enkelmann, V.; Baumgarten, M.; Pisula, W.; Müllen, K. Adv. Mater. 2009, 21, 213. https://doi.org/10.1002/adma.200802031
  6. Ha, J. S.; Kim, K. H.; Choi, D. H. J. Am. Chem. Soc. 2011, 133, 10364. https://doi.org/10.1021/ja203189h
  7. Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H.; Yui, T. J. Am. Chem. Soc. 2007, 129, 15732. https://doi.org/10.1021/ja074841i
  8. Park, S. K.; Jackson, T. N.; Anthony, J. E.; Mourey, D. A. Appl. Phys. Lett. 2007, 91, 063514. https://doi.org/10.1063/1.2768934
  9. Kim, H.-S.; Kim, Y.-H.; Kim, T.-H.; Noh, Y.-Y.; Pyo, S.; Yi, M. H.; Kim, D.-Y.; Kwon, S.-K. Chem. Mater. 2007, 19, 3561. https://doi.org/10.1021/cm070053g
  10. Fong, H. H.; Pozdin, V. A.; Amassian, A.; Malliaras, G. G.; Smilgies, D.-M.; He, M.; Gasper, S.; Zhang, F.; Sorensen, M. J. Am. Chem. Soc. 2008, 130, 13202. https://doi.org/10.1021/ja804872x
  11. Tang, M. L.; Reichardt, A. D.; Miyaki, N.; Stoltenberg, R. M.; Bao, Z. J. Am. Chem. Soc. 2008, 130, 6064. https://doi.org/10.1021/ja8005918
  12. Kang, S. J.; Bae, I.; Park, Y. J.; Park, T. H.; Sung, J.; Yoon, S. C.; Kim, K. H.; Choi, D. H.; Park, C. Adv. Funct. Mater. 2009, 19, 1609. https://doi.org/10.1002/adfm.200801097
  13. Li, H.; Valiyaveettil, S. Tetrahedron Lett. 2009, 50, 5311. https://doi.org/10.1016/j.tetlet.2009.06.119
  14. Wang, C.; Liu, Y.; Ji, Z.; Wang, E.; Li, R.; Jiang, H.; Tang, Q.; Li, H.; Hu, W. Chem. Mater. 2009, 21, 2840. https://doi.org/10.1021/cm900511g
  15. Hoang, M. H.; Cho, M. J.; Kim, K. H.; Lee, T. W.; Jin, J.-I.; Choi, D. H. Chem. Lett. 2010, 39, 396. https://doi.org/10.1246/cl.2010.396
  16. Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Müllen, K. Adv. Mater. 2005, 17, 684. https://doi.org/10.1002/adma.200401171
  17. Cho, M. Y.; Kim, S. J.; Han, Y. D.; Park, D. H.; Kim, K. H.; Choi, D. H.; Joo, J. Adv. Funct. Mater. 2008, 18, 2905. https://doi.org/10.1002/adfm.200800358
  18. Hur, J. A.; Bae, S. Y.; Kim, K. H.; Lee, T. W.; Cho, M. J.; Choi, D. H. Org. Lett. 2011, 13, 1948. https://doi.org/10.1021/ol200299s
  19. Silvestri, F.; Marrocchi, A.; Seri, M.; Kim, C.; Marks, T. J.; Facchetti, A.; Taticchi, A. J. Am. Chem. Soc. 2010, 132, 6108. https://doi.org/10.1021/ja910420t
  20. Zhang, M.; Wang, H.; Tang, C. W. Appl. Phys. Lett. 2010, 97, 143503. https://doi.org/10.1063/1.3491214
  21. Shang, H.; Fan, H.; Liu, Y.; Hu, W.; Li, Y.; Zhan, X. Adv. Mater. 2011, 23, 1554. https://doi.org/10.1002/adma.201004445
  22. Xin, H.; Kim, F. S.; Jenekhe, S. A. J. Am. Chem. Soc. 2008, 130, 5424. https://doi.org/10.1021/ja800411b
  23. Lee, U. R.; Lee, T. W.; Hoang, M. H.; Kang, N. S.; Yu, J. W.; Kim, K. H.; Kim, K.-G.; Lee, T. W.; Jin, J.-I.; Choi, D. H. Org. Electron. 2011, 12, 269. https://doi.org/10.1016/j.orgel.2010.11.021
  24. Liu, L.; Ho, C.-L.; Wong, W.-Y.; Cheung, K.-Y.; Fung, M.-K.; Lam, W.-T.; Djuriši , A. B.; Chan, W.-K. Adv. Funct. Mater. 2008, 18, 2824. https://doi.org/10.1002/adfm.200800439
