DOI QR코드

DOI QR Code

Beneficial Effect of Coumestrol on Ultraviolet B-Induced Skin Photoaging through Mitochondrial Biogenesis

쿠메스트롤의 미토콘드리아 생합성 증가를 통한 피부 광노화 예방 효과

  • Kim, Su-Kyung (Beauty Food Research Institute, Amorepacific Corporation R&D center) ;
  • Kim, Jeong-Kee (Beauty Food Research Institute, Amorepacific Corporation R&D center) ;
  • Seo, Dae-Bang (Beauty Food Research Institute, Amorepacific Corporation R&D center) ;
  • Lee, Sang-Jun (Beauty Food Research Institute, Amorepacific Corporation R&D center)
  • 김수경 (아모레퍼시픽 기술연구원 뷰티푸드 연구소) ;
  • 김정기 (아모레퍼시픽 기술연구원 뷰티푸드 연구소) ;
  • 서대방 (아모레퍼시픽 기술연구원 뷰티푸드 연구소) ;
  • 이상준 (아모레퍼시픽 기술연구원 뷰티푸드 연구소)
  • Received : 2012.05.04
  • Accepted : 2012.08.16
  • Published : 2012.09.30

Abstract

Coumestrol is one of phytoalexins synthesized in response to environmental stress, and commonly found in natural foods such as alfalfa sprouts, clovers, and soybean. In the present study, we investigated the mechanism underlying protective effect of coumestrol against UVB-induced photoaging in human dermal fibroblasts. We found that pretreatment with coumestrol enhanced the UVB-suppressed mitochondrial biogenesis through regulation of Sirt1 expression and activity, and its downstream gene regulation such as PGC-$1{\alpha}$, NRF1, and TFAM. Moreover, the ATP and ROS production was restored to normal status and the formation of advanced glycation endproducts leading to skin photoaging in skin fibroblasts was blocked by coumestrol pretreatment before UVB irradiation. These findings indicate that coumestrol might potentially prevent skin photoaging induced by mitochondrial damage and glycated protein production in dermal fibroblasts.

쿠메스트롤은 식물이 스트레스에 대항해 합성하는 phytoalexins의 일종으로, 알팔파 새싹, 클로버, 콩나물에서 일반적으로 발견된다. 본 연구에서는 쿠메스트롤의 자외선에 의해 유도되는 피부 진피세포 광노화 예방 효능에 관한 연구를 실시하였다. 쿠메스트롤 전처리는 자외선 B 조사에 의해 감소된 Sirt1 단백질 발현 및 활성과 하위 미토콘드리아 생합성 관련 유전자인 PGC-$1{\alpha}$, NRF1, TFAM의 발현 변화를 감소시켰다. 또한, ATP 및 ROS 생성량을 정상화시키고 피부 노화를 유도하는 최종당화산물 생성을 억제하였다. 이상의 결과에서 쿠메스트롤은 자외선 조사에 의해 발생하는 진피 세포 내 미토콘드리아 손상 및 이에 따른 당화 단백질 생성을 감소시킴으로써 피부 광노화 현상으로부터 보호할 수 있음을 확인하였다.

