DOI QR코드

DOI QR Code

Theoretical Analysis on Molecular Magnetic Properties of N-Confused Porphyrins and Its Derivatives

  • Wei, Wei (State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University) ;
  • Bai, Fu-Quan (State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University) ;
  • Xia, Bao-Hui (State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University) ;
  • Zhang, Hong-Xing (State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University)
  • 투고 : 2011.12.23
  • 심사 : 2012.06.08
  • 발행 : 2012.09.20

초록

We have theoretically investigated the magnetic properties of N-confused porphyrin (NCP), tetraphenyl-N-confused porphyrin (TPNCP) and their substituted derivatives with O, S and Se heteroatoms (2ONCP, 2STPNCP, 2SeNCP, 2OTPNCP, etc.) by using DFT method. In the minimum energy structures of the 2OTPNCP, the two couples opposite phenyl substitutes are staggered. In the case of TPNCP, 2STPNCP and 2SeTPNCP, two phenyls being respectively close to or opposite to N-confused pyrrole are found to be pointed the same direction, whilst others are in the opposite direction. Based on the equilibrium structures, the $^1H$ chemical shifts and nucleus-independent chemical shifts (NICS) are calculated in this paper. The ${\pi}$ current density being induced by the tridimensional perpendicular magnetic field transmits the inner section of the pyrrole segments for NCP and TPNCP. As for their substituted derivatives with O, S and Se atoms, the current path passes through the outer section of the two heterorings. The NICS values at the ring critical points of the heterorings are much lower (in absolute value) than those of which is at the center of an isolated pyrrole molecule. The $^1H$ NMR for ${\beta}H$ atoms of the heterorings decreases from O, S to with Se.

