DOI QR코드

DOI QR Code

The Roles and Perspectives of Toll-Like Receptors and $CD4^+$ Helper T Cell Subsets in Acute Viral Encephalitis

  • Han, Young-Woo (College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Singh, Sunit K. (Laboratory of Neurovirology and Inflammation Biology, Centre for Cellular and Molecular Biology) ;
  • Eo, Seong-Kug (College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
  • 투고 : 2012.02.03
  • 심사 : 2012.02.22
  • 발행 : 2012.04.30

초록

Acute viral encephalitis caused by neurotrophic viruses, such as mosquito-borne flaviviruses, is an emerging and re-emerging disease that represents an immense global health problem. Considerable progression has been made in understanding the pathogenesis of acute viral encephalitis, but the immune-pathological processes occurring during the progression of encephalitis and the roles played by various molecules and cellular components of the innate and adaptive systems still remain undefined. Recent findings reveal the significant contribution of Toll-like receptors (TLRs) and regulatory $CD4^+$ T cells in the outcomes of infectious diseases caused by neurotrophic viruses. In this review, we discuss the ample evidence focused on the roles of TLRs and $CD4^+$ helper T cell subsets on the progression of acute viral encephalitis. Finally, we draw attention to the importance of these molecules and cellular components in defining the pathogenesis of acute viral encephalitis, thereby providing new therapeutic avenues for this disease.

