DOI QR코드

DOI QR Code

Isolation and description of a Korean microalga, Asterarcys quadricellulare KNUA020, and analysis of its biotechnological potential

  • Hong, Ji-Won (Department of Biology, Kyungpook National University) ;
  • Kim, Sun-Ae (Department of Biology, Kyungpook National University) ;
  • Chang, Ji-Won (Department of Biology, Kyungpook National University) ;
  • Yi, Jung (Department of Biology, Kyungpook National University) ;
  • Jeong, Ji-Eun (Department of Chemistry, Kyungpook National University) ;
  • Kim, Sung-Hwan (Department of Chemistry, Kyungpook National University) ;
  • Kim, Sung-Hong (Analysis Research Division, Daegu Center, Korea Basic Science Institute) ;
  • Yoon, Ho-Sung (Department of Biology, Kyungpook National University)
  • Received : 2012.03.01
  • Accepted : 2012.08.05
  • Published : 2012.09.15

Abstract

A eukaryotic microalga, Asterarcys quadricellulare KNUA020, was isolated from garden soil at Kyungpook National University in Daegu, South Korea and its biotechnological potential was assessed. Optimal growth was obtained when the culture was incubated at $25^{\circ}C$ and around pH 7.0. The total lipid content of the isolate was 15.5% of dry weight and its most abundant fatty acid was nutritionally important C18:3 ${\omega}3$ (${\alpha}$-linolenic acid, ALA). In addition, a high-value fatty alcohol, hexadecenol ($C_{20}H_{40}O$), was also identified in this photosynthetic microorganism. Hence, A. quadricellulare KNUA020 appears to be promising for use in the production of microalgae-based biochemicals.