키워드

참고문헌

  1. Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. Aromaticity and Antiaromaticity; John Wiley & Sons: New York, 1994.
  2. Schleyer, P. v. R.; Jiao, H. Pure. Appl. Chem. 1996, 68, 209. https://doi.org/10.1351/pac199668020209
  3. Lloyd, D. J. Chem. Inf. Comput. Sci. 1996, 36, 442. https://doi.org/10.1021/ci950158g
  4. Krygowski, T. M.; Crya ski, M. K.; Czarnocki, Z.; Häfelinger, G.; Katritzky, A. R. Tetrahedron 2000, 56, 1783. https://doi.org/10.1016/S0040-4020(99)00979-5
  5. Schleyer, P. v. R. Chem. Rev. 2001, 101, 1115. https://doi.org/10.1021/cr0103221
  6. Faraday, M. Philos. Trans. R. Soc. 1825, 115, 440. https://doi.org/10.1098/rstl.1825.0022
  7. Garratt, P. J. Aromaticity; Wiley: New York, 1986
  8. Jerry, M. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 3rd ed.; Wiley: New York, 1985.
  9. Heilbronner, E. Tetrahedron Lett. 1964, 5, 1923. https://doi.org/10.1016/S0040-4039(01)89474-0
  10. Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H. J.; Hommes, N. J. R. v. E. J. Am. Chem. Soc. 1996, 118, 6317. https://doi.org/10.1021/ja960582d
  11. Turker, L.; Gumu , S.; Atalar, T. Bull. Korean Chem. Soc. 2009, 30, 2333.
  12. Jeon, K. O.; Jun, J. H.; Yu, J. S.; Lee, C. K. Bull. Korean Chem. Soc. 2004, 25, 1840. https://doi.org/10.5012/bkcs.2004.25.12.1840
  13. Hong, S. Y.; Kim, S. C. Bull. Korean Chem. Soc. 2003, 24, 1649. https://doi.org/10.5012/bkcs.2003.24.11.1649
  14. Schleyer, P. v. R.; Jiao, H. J.; Hommes, N. J. R. v. E.; Malkin, V. G.; Malkina, O. L. J. Am. Chem. Soc. 1997, 119, 12669. https://doi.org/10.1021/ja9719135
  15. Chen, Z. F.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Chem. Rev. 2005, 105, 3842. https://doi.org/10.1021/cr030088+
  16. Shin, J. Y.; Kim, K. S.; Yoon, M. C.; Lim, J. M.; Yoon, Z. S.; Osuka, A.; Kim, D. Chem. Soc. Rev. 2010, 39, 2751. https://doi.org/10.1039/b925417j
  17. Yoon, M. C.; Misra, R.; Yoon, Z. S.; Kim, K. S.; Lim, J. M.; Chandrashekar, T. K.; Kim, D. J. Phys. Chem. B 2008, 112, 6900. https://doi.org/10.1021/jp800748n
  18. Yan, L. K.; Pomogaeva, A.; Gu, F. L.; Aoki, Y. Theor. Chem. Acc. 2010, 125, 511. https://doi.org/10.1007/s00214-009-0669-y
  19. Shin, J. Y.; Lim, J. M.; Yoon, Z. K.; Kim, K. S.; Yoon, M. C.; Hiroto, S.; Shinokubo, H.; Shimizu, S.; Osuka, A.; Kim, D. J. Phys. Chem. B 2009, 113, 5794. https://doi.org/10.1021/jp8101699
  20. Yu, M.; Zhang, W. Y.; Fan, Y.; Jian, W. P.; Liu, G. F. J. Phys. Org. Chem. 2007, 20, 229. https://doi.org/10.1002/poc.1132
  21. Toganoh, M.; Furuta, H. J. Phys. Chem. A 2009, 113, 13953. https://doi.org/10.1021/jp906126g
  22. Hu, H. Z.; Ma, S. Y. Int. J. Quantum Chem. 2010, 110, 1682.
  23. Grochowski, P. Theor. Chem. Acc. 2008, 121, 257. https://doi.org/10.1007/s00214-008-0472-1
  24. Pandey, R. K.; Sandeep, C. S. S.; Philip, R.; Lakshminarayanan, V. J. Phys. Chem. C 2009, 113, 8630. https://doi.org/10.1021/jp808691v
  25. Kuimova, M. K.; Yahioglu, G.; Ogilby, P. R. J. Am. Chem. Soc. 2009, 131(1), 332. https://doi.org/10.1021/ja807484b
  26. Lindsey, J. S. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, 2000.
  27. Blau, W.; Byrne, H.; Dennis, W. M.; Kelly, J. M. Opt. Commun. 1985, 56, 25. https://doi.org/10.1016/0030-4018(85)90059-8
  28. Wood, G. L.; Miller, M. J.; Mott, A. G. Opt. Lett. 1995, 20, 973. https://doi.org/10.1364/OL.20.000973
  29. Chen, P.; Tomov, I. V.; Dvornikov, A. S.; Nakashima, M.; Roach, J. F.; Alabran, D. M.; Rentzepis, P. M. J. Phys. Chem. 1996, 100, 17507. https://doi.org/10.1021/jp9615161
  30. Stiel, H.; Volkmer, A.; Rückmann, I.; Zeug, A.; Ehrenberg, B.; Röder, B. Opt. Commun. 1998, 155, 135. https://doi.org/10.1016/S0030-4018(98)00328-9
  31. Castevens, C. M. Theor. Chem. Acc. 2008, 121, 43. https://doi.org/10.1007/s00214-008-0444-5
