Clinical Implication of Loudness Dependence of Auditory Evoked Potential (LDAEP) in Psychiatic Illness

정신질환에서 Loudness Dependence of Auditory Evoked Potential (LDAEP)의 임상적 의미

  • Lee, Seung-Hwan (Department of Psychiatry, Inje University College of Medicine, Ilsan Paik Hospital)
  • 이승환 (인제대학교 의과대학 일산백병원 정신건강의학교실)
  • Received : 2012.01.13
  • Accepted : 2012.02.02
  • Published : 2012.02.29

Abstract

The loudness dependence of the auditory evoked potential (LDAEP) has been proposed as a valid biomarker of central serotoninergic activity in humans. The specificity and sensitivity of the LDAEP to changes in serotonergic neurotransmission have recently been explored in many studies about pharmacology and genetics. The majority of evidence for an association between the LDAEP and serotonin activity has come from animal studies. Genetic association studies with the LDAEP have provided conflicting reports with additional evidence outlining sensitivity to other neurotransmitter systems including the dopamine and glutamatergic systems. The LDAEP has been revealed to reflect the pathophysiology of various psychiatric illnesses. There is supporting evidence that major psychiatric disorders have differential LDAEP activities. Overall, the LDAEP shows strong evidence as a potential predictor of antidepressant treatment response. It need to be explored whether the LDAEP could be a biological marker of various psychiatric diseases and treatment prediction of antidepressants and serotonin related drugs.

LDAEP와 세로토닌 기능 간의 직접적인 관계의 초기 증거들은 동물 실험으로부터 도출되었고 이후 세로토닌성 장애에 기반한 질병들의 임상 실험을 통하여 간접적인 뒷받침이 이루어 져왔다. 현재까지 LDAEP와 세로토닌 사이의 연관성을 확인해주는 증거는, 우선 세로토닌 시스템 내에서 유전적 polymorphism을 연구하는 것을 통해, 그리고 직접적으로 약물을 투여 하는 방식으로 확보되었다. LDAEP가 연관된 대부분의 연구는 모노아민 시스템에 초점을 맞춰왔으나 LDAEP에 대한 다른 신경전달 시스템의 효과는 거의 알려진 바가 없다. 향후 세로토닌 외에도 도파민, 노르에피네프린, 아세틸콜린 등 다른 신경전달물질과의 연관성에 대한 연구가 필요하다. In vivo 중추 세로토닌 기능의 유효한 비침습적 표지자로서 LDAEP를 확정짓기 전에, 단기적 조절뿐 아니라 장기적 세로토닌성 조절이 포함된 더 많은 연구가 필요하다. 현재까지의 증거로 보면 LDAEP의 가장 유망한 활용은 초기 항우울 치료반응과 관련된 생물학적 지료서의 활용이다. 최근의 연구들은 LDAEP의 노르아드레날린성 그리고 세로토닌성 항우울제 반응에 대한 민감도를 확인했으며 이러한 긍정적인 기초 결과들을 재현하기 위하여 더 많은 연구들이 필요하다.