키워드

참고문헌

  1. Tunkel AR, Glaser CA, Bloch KC, Sejvar JJ, Marra CM, Roos KL, Hartman BJ, Kaplan SL, Scheld WM, Whitley RJ; Infectious Diseases Society of America: The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 47;303-327, 2008. https://doi.org/10.1086/589747
  2. Johnston LJ, Halliday GM, King NJ: Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J Invest Dermatol 114;560-568, 2000. https://doi.org/10.1046/j.1523-1747.2000.00904.x
  3. Solomon T, Vaughn DW: Pathogenesis and clinical features of Japanese encephalitis and West Nile virus infections. Curr Top Microbiol Immunol 267;171-194, 2002.
  4. Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA: Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10;1366-1373, 2004. https://doi.org/10.1038/nm1140
  5. Wolinsky JS: Subacute sclerosing panencephalitis, progressive rubella panencephalitis, and multifocal leukoencephalopathy. Res Publ Assoc Res Nerv Ment Dis 68;259-268, 1990.
  6. Lanteri MC, O􀙗Brien KM, Purtha WE, Cameron MJ, Lund JM, Owen RE, Heitman JW, Custer B, Hirschkorn DF, Tobler LH, Kiely N, Prince HE, Ndhlovu LC, Nixon DF, Kamel HT, Kelvin DJ, Busch MP, Rudensky AY, Diamond MS, Norris PJ: Tregs control the development of symptomatic West Nile virus infection in humans and mice. J Clin Invest 119;3266-3277, 2009.
  7. Morse SS: Factors in the emergence of infectious diseases. Emerg Infect Dis 1;7-15, 1995. https://doi.org/10.3201/eid0101.950102
  8. Mackenzie JS, Gubler DJ, Petersen LR: Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10(12 Suppl);S98-109, 2004. https://doi.org/10.1038/nm970
  9. Jia XY, Briese T, Jordan I, Rambaut A, Chi HC, Mackenzie JS, Hall RA, Scherret J, Lipkin WI: Genetic analysis of West Nile New York 1999 encephalitis virus. Lancet 354;1971-1972,1999. https://doi.org/10.1016/S0140-6736(99)05384-2
  10. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, Crabtree MB, Scherret JH, Hall RA, MacKenzie JS, Cropp CB, Panigrahy B, Ostlund E, Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage HM, Stone W, McNamara T, Gubler DJ: Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286;2333-2337, 1999. https://doi.org/10.1126/science.286.5448.2333
  11. Lanciotti RS, Ebel GD, Deubel V, Kerst AJ, Murri S, Meyer R, Bowen M, McKinney N, Morrill WE, Crabtree MB, Kramer LD, Roehrig JT: Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology 298;96-105, 2002. https://doi.org/10.1006/viro.2002.1449
  12. Hanna JN, Ritchie SA, Phillips DA, Shield J, Bailey MC, Mackenzie JS, Poidinger M, McCall BJ, Mills PJ: An outbreak of Japanese encephalitis in the Torres Strait, Australia, 1995. Med J Aust 165;256-260, 1996.
  13. Ritchie SA, Phillips D, Broom A, Mackenzie J, Poidinger M, van den Hurk A: Isolation of Japanese encephalitis virus from Culex annulirostris in Australia. Am J Trop Med Hyg 56;80-84,1997. https://doi.org/10.4269/ajtmh.1997.56.80
  14. Mackenzie JS. Emergence of Japanese encephalitis virus in the Australasian region. In: Saluzzo JF, Dodet B, editors. Factors in the emergence of arbovirus diseases. Paris: Elsevier; p191-201, 1997.
  15. Hanna JN, Ritchie SA, Phillips DA, Lee JM, Hills SL, van den Hurk AF, Pyke AT, Johansen CA, Mackenzie JS: Japanese encephalitis in north Queensland, Australia, 1998. Med J Aust 170;533-536, 1999.
  16. Solomon T: Flavivirus encephalitis. N Engl J Med 351;370-378,2004. https://doi.org/10.1056/NEJMra030476
  17. Solomon T: Control of Japanese encephalitis--within our grasp? N Engl J Med 355;869-871, 2006. https://doi.org/10.1056/NEJMp058263
  18. Burke DS, Leake CJ. Japanese encephalitis. In: Monath TP, editor. The arboviruses: epidemiology and ecology. Boca Raton: CRC Press; 63-92, 1988.
  19. Innis BL. Japanese encephalitis. In: Porterfield JS, editor. Exotic viral infections. London: Chapman & Hall; p147-173,1995.
  20. Endy TP, Nisalak A: Japanese encephalitis virus: ecology and epidemiology. Curr Top Microbiol Immunol 267;11-48, 2002.
  21. Vaughn DW, Hoke CH Jr: The epidemiology of Japanese encephalitis: prospects for prevention. Epidemiol Rev 14;197-221, 1992. https://doi.org/10.1093/oxfordjournals.epirev.a036087
  22. Kumar R, Mathur A, Kumar A, Sethi GD, Sharma S, Chaturvedi UC: Virological investigations of acute encephalopathy in India. Arch Dis Child 65;1227-1230, 1990. https://doi.org/10.1136/adc.65.11.1227
  23. Ghoshal A, Das S, Ghosh S, Mishra MK, Sharma V, Koli P, Sen E, Basu A: Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia 55;483-496, 2007. https://doi.org/10.1002/glia.20474
  24. Chen CJ, Chen JH, Chen SY, Liao SL, Raung SL: Upregulation of RANTES gene expression in neuroglia by Japanese encephalitis virus infection. J Virol 78;12107-12119, 2004. https://doi.org/10.1128/JVI.78.22.12107-12119.2004