Keywords

References

  1. M. Greco, G. Villani, F. Mazzucchelli, N. Bresolin, S. Papa, and G. Attardi, Marked aging-related decline in efficiency of oxidative phosphorylation in human skin fibroblasts, FASEB J., 17(12), 1706 (2003). https://doi.org/10.1096/fj.02-1009fje
  2. S. B. Wu and Y. H. Wei, AMPK-Mediated increase of glycolysis as an adaptive response to oxidative stress in human cells: Implication of the cell survival in mitochondrial diseases, Biochim. Biophys. Acta., 1822(2), 233 (2012). https://doi.org/10.1016/j.bbadis.2011.09.014
  3. J. F. Jongkind, A. Verkerk, and M. Poot, Glucose flux through the hexose monophosphate shunt and nadp(h) levels during in vitro ageing of human skin fibroblasts, Gerontology., 33(5), 281 (1987). https://doi.org/10.1159/000212891
  4. S. Prahl, T. Kueper, T. Biernoth, Y. Wohrmann, A. Munster, M. Furstenau, M. Schmidt, C. Schulze, K. P. Wittern, H. Wenck, G. M. Muhr, and T. Blatt, Aging skin is functionally anaerobic: Importance of coenzyme q10 for anti aging skin care, Biofactors., 32(1), 245 (2008). https://doi.org/10.1002/biof.5520320129
  5. A. R. Hipkiss, Does chronic glycolysis accelerate aging? Could this explain how dietary restriction works?, Ann N. Y. Acad. Sci., 1067, 361 (2006). https://doi.org/10.1196/annals.1354.051
  6. D. R. Sell, N. R. Kleinman, and V. M. Monnier, Longitudinal determination of skin collagen glycation and glycoxidation rates predicts early death in C57BL/6NNIA Mice, FASEB J., 14(1), 145 (2000). https://doi.org/10.1096/fasebj.14.1.145
  7. M. Yamauchi, P. Prisayanh, Z. Haque, and D. T. Woodley, Collagen cross-linking in sun-exposed and unexposed sites of aged human skin, J. Invest Dermatol., 97(5), 938 (1991).
  8. H. Pageon, Reaction of glycation and human skin: The effects on the skin and its components, reconstructed skin as a model, Pathol. Biol. (Paris)., 58(3), 226 (2010). https://doi.org/10.1016/j.patbio.2009.09.009
  9. Y. Ogura, T. Kuwahara, M. Akiyama, S. Tajima, K. Hattori, K. Okamoto, S. Okawa, Y. Yamada, H. Tagami, M. Takahashi, and T. Hirao, Dermal carbonyl modification is related to the yellowish color change of photo-aged japanese facial skin, J. Dermatol. Sci., 64(1), 45 (2011). https://doi.org/10.1016/j.jdermsci.2011.06.015
  10. H. Corstjens, L. Declercq, L. Hellemans, I. Sente, and D. Maes, Prevention of oxidative damage that contributes to the loss of bioenergetic capacity in ageing skin, Exp. Gerontol., 42(9), 924 (2007). https://doi.org/10.1016/j.exger.2007.03.008
  11. S. Liu, D. M. Norris, E. E. Hartwig, and M. Xu, Inducible phytoalexins in juvenile soybean genotypes predict soybean looper resistance in the fully developed plants, Plant Physiol., 100(3), 1479 (1992). https://doi.org/10.1104/pp.100.3.1479
  12. S. F. Ye, I. Saga, K. Ichimura, T. Nagai, M. Shinoda, and S. Matsuzaki, Coumestrol as well as isoflavones in soybean extract prevent bone resorption in ovariectomized rats, Endocr. Regul., 37(3), 145 (2003).
  13. L. Nogowski, Effects of phytoestrogen-coumestrol on lipid and carbohydrate metabolism in young ovariectomized rats may be independent of its estrogenicity, J. Nutr. Biochem., 10(11), 664 (1999). https://doi.org/10.1016/S0955-2863(99)00047-9
  14. H. Y. Jeon, D. B. Seo, H. J. Shin, and S. J. Lee, Effect of aspergillus oryzae-challenged germination on soybean isoflavone content and antioxidant activity, J. Agric. Food Chem., 60(10), 2807, (2012). https://doi.org/10.1021/jf204708n
  15. Y. Horio, T. Hayashi, A. Kuno, and R. Kunimoto, Cellular and molecular effects of sirtuins in health and disease, Clin. Sci (Lond)., 121(5), 191 (2011). https://doi.org/10.1042/CS20100587
  16. K. Ohguchi, T. Itoh, Y. Akao, H. Inoue, Y. Nozawa, and M. Ito, Sirt1 Modulates expression of matrix metalloproteinases in human dermal fibroblasts, Br. J. Dermatol., 163(4), 689 (2010). https://doi.org/10.1111/j.1365-2133.2010.09825.x
  17. Y. N. Wang, W. Wu, H. C. Chen, and H. Fang, Genistein protects against uvb-induced senescencelike characteristics in human dermal fibroblast by p66shc down-regulation, J. Dermatol. Sci., 58(1), 19 (2010). https://doi.org/10.1016/j.jdermsci.2010.02.002
  18. X. Kong, R. Wang, Y. Xue, X. Liu, H. Zhang, Y. Chen, F. Fang, and Y. Chang, Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ros and mitochondrial biogenesis, PLoS One., 5(7), e11707 (2010). https://doi.org/10.1371/journal.pone.0011707
  19. N. C. Yang, W. M. Ho, Y. H. Chen, and M. L. Hu, A convenient one-step extraction of cellular ATP using boiling water for the luciferin-luciferase assay of ATP, Anal. Biochem., 306(2), 323 (2002). https://doi.org/10.1006/abio.2002.5698
  20. Y. W. Ryoo, S. I. Suh, K. C. Mun, B. C. Kim, and K. S. Lee, The effects of the melatonin on Ul-traviolet-B irradiated cultured dermal fibroblasts, J. Dermatol. Sci., 27(3), 162 (2001). https://doi.org/10.1016/S0923-1811(01)00133-5
  21. R. R. Alcendor, S. Gao, P. Zhai, D. Zablocki, E. Holle, X. Yu, B. Tian, T. Wagner, S. F. Vatner, and J. Sadoshima, Sirt1 regulates aging and resistance to oxidative stress in the heart, Circ. Res., 100(10), 1512 (2007). https://doi.org/10.1161/01.RES.0000267723.65696.4a
  22. E. Verdin, M. D. Hirschey, L. W. Finley, and M. C. Haigis, Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling, Trends Biochem. Sci., 35(12), 669 (2010). https://doi.org/10.1016/j.tibs.2010.07.003

Cited by

  1. Cudrania tricuspidata Root Extract as Whitening and Antiwrinkle Cosmetic Agent vol.52, pp.6, 2014, https://doi.org/10.9713/kcer.2014.52.6.701