Keywords

References

  1. Lucki I. The spectrum of behaviors influenced by serotonin. Biol Psychiatry 1998;44:151-162. https://doi.org/10.1016/S0006-3223(98)00139-5
  2. Hegerl U, Juckel G. Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: a new hypothesis. Biol Psychiatry 1993;33:173-187. https://doi.org/10.1016/0006-3223(93)90137-3
  3. Juckel G, Molnar M, Hegerl U, Csepe V, Karmos G. Auditory-evoked potentials as indicator of brain serotonergic activity--first evidence in behaving cats. Biol Psychiatry 1997;41:1181-1195. https://doi.org/10.1016/S0006-3223(96)00240-5
  4. Hensch T, Wargelius HL, Herold U, Lesch KP, Oreland L, Brocke B. Further evidence for an association of 5-HTTLPR with intensity dependence of auditory-evoked potentials. Neuropsychopharmacology 2006;31:2047-2054. https://doi.org/10.1038/sj.npp.1301020
  5. Linka T, Müller BW, Bender S, Sartory G. The intensity dependence of the auditory evoked N1 component as a predictor of response to Citalopram treatment in patients with major depression. Neurosci Lett 2004;367:375-378. https://doi.org/10.1016/j.neulet.2004.06.038
  6. Linka T, Muller BW, Bender S, Sartory G, Gastpar M. The intensity dependence of auditory evoked ERP components predicts responsiveness to reboxetine treatment in major depression. Pharmacopsychiatry 2005;38:139-143. https://doi.org/10.1055/s-2005-864126
  7. Linka T, Sartory G, Bender S, Gastpar M, Muller BW. The intensity dependence of auditory ERP components in unmedicated patients with major depression and healthy controls. An analysis of group differences. J Affect Disord 2007;103:139-145. https://doi.org/10.1016/j.jad.2007.01.018
  8. Murphy DL. Peripheral indices of central serotonin function in humans. Ann N Y Acad Sci 1990;600:282-295; discussion 295-296. https://doi.org/10.1111/j.1749-6632.1990.tb16890.x
  9. Pletscher A. Platelets as models: use and limitations. Experientia 1988;44:152-155. https://doi.org/10.1007/BF01952200
  10. Auerbach SB, Minzenberg MJ, Wilkinson LO. Extracellular serotonin and 5-hydroxyindoleacetic acid in hypothalamus of the unanesthetized rat measured by in vivo dialysis coupled to high-performance liquid chromatography with electrochemical detection: dialysate serotonin reflects neuronal release. Brain Res 1989;499:281-290. https://doi.org/10.1016/0006-8993(89)90776-2
  11. Boadle-Biber MC. Regulation of serotonin synthesis. Prog Biophys Mol Biol 1993;60:1-15. https://doi.org/10.1016/0079-6107(93)90009-9
  12. Tyce GM. Origin and metabolism of serotonin. J Cardiovasc Pharmacol 1990;16 Suppl 3:S1-S7.
  13. Cooper JR, Bloome FE, Roth RH. The Biochemical Basis of Neuropharmacology. 8th ed. New York: Oxford University Press;1996.
  14. Juckel G, Hegerl U, Molnar M, Csepe V, Karmos G. Auditory evoked potentials reflect serotonergic neuronal activity--a study in behaving cats administered drugs acting on 5-HT1A autoreceptors in the dorsal raphe nucleus. Neuropsychopharmacology 1999;21:710-716. https://doi.org/10.1016/S0893-133X(99)00074-3
  15. Manjarrez G, Hernandez E, Robles A, Hernandez J. N1/P2 component of auditory evoked potential reflect changes of the brain serotonin biosynthesis in rats. Nutr Neurosci 2005;8:213-218. https://doi.org/10.1080/10284150500170971
  16. Park YM, Lee SH, Kim S, Bae SM. The loudness dependence of the auditory evoked potential (LDAEP) in schizophrenia, bipolar disorder, major depressive disorder, anxiety disorder, and healthy controls. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:313-316. https://doi.org/10.1016/j.pnpbp.2009.12.004
  17. Yang E, Lee SH, Oh S, Kim S. N100 amplitude slopes in major depressive disorder, bipolar disorder, schizophrenia and normal controls. Korean J Biol Psychiatry 2009;16:181-189.
  18. Gudlowski Y, Ozgurdal S, Witthaus H, Gallinat J, Hauser M, Winter C, et al. Serotonergic dysfunction in the prodromal, first-episode and chronic course of schizophrenia as assessed by the loudness dependence of auditory evoked activity. Schizophr Res 2009;109:141-147. https://doi.org/10.1016/j.schres.2009.02.008
  19. Woolley DW, Shaw E. A biochemical and pharmacological suggestion about certain mental disorders. Proc Natl Acad Sci U S A 1954;40:228-231. https://doi.org/10.1073/pnas.40.4.228
  20. Aghajanian GK, Marek GJ. Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Brain Res Rev 2000;31:302-312. https://doi.org/10.1016/S0165-0173(99)00046-6
  21. van Veelen NM, Kahn RS. Dopamine, serotonin, and schizophrenia. Adv Neurol 1999;80:425-429.