  25. Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617. https://doi.org/10.1002/adfm.200500211
  26. Chung, D. S.; Park, J. W.; Kim, S.-O.; Heo, K.; Park, C. E.; Ree, M.; Kim, Y.-H.; Kwon, S.-K. Chem. Mater. 2009, 21, 5499. https://doi.org/10.1021/cm9025057
  27. Backer, S. A.; Sivula, K.; Kavulak, D. F.; Fréchet, J. M. J. Chem. Mater. 2007, 19, 2927. https://doi.org/10.1021/cm070893v
  28. Bae, S. Y.; Jung, K. H.; Hoang, M. H.; Kim, K. H.; Lee, T. W.; Cho, M. J.; Jin, J.-I.; Lee, D. H.; Chung, D. S.; Park, C. E.; Choi, D. H. Synth. Met. 2010, 160, 1022. https://doi.org/10.1016/j.synthmet.2010.02.020
  29. Jo, W. J.; Kim, K.-H.; No, H. C.; Shin, D.-Y.; Oh, S.-J.; Son, J.-H.; Kim, Y.-H.; Cho, Y.-K.; Zhao, Q.-H.; Lee, K.-H.; Oh, H.-Y.; Kwon, S.-K. Synth. Met. 2009, 159, 1359. https://doi.org/10.1016/j.synthmet.2009.03.007
  30. Zhang, H. C.; Guo, E. Q.; Zhang, Y. L.; Ren, P. H.; Yang, W. J. Chem. Mater. 2009, 21, 5125. https://doi.org/10.1021/cm9020707
  31. Jo, S.; Shin, J.; Bae, S. Y.; Kim, K. H.; Lee, T. W.; Son, S.; Kim, K.; Choi, D. H. Synth. Met. 2011, 161, 833. https://doi.org/10.1016/j.synthmet.2011.02.009
  32. Kim, K. H.; Bae, S. Y.; Kim, Y. S.; Hur, J. A.; Hoang, M. H.; Lee, T. W.; Cho, M. J.; Kim, Y.; Kim, M.; Jin, J.-I.; Kim, S.-J.; Lee, K.; Lee, S. J.; Choi, D. H. Adv. Mater. 2011, 23, 3095. https://doi.org/10.1002/adma.201100944
  33. Jung, K. H.; Bae, S. Y.; Kim, K. H.; Cho, M. J.; Lee, K.; Kim, Z. H.; Choi, D. H. Lee, D. H.; Chung, D. S.; Park, C. E. Chem. Commun. 2009, 35, 5290.
  34. Guo, X.; Kim, F. S.; Jenekhe, S. A.; Watson, M. D. J. Am. Chem. Soc. 2009, 131, 7206. https://doi.org/10.1021/ja810050y
  35. McCulloch, I.; Heeney, M.; Chabinyc, M. L.; DeLongchamp, D.; Kline, R. J.; Colle, M.; Duffy, W.; Fischer, D.; Gundlach, D.; Hamadani, B.; Hamilton, R.; Richter, L.; Salleo, A.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Zhang, W. Adv. Mater. 2009, 21, 1091. https://doi.org/10.1002/adma.200801650
  36. Chabinyc, M. L.; Toney, M. F.; Kline, R. S.; McCulloch, I.; Heeney, M. J. Am. Chem. Soc. 2007, 129, 3226. https://doi.org/10.1021/ja0670714
  37. Umeda, T.; Tokito, S.; Kumaki, D. J. Appl. Phys. 2007, 101, 054517. https://doi.org/10.1063/1.2711780

Cited by

  1. ]fluorene-6,12-dione Donor–Acceptor–Donor Triads vol.79, pp.22, 2014, https://doi.org/10.1021/jo502009p
  2. TPD- and DPP-based Small Molecule Donors Containing Pyridine End Groups for Organic Photovoltaic Cells vol.37, pp.2, 2016, https://doi.org/10.1002/bkcs.10647
  3. Anthracene-based semiconductors for organic field-effect transistors vol.6, pp.28, 2018, https://doi.org/10.1039/C8TC01865K
  4. Polycyclic Aromatic Hydrocarbons Bearing Polyethynyl Bridges: Synthesis, Photophysical Properties, and their Applications vol.10, pp.7, 2021, https://doi.org/10.1002/ajoc.202100134