  25. Ravi V, Parida S, Desai A, Chandramuki A, Gourie-Devi M, Grau GE: Correlation of tumor necrosis factor levels in the serum and cerebrospinal fluid with clinical outcome in Japanese encephalitis patients. J Med Virol 51;132-136, 1997. https://doi.org/10.1002/(SICI)1096-9071(199702)51:2<132::AID-JMV8>3.0.CO;2-8
  26. Swarup V, Ghosh J, Duseja R, Ghosh S, Basu A: Japanese encephalitis virus infection decrease endogenous IL-10 production: correlation with microglial activation and neuronal death. Neurosci Lett 420;144-149, 2007. https://doi.org/10.1016/j.neulet.2007.04.071
  27. Takeda K, Akira S: Toll-like receptors in innate immunity. Int Immunol 17;1-14, 2005.
  28. Meylan E, Tschopp J: Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell 22;561-569, 2006. https://doi.org/10.1016/j.molcel.2006.05.012
  29. Janeway CA Jr, Medzhitov R: Innate immune recognition. Annu Rev Immunol 20;197-216, 2002. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  30. Barton GM, Medzhitov R: Toll-like receptors and their ligands. Curr Top Microbiol Immunol 270;81-92, 2002.
  31. Medzhitov R: Toll-like receptors and innate immunity. Nat Rev Immunol 1;135-145, 2001. https://doi.org/10.1038/35100529
  32. Heine H, Lien E: Toll-like receptors and their function in innate and adaptive immunity. Int Arch Allergy Immunol 130;180-192, 2003. https://doi.org/10.1159/000069517
  33. Dunne A, O􀙗Neill LA: The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 2003;re3, 2003.
  34. Zhang H, Tay PN, Cao W, Li W, Lu J: Integrin-nucleated Toll-like receptor (TLR) dimerization reveals subcellular targeting of TLRs and distinct mechanisms of TLR4 activation and signaling. FEBS Lett 532;171-176, 2002. https://doi.org/10.1016/S0014-5793(02)03669-4
  35. Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, Golenbock DT, Finberg RW: Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol 77;4588-4596, 2003. https://doi.org/10.1128/JVI.77.8.4588-4596.2003
  36. Düesberg U, von dem Bussche A, Kirschning C, Miyake K, Sauerbruch T, Spengler U: Cell activation by synthetic lipopeptides of the hepatitis C virus (HCV)--core protein is mediated by toll like receptors (TLRs) 2 and 4. Immunol Lett 84;89-95, 2002. https://doi.org/10.1016/S0165-2478(02)00178-5
  37. Rassa JC, Meyers JL, Zhang Y, Kudaravalli R, Ross SR: Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proc Natl Acad Sci U S A 99;2281-2286, 2002. https://doi.org/10.1073/pnas.042355399
  38. Zarember KA, Godowski PJ: Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 168;554-561, 2002.
  39. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL: Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167;1882-1885, 2001. https://doi.org/10.4049/jimmunol.167.4.1882
  40. Modlin RL: Mammalian toll-like receptors. Ann Allergy Asthma Immunol 88;543-547, 2002. https://doi.org/10.1016/S1081-1206(10)61883-2
  41. Town T, Bai F, Wang T, Kaplan AT, Qian F, Montgomery RR, Anderson JF, Flavell RA, Fikrig E: Toll-like receptor 7 mitigates lethal West Nile encephalitis via interleukin 23-dependent immune cell infiltration and homing. Immunity 30;242-253, 2009. https://doi.org/10.1016/j.immuni.2008.11.012
  42. Szretter KJ, Daffis S, Patel J, Suthar MS, Klein RS, Gale M Jr, Diamond MS: The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system. J Virol 84;12125-12138, 2010. https://doi.org/10.1128/JVI.01026-10
  43. Daffis S, Samuel MA, Suthar MS, Gale M Jr, Diamond MS: Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 82;10349-10358, 2008. https://doi.org/10.1128/JVI.00935-08
  44. Aleyas AG, George JA, Han YW, Rahman MM, Kim SJ, Han SB, Kim BS, Kim K, Eo SK: Functional modulation of dendritic cells and macrophages by Japanese encephalitis virus through MyD88 adaptor molecule-dependent and -independent pathways. J Immunol 183;2462-2474, 2009. https://doi.org/10.4049/jimmunol.0801952
  45. Kimberlin DW: Herpes simplex virus infections of the central nervous system. Semin Pediatr Infect Dis 14;83-89, 2003. https://doi.org/10.1053/spid.2003.127224
  46. Oliveira RB, Ochoa MT, Sieling PA, Rea TH, Rambukkana A, Sarno EN, Modlin RL: Expression of Toll-like receptor 2 on human Schwann cells: a mechanism of nerve damage in leprosy. Infect Immun 71;1427-1433, 2003. https://doi.org/10.1128/IAI.71.3.1427-1433.2003
  47. Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW: Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A 101;1315-1320, 2004. https://doi.org/10.1073/pnas.0308057100
  48. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413;732-738, 2001. https://doi.org/10.1038/35099560