  22. Harrison PJ. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999;122:593-624. https://doi.org/10.1093/brain/122.4.593
  23. Ngan ET, Yatham LN, Ruth TJ, Liddle PF. Decreased serotonin 2A receptor densities in neuroleptic-naive patients with schizophrenia: a PET study using [(18)F] setoperone. Am J Psychiatry 2000;157:1016-1018. https://doi.org/10.1176/appi.ajp.157.6.1016
  24. Eastwood SL, Burnet PW, Gittins R, Baker K, Harrison PJ. Expression of serotonin 5-HT (2A) receptors in the human cerebellum and alterations in schizophrenia. Synapse 2001;42:104-114. https://doi.org/10.1002/syn.1106
  25. Salvadore G, Quiroz JA, Machado-Vieira R, Henter ID, Manji HK, Zarate CA Jr. The neurobiology of the switch process in bipolar disorder: a review. J Clin Psychiatry 2010;71:1488-1501. https://doi.org/10.4088/JCP.09r05259gre
  26. Lee SH, Kim JH, Lee JH, Kim S, Park YM, Bae SM, et al. Aberrant response of selective serotonin reuptake inhibitor in two patients with high N100 amplitude slope. Korean J Psychopharmacol 2008;19:341-347.
  27. Hegerl U, Ulrich G, Muller-Oerlinghausen B. Auditory evoked potentials and response to lithium prophylaxis. Pharmacopsychiatry 1987;20:213-216. https://doi.org/10.1055/s-2007-1017106
  28. Hegerl U, Wulff H, Muller-Oerlinghausen B. Intensity dependence of auditory evoked potentials and clinical response to prophylactic lithium medication: a replication study. Psychiatry Res 1992;44:181-190. https://doi.org/10.1016/0165-1781(92)90022-U
  29. Rohayem J, Bayle JF, Richa S. [Predictors of prophylactic response to lithium]. Encephale 2008;34:394-399. https://doi.org/10.1016/j.encep.2007.05.002
  30. Hegerl U, Gallinat J, Juckel G. Event-related potentials. Do they reflect central serotonergic neurotransmission and do they predict clinical response to serotonin agonists? J Affect Disord 2001;62:93-100. https://doi.org/10.1016/S0165-0327(00)00353-0
  31. Chen TJ, Yu YW, Chen MC, Wang SY, Tsai SJ, Lee TW. Serotonin dysfunction and suicide attempts in major depressives: an auditory event-related potential study. Neuropsychobiology 2005;52:28-36. https://doi.org/10.1159/000086175
  32. Linka T, Sartory G, Gastpar M, Scherbaum N, Muller BW. Clinical symptoms of major depression are associated with the intensity dependence of auditory event-related potential components. Psychiatry Res 2009;169:139-143. https://doi.org/10.1016/j.psychres.2008.06.009
  33. Park YM, Lee SH, Park EJ. Usefulness of LDAEP to predict tolerability to SSRIs in major depressive disorder: a case report. Psychiatry Investig 2012;9:86-89.
  34. Fitzgerald PB, Mellow TB, Hoy KE, Segrave R, Cooper NR, Upton DJ, et al. A study of intensity dependence of the auditory evoked potential (IDAEP) in medicated melancholic and non-melancholic depression. J Affect Disord 2009;117:212-216. https://doi.org/10.1016/j.jad.2009.01.009
  35. Juckel G, Hegerl U, Giegling I, Mavrogiorgou P, Gallinat J, Augustin H, et al. Loudness dependence of auditory evoked potentials is not associated with polymorphisms or haplotypes in the serotonin transporter gene in a community-based sample of German healthy volunteers. Psychiatry Res 2007;153:183-187. https://doi.org/10.1016/j.psychres.2006.12.014
  36. Mulert C, Juckel G, Brunnmeier M, Karch S, Leicht G, Mergl R, et al. Prediction of treatment response in major depression: integration of concepts. J Affect Disord 2007;98:215-225. https://doi.org/10.1016/j.jad.2006.07.021
  37. Park YM, Kim DW, Kim S, Im CH, Lee SH. The loudness dependence of the auditory evoked potential (LDAEP) as a predictor of the response to escitalopram in patients with generalized anxiety disorder. Psychopharmacology (Berl) 2011;213:625-632. https://doi.org/10.1007/s00213-010-2061-y
  38. Kendler KS, Gardner CO, Prescott CA. Clinical characteristics of major depression that predict risk of depression in relatives. Arch Gen Psychiatry 1999;56:322-327. https://doi.org/10.1001/archpsyc.56.4.322
  39. Senkowski D, Linden M, Zubragel D, Bar T, Gallinat J. Evidence for disturbed cortical signal processing and altered serotonergic neurotransmission in generalized anxiety disorder. Biol Psychiatry 2003; 53:304-314. https://doi.org/10.1016/S0006-3223(02)01478-6
  40. Lee SH, Park GH. Psychophysiological markers of anxiety disorders and anxiety symptoms. 2011 Vladimir Kalinin (Ed.), ISBN: 978-953-307-592-1, InTech.