Keywords

References

  1. Benemann, J. R., Tillett, D. M. & Weissman, J. C. 1987. Microalgae biotechnology. Trends Biotechnol. 5:47-53. https://doi.org/10.1016/0167-7799(87)90037-0
  2. Bigogno, C., Khozin-Goldberg, I., Boussiba, S., Vonshak, A. & Cohen, Z. 2002. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497-503. https://doi.org/10.1016/S0031-9422(02)00100-0
  3. Fortman, J. L., Chhabra, S., Mukhopadhyay, A., Chou, H., Lee, T. S., Steen, E. & Keasling, J. D. 2008. Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol. 26:375-381. https://doi.org/10.1016/j.tibtech.2008.03.008
  4. Friedl, T. & Rokitta, C. 1997. Species relationships in the lichen alga Trebouxia (Chlorophyta, Trebouxiaceae): molecular phylogenetic analyses of nuclear-encoded large subunit rRNA gene sequences. Symbiosis 23:125-148.
  5. Gao, C., Zhai, Y., Ding, Y. & Wu, Q. 2010. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl. Energ. 87:756- 761. https://doi.org/10.1016/j.apenergy.2009.09.006
  6. Hegewald, E. & Schmidt, A. 1992. Asterarcys Comas, eine weit verbreitete tropische Grunalgengattung. Algol. Stud. 66:25-30.
  7. Hegewald, E., Wolf, M., Keller, A., Friedl, T. & Krienitz, L. 2010. ITS2 sequence-structure phylogeny in the Scenedesmaceae with special reference on Coelastrum (Chlorophyta, Chlorophyceae), including the new genera Comasiella and Pectinodesmus. Phycologia 49:325-335. https://doi.org/10.2216/09-61.1
  8. Helms, G., Friedl, T., Rambold, G. & Mayrhofer, H. 2001. Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33:73-86. https://doi.org/10.1006/lich.2000.0298
  9. Ikawa, M. 2004. Algal polyunsaturated fatty acids and effects on plankton ecology and other organisms. UNH Cent. Freshw. Biol. Res. 6:17-44.
  10. Kalscheuer, R., Stolting, T. & Steinbuchel, A. 2006. Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529-2536. https://doi.org/10.1099/mic.0.29028-0
  11. Khozin-Goldberg, I., Iskandarov, U. & Cohen, Z. 2011. LCPUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl. Microbiol. Biotechnol. 91:905-915. https://doi.org/10.1007/s00253-011-3441-x
  12. Liang, Y., Sarkany, N. & Cui, Y. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31:1043-1049. https://doi.org/10.1007/s10529-009-9975-7
  13. Miao, X. & Wu, Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97:841-846. https://doi.org/10.1016/j.biortech.2005.04.008
  14. Otles, S. & Pire, R. 2001. Fatty acid composition of Chlorella and Spirulina microalgae species. J. AOAC Int. 84:1708- 1714.
  15. Patil, V., Kallqvist, T., Olsen, E., Vogt, G. & Gislerød, H. R. 2007. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquac. Int. 15:1-9. https://doi.org/10.1007/s10499-006-9060-3
  16. Pyle, D. J., Garcia, R. A. & Wen, Z. 2008. Producing docosahexaenoic acid (DHA)-rich algae from blodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J. Agric. Food Chem. 56:3933-3939. https://doi.org/10.1021/jf800602s
  17. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111:1-61. https://doi.org/10.1099/00221287-111-1-1
  18. Rottig, A., Wenning, L., Broker, D. & Steinbuchel, A. 2010. Fatty acid alkyl esters: perspectives for production of allogical ternative biofuels. Appl. Microbiol. Biotechnol. 85:1713- 1733. https://doi.org/10.1007/s00253-009-2383-z
  19. Seto, A., Wang, H. L. & Hesseltine, C. W. 1984. Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. J. Am. Oil Chem. Soc. 61:892-894. https://doi.org/10.1007/BF02542159
  20. Steen, E. J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., Mc- Clure, A., del Cardayre, S. B. & Keasling, J. D. 2010. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559-562. https://doi.org/10.1038/nature08721
  21. White, T. J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. (Eds.) PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, pp. 315-322.
  22. Xiong, W., Li, X., Xiang, J. & Wu, Q. 2008. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl. Microbiol. Biotechnol. 78:29-36. https://doi.org/10.1007/s00253-007-1285-1
  23. Yeo, I., Jeong, J., Cho, Y., Hong, J., Yoon, H. -S., Kim, S. H. & Kim, S. 2011. Characterization and comparison of biodiesels made from Korean freshwater algae. Bull. Korean Chem. Soc. 32:2830-2832. https://doi.org/10.5012/bkcs.2011.32.8.2830

Cited by

  1. In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae vol.28, pp.1, 2013, https://doi.org/10.4490/algae.2013.28.1.111
  2. A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production vol.6, pp.1, 2013, https://doi.org/10.1186/1754-6834-6-143
  3. Effect of macronutrient supplements on growth and biochemical compositions in photoautotrophic cultivation of isolated Asterarcys sp. (BTA9034) vol.149, 2017, https://doi.org/10.1016/j.enconman.2017.07.015
  4. Microalgae cultivation as tertiary unit operation for treatment of pharmaceutical wastewater associated with lipid production vol.215, 2016, https://doi.org/10.1016/j.biortech.2016.04.101
  5. Research and development for algae-based technologies in Korea: a review of algae biofuel production vol.123, pp.3, 2015, https://doi.org/10.1007/s11120-014-9974-y
  6. gen. et sp. nov. (Chlorophyceae, Chlorophyta) vol.54, pp.3, 2018, https://doi.org/10.1111/jpy.12645
  7. Morpho-taxonomic, genetic, and biochemical characterization of freshwater microalgae as potential biodiesel feedstock vol.9, pp.4, 2012, https://doi.org/10.1007/s13205-019-1664-1
  8. Isolation and selection of growth medium for freshwater microalgae Asterarcys quadricellulare for maximum biomass production vol.80, pp.11, 2012, https://doi.org/10.2166/wst.2020.015