  49. Gill N, Deacon PM, Lichty B, Mossman KL, Ashkar AA: Induction of innate immunity against herpes simplex virus type 2 infection via local delivery of Toll-like receptor ligands correlates with beta interferon production. J Virol 80;9943-9950, 2006. https://doi.org/10.1128/JVI.01036-06
  50. Boivin N, Sergerie Y, Rivest S, Boivin G: Effect of pretreatment with toll-like receptor agonists in a mouse model of herpes simplex virus type 1 encephalitis. J Infect Dis 198;664-672, 2008. https://doi.org/10.1086/590671
  51. Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, Segal D, Sancho-Shimizu V, Lorenzo L, Puel A, Picard C, Chapgier A, Plancoulaine S, Titeux M, Cognet C, von Bernuth H, Ku CL, Casrouge A, Zhang XX, Barreiro L, Leonard J, Hamilton C, Lebon P, Héron B, Vallée L, Quintana-Murci L, Hovnanian A, Rozenberg F, Vivier E, Geissmann F, Tardieu M, Abel L, Casanova JL: TLR3 deficiency in patients with herpes simplex encephalitis. Science 317;1522-1527, 2007. https://doi.org/10.1126/science.1139522
  52. Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, Anguiano E, Sancho-Shimizu V, Lorenzo L, Pauwels E, Philippe PB, Pérez de Diego R, Cardon A, Vogt G, Picard C, Andrianirina ZZ, Rozenberg F, Lebon P, Plancoulaine S, Tardieu M, Valérie Doireau, Jouanguy E, Chaussabel D, Geissmann F, Abel L, Casanova JL, Zhang SY: Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med 208;2083-2098, 2011. https://doi.org/10.1084/jem.20101568
  53. Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M: Herpes simplex virus type 1 activates murine natural interferon- producing cells through toll-like receptor 9. Blood 103;1433-1437, 2004.
  54. Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A: Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198;513-520, 2003. https://doi.org/10.1084/jem.20030162
  55. Préhaud C, Mégret F, Lafage M, Lafon M: Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol 79;12893-12904, 2005. https://doi.org/10.1128/JVI.79.20.12893-12904.2005
  56. Ménager P, Roux P, Mégret F, Bourgeois JP, Le Sourd AM, Danckaert A, Lafage M, Préhaud C, Lafon M: Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri Bodies. PLoS Pathog 5;e1000315, 2009. https://doi.org/10.1371/journal.ppat.1000315
  57. Mosmann TR, Coffman RL: TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7;145-173, 1989. https://doi.org/10.1146/annurev.iy.07.040189.001045
  58. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH: A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100;655-669, 2000. https://doi.org/10.1016/S0092-8674(00)80702-3
  59. Zheng W, Flavell RA: The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89;587-596, 1997. https://doi.org/10.1016/S0092-8674(00)80240-8
  60. Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB, Oukka M, Kuchroo VK: IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448;484-487,2007. https://doi.org/10.1038/nature05970
  61. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, Ma L, Shah B, Panopoulos AD, Schluns KS, Watowich SS, Tian Q, Jetten AM, Dong C: T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28;29-39, 2008. https://doi.org/10.1016/j.immuni.2007.11.016
  62. Curiel TJ: Regulatory T-cell development: is Foxp3 the decider? Nat Med 13;250-253, 2007. https://doi.org/10.1038/nm0307-250
  63. Abbas AK, Murphy KM, Sher A: Functional diversity of helper T lymphocytes. Nature 383;787-793, 1996. https://doi.org/10.1038/383787a0
  64. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6;1123-1132, 2005. https://doi.org/10.1038/ni1254
  65. Sen GC: Viruses and interferons. Annu Rev Microbiol 55;255-281, 2001. https://doi.org/10.1146/annurev.micro.55.1.255
  66. Hou W, Kang HS, Kim BS: Th17 cells enhance viral persistence and inhibit T cell cytotoxicity in a model of chronic virus infection. J Exp Med 206;313-328, 2009. https://doi.org/10.1084/jem.20082030
  67. O􀙗Connor RA, Prendergast CT, Sabatos CA, Lau CW, Leech MD, Wraith DC, Anderton SM: Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 181;3750-3754, 2008. https://doi.org/10.4049/jimmunol.181.6.3750
  68. Iwasaki T, Ogura R: Studies on neutralization of Japanese encephalitis virus (JEV). I. Further neutralization of the resistant virus fraction by an interaction between antivirus IgG antibody and IgG heterotype or allotype antibody. Virology 34;141-148, 1968. https://doi.org/10.1016/0042-6822(68)90017-2
  69. Biswas SM, Ayachit VM, Sapkal GN, Mahamuni SA, Gore MM: Japanese encephalitis virus produces a CD4+ Th2 response and associated immunoprotection in an adoptive-transfer murine model. J Gen Virol 90;818-826, 2009. https://doi.org/10.1099/vir.0.008045-0