  41. Furlong RA, Ho L, Walsh C, Rubinsztein JS, Jain S, Paykel ES, et al. Analysis and meta-analysis of two serotonin transporter gene polymorphisms in bipolar and unipolar affective disorders. Am J Med Genet 1998;81:58-63. https://doi.org/10.1002/(SICI)1096-8628(19980207)81:1<58::AID-AJMG11>3.0.CO;2-V
  42. Ogilvie AD, Battersby S, Bubb VJ, Fink G, Harmar AJ, Goodwim GM, et al. Polymorphism in serotonin transporter gene associated with susceptibility to major depression. Lancet 1996;347:731-733. https://doi.org/10.1016/S0140-6736(96)90079-3
  43. Kim DK, Lim SW, Lee S, Sohn SE, Kim S, Hahn CG, et al. Serotonin transporter gene polymorphism and antidepressant response. Neuroreport 2000;11:215-219. https://doi.org/10.1097/00001756-200001170-00042
  44. Rausch JL, Johnson ME, Fei YJ, Li JQ, Shendarkar N, Hobby HM, et al. Initial conditions of serotonin transporter kinetics and genotype: influence on SSRI treatment trial outcome. Biol Psychiatry 2002;51:723-732. https://doi.org/10.1016/S0006-3223(01)01283-5
  45. Serretti A, Zanardi R, Rossini D, Cusin C, Lilli R, Smeraldi E. Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol Psychiatry 2001;6:586-592. https://doi.org/10.1038/sj.mp.4000876
  46. Zanardi R, Benedetti F, Di Bella D, Catalano M, Smeraldi E. Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of the serotonin transporter gene. J Clin Psychopharmacol 2000;20:105-107. https://doi.org/10.1097/00004714-200002000-00021
  47. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996;274:1527-1531. https://doi.org/10.1126/science.274.5292.1527
  48. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 2002;297:400-403. https://doi.org/10.1126/science.1071829
  49. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 2005;8:828-834. https://doi.org/10.1038/nn1463
  50. Williams RB, Marchuk DA, Gadde KM, Barefoot JC, Grichnik K, Helms MJ, et al. Serotonin-related gene polymorphisms and central nervous system serotonin function. Neuropsychopharmacology 2003;28:533-541. https://doi.org/10.1038/sj.npp.1300054
  51. Gallinat J, Senkowski D, Wernicke C, Juckel G, Becker I, Sander T, et al. Allelic variants of the functional promoter polymorphism of the human serotonin transporter gene is associated with auditory cortical stimulus processing. Neuropsychopharmacology 2003;28:530-532. https://doi.org/10.1038/sj.npp.1300042
  52. Strobel A, Debener S, Schmidt D, Hunnerkopf R, Lesch KP, Brocke B. Allelic variation in serotonin transporter function associated with the intensity dependence of the auditory evoked potential. Am J Med Genet B Neuropsychiatr Genet 2003;118B:41-47. https://doi.org/10.1002/ajmg.b.10019
  53. Brocke B, Beauducel A, Tasche KG. Biopsychological bases and behavioral correlates of sensation seeking: contributions to a multilevel validation. Pers Indiv Differ 1999;26:1103-1123. https://doi.org/10.1016/S0191-8869(98)00215-3
  54. Prescott J, Connolly JF, Gruzelier JH. The augmenting/reducing phenomenon in the auditory evoked potential. Biol Psychol 1984;19:31-44. https://doi.org/10.1016/0301-0511(84)90008-5
  55. Juckel G, Pogarell O, Augustin H, Mulert C, Müller-Siecheneder F, Frodl T, et al. Differential prediction of first clinical response to serotonergic and noradrenergic antidepressants using the loudness dependence of auditory evoked potentials in patients with major depressive disorder. J Clin Psychiatry 2007;68:1206-1212. https://doi.org/10.4088/JCP.v68n0806