  32. Cyranski, M. K.; Krygowski, T. M.; Wisiorowski, M.; van Eikema, N. J. R.; Schleyer, P. V. R. Angew. Chem. Int. Ed. 1998, 37, 177. https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<177::AID-ANIE177>3.0.CO;2-H
  33. Campomanes, P.; Menéndez, M. I.; Cárdenas-Jirón, G. I.; Sordo, T. L. Phys. Chem. Chem. Phys. 2007, 9, 5644. https://doi.org/10.1039/b709198b
  34. Steiner, E.; Fowler, P. W. Chem. Phys. Chem. 2002, 3, 114. https://doi.org/10.1002/1439-7641(20020118)3:1<114::AID-CPHC114>3.0.CO;2-A
  35. Maeda, H.; Osuka, A.; Furuta, H. J. Inclusion Phenom. Macrocycl. Chem. 2004, 49, 33. https://doi.org/10.1023/B:JIPH.0000031110.42096.d3
  36. Furuta, H.; Asano, T.; Ogawa, T. J. Am. Chem. Soc. 1994, 116, 767. https://doi.org/10.1021/ja00081a047
  37. Chmielewski, P. J.; Latos-Gra y ski, L.; Rachlewicz, K.; G owiak, T. Angew. Chem. Int. Ed. Engl. 1994, 33, 779. https://doi.org/10.1002/anie.199407791
  38. Morimoto, H.; Taniguchi, S.; Osuka, A.; Furuta, H. Eur. J. Org. Chem. 2005, 3887.
  39. Lash, T.D. Synlett 1999, 3, 279
  40. Latos-Gra y ski, L. In Core Modified Heteroanalogues of Porphyrins and Metalloporphyrins; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; The Porphyrin Handbook; Academic Press: San Diego, 2000.
  41. Furuta, H.; Maeda, H.; Osuka, A. Chem. Commun. 2002, 1795.
  42. Harvey, J. D.; Ziegler, C. J. Coord. Chem. Rev. 2003, 247, 1. https://doi.org/10.1016/j.cct.2003.07.001
  43. Maeda, H.; Furuta, H. J. Porphyrins Phthalocyanines 2004, 8, 67. https://doi.org/10.1142/S1088424604000052
  44. Srinivasan, A.; Furuta, H. Acc. Chem. Res. 2005, 38, 10. https://doi.org/10.1021/ar0302686
  45. Chmielewski, P. J.; Latos-Gra y ski, L. Coord. Chem. Rev. 2005, 249, 2510. https://doi.org/10.1016/j.ccr.2005.05.015
  46. Ishizuka, T.; Furuta, H. J. Organosynth. Chem. 2005, 63, 211.
  47. Maeda, H.; Furuta, H. Pure Appl. Chem. 2006, 78, 29. https://doi.org/10.1351/pac200678010029
  48. Harvey, J. D.; Ziegler, C. J. J. Inorg. Biochem. 2006, 100, 869. https://doi.org/10.1016/j.jinorgbio.2006.01.016
  49. Furuta, H.; Ishizuka, T.; Osuka, A.; Dejima, H.; Nakagawa, H.; Ishikawa, Y. J. Am. Chem. Soc. 2001, 123, 6207. https://doi.org/10.1021/ja010237a
  50. Yang, Z. D.; Feng, J. K.; Ren, A. M.; Sun, C. C. J. Phys. Chem. A 2006, 110, 13956. https://doi.org/10.1021/jp0642802
  51. Cardenas-Jirón, G. I.; Venegas, C.; Lopez, R.; Menendez, M. I. J. Phys. Chem. A 2008, 112, 8100. https://doi.org/10.1021/jp801368c
  52. Pushpan, S. K.; Chandrashekar, T. Pure Appl. Chem. 2002, 74, 2045. https://doi.org/10.1351/pac200274112045
  53. Gupta, I.; Ravikanth, M. Coord. Chem. Rev. 2006, 250, 468. https://doi.org/10.1016/j.ccr.2005.10.010
  54. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864. https://doi.org/10.1103/PhysRev.136.B864
  55. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. https://doi.org/10.1103/PhysRev.140.A1133
  56. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  57. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  58. Becke, A. D. J.Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  59. Frisch, M. J. et al. Gaussian 09, Revision A.02, Gaussian Inc.: Wallingford, CT, 2009.
  60. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. https://doi.org/10.1021/cr00088a005
  61. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, 1990.
  62. Bader, R. F. W.; Popelier, P. L. A.; Keith, T. A. Angew. Chem. Int. Ed. Engl. 1994, 33, 620. https://doi.org/10.1002/anie.199406201
  63. Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H. J.; van Eikema Hommes, N. J. R. J. Am. Chem. Soc. 1996, 118, 6317. https://doi.org/10.1021/ja960582d

피인용 문헌

  1. The induced current strengths and aromatic pathways of heteroporphyrins and their antiaromatic derivatives vol.115, pp.15, 2015, https://doi.org/10.1002/qua.24932
  2. Stability, Aromaticity, and Photophysical Behaviors of Macrocyclic Molecules: A Theoretical Analysis vol.8, pp.None, 2012, https://doi.org/10.3389/fchem.2020.00776