  70. Ouyang W, Kolls JK, Zheng Y: The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28;454-467, 2008. https://doi.org/10.1016/j.immuni.2008.03.004
  71. Alfano M, Crotti A, Vicenzi E, Poli G: New players in cytokine control of HIV infection. Curr HIV/AIDS Rep 5;27-32, 2008. https://doi.org/10.1007/s11904-008-0005-5
  72. Molesworth-Kenyon SJ, Yin R, Oakes JE, Lausch RN: IL-17 receptor signaling influences virus-induced corneal inflammation. J Leukoc Biol 83;401-408, 2008. https://doi.org/10.1189/jlb.0807571
  73. Hashimoto K, Durbin JE, Zhou W, Collins RD, Ho SB, Kolls JK, Dubin PJ, Sheller JR, Goleniewska K, O􀙗Neal JF, Olson SJ, Mitchell D, Graham BS, Peebles RS Jr: Respiratory syncytial virus infection in the absence of STAT 1 results in airway dysfunction, airway mucus, and augmented IL-17 levels. J Allergy Clin Immunol 116;550-567, 2005. https://doi.org/10.1016/j.jaci.2005.03.051
  74. Wing K, Sakaguchi S: Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11;7-13, 2010.
  75. Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, Shimizu J, Takahashi T, Nomura T: Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212;8-27, 2006. https://doi.org/10.1111/j.0105-2896.2006.00427.x
  76. Hussell T, Pennycook A, Openshaw PJ: Inhibition of tumor necrosis factor reduces the severity of virus-specific lung immunopathology. Eur J Immunol 31;2566-2573, 2001. https://doi.org/10.1002/1521-4141(200109)31:9<2566::AID-IMMU2566>3.0.CO;2-L
  77. Oldstone MB: Biology and pathogenesis of lymphocytic choriomeningitis virus infection. Curr Top Microbiol Immunol263;83-117, 2002.
  78. Suvas S, Azkur AK, Kim BS, Kumaraguru U, Rouse BT: CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. J Immunol 172;4123-4132, 2004. https://doi.org/10.4049/jimmunol.172.7.4123
  79. Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK: Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev212;28-50, 2006.
  80. Engelhardt B, Ransohoff RM: The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26;485-495, 2005. https://doi.org/10.1016/j.it.2005.07.004
  81. Ho LJ, Wang JJ, Shaio MF, Kao CL, Chang DM, Han SW, Lai JH: Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J Immunol 166;1499-1506, 2001. https://doi.org/10.4049/jimmunol.166.3.1499
  82. Carrasco CP, Rigden RC, Vincent IE, Balmelli C, Ceppi M, Bauhofer O, Tâche V, Hjertner B, McNeilly F, van Gennip HG, McCullough KC, Summerfield A: Interaction of classical swine fever virus with dendritic cells. J Gen Virol 85;1633-1641, 2004. https://doi.org/10.1099/vir.0.19716-0
  83. Barba-Spaeth G, Longman RS, Albert ML, Rice CM: Live attenuated yellow fever 17D infects human DCs and allows for presentation of endogenous and recombinant T cell epitopes. J Exp Med 202;1179-1184, 2005. https://doi.org/10.1084/jem.20051352
  84. Gong N, Liu J, Reynolds AD, Gorantla S, Mosley RL, Gendelman HE: Brain ingress of regulatory T cells in a murine model of HIV-1 encephalitis. J Neuroimmunol 230;33-41,2011. https://doi.org/10.1016/j.jneuroim.2010.08.014
  85. Cao S, Li Y, Ye J, Yang X, Chen L, Liu X, Chen H: Japanese encephalitis Virus wild strain infection suppresses dendritic cells maturation and function, and causes the expansion of regulatory T cells. Virol J 8;39, 2011. https://doi.org/10.1186/1743-422X-8-39
  86. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA: Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24;99-146, 2006. https://doi.org/10.1146/annurev.immunol.24.021605.090737
  87. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR: The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126;1121-1133, 2006. https://doi.org/10.1016/j.cell.2006.07.035
  88. Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, Shen Y, Du J, Rubtsov YP, Rudensky AY, Ziegler SF, Littman DR: TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453;236-240, 2008. https://doi.org/10.1038/nature06878
  89. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, Cheroutre H: Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317;256-260,2007. https://doi.org/10.1126/science.1145697
  90. Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F: A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204;1757-1764, 2007. https://doi.org/10.1084/jem.20070590
  91. Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y: Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204;1775-1785, 2007. https://doi.org/10.1084/jem.20070602

피인용 문헌

  1. Neuroinvasive West Nile Infection Elicits Elevated and Atypically Polarized T Cell Responses That Promote a Pathogenic Outcome vol.12, pp.1, 2016, https://doi.org/10.1371/journal.ppat.1005375