  56. Moret C, Briley M. The possible role of 5-HT (1B/D) receptors in psychiatric disorders and their potential as a target for therapy. Eur J Pharmacol 2000;404:1-12. https://doi.org/10.1016/S0014-2999(00)00581-1
  57. Cyranowski JM, Frank E, Young E, Shear MK. Adolescent onset of the gender difference in lifetime rates of major depression: a theoretical model. Arch Gen Psychiatry 2000;57:21-27. https://doi.org/10.1001/archpsyc.57.1.21
  58. Kornstein SG, Schatzberg AF, Thase ME, Yonkers KA, McCullough JP, Keitner GI, et al. Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am J Psychiatry 2000;157:1445-1452. https://doi.org/10.1176/appi.ajp.157.9.1445
  59. Cosgrove KP, Mazure CM, Staley JK. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry 2007;62:847-855. https://doi.org/10.1016/j.biopsych.2007.03.001
  60. Staley JK, Sanacora G, Tamagnan G, Maciejewski PK, Malison RT, Berman RM, et al. Sex differences in diencephalon serotonin transporter availability in major depression. Biol Psychiatry 2006;59:40-47. https://doi.org/10.1016/j.biopsych.2005.06.012
  61. Frey BN, Skelin I, Sakai Y, Nishikawa M, Diksic M. Gender differences in alpha-[(11)C] MTrp brain trapping, an index of serotonin synthesis, in medication-free individuals with major depressive disorder: a positron emission tomography study. Psychiatry Res 2010;183:157-166. https://doi.org/10.1016/j.pscychresns.2010.05.005
  62. Walpurger V, Pietrowsky R, Kirschbaum C, Wolf OT. Effects of the menstrual cycle on auditory event-related potentials. Horm Behav 2004;46:600-606. https://doi.org/10.1016/j.yhbeh.2004.07.002
  63. Guille V, Gogos A, Nathan PJ, Croft RJ, van den Buuse M. Interaction of estrogen with central serotonergic mechanisms in human sensory processing: loudness dependence of the auditory evoked potential and mismatch negativity. J Psychopharmacol 2011;25:1614-1622. https://doi.org/10.1177/0269881110370506
  64. Gallinat J, Kunz D, Lang UE, Kalus P, Juckel G, Eggers J, et al. Serotonergic effects of smoking are independent from the human serotonin transporter gene promoter polymorphism: evidence from auditory cortical stimulus processing. Pharmacopsychiatry 2005;38:158-160. https://doi.org/10.1055/s-2005-871237
  65. Yang E, Kim JH, Lee SH. Smoking behavior and loudness dependence of the auditory evoked potential among male patients with major depressive disorder. Korean J Psychopharmacol 2011;22:89-95.
  66. Knott VJ, Venables PH. Stimulus intensity control and the cortical evoked response in smokers and non-smokers. Psychophysiology 1978;15:186-192. https://doi.org/10.1111/j.1469-8986.1978.tb01360.x
  67. Pritchard W, Sokhadze E, Houlihan M. Effects of nicotine and smoking on event-related potentials: a review. Nicotine Tob Res 2004;6:961-984. https://doi.org/10.1080/14622200412331324848
  68. Ishikawa H, Ohtsuki T, Ishiguro H, Yamakawa-Kobayashi K, Endo K, Lin YL, et al. Association between serotonin transporter gene polymorphism and smoking among Japanese males. Cancer Epidemiol Biomarkers Prev 1999;8:831-833.
  69. Heinz A, Jones DW, Mazzanti C, Goldman D, Ragan P, Hommer D, et al. A relationship between serotonin transporter genotype and in vivo protein expression and alcohol neurotoxicity. Biol Psychiatry 2000;47:643-649. https://doi.org/10.1016/S0006-3223(99)00171-7
  70. Mineur YS, Somenzi O, Picciotto MR. Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/6J mice. Neuropharmacology 2007;52:1256-1262. https://doi.org/10.1016/j.neuropharm.2007.01.006