References
- Bao P, Yan F, Li W, Dai Y R, Shen H M, Zhu J S, Wang Y N, Chan H L W, and Choy C-L (2002) Mechanical properties related to the relaxorferroelectric phase transition of titanium-doped lead magnesium niobate. Appl. Phys. Lett. 81, 2059-2061. https://doi.org/10.1063/1.1498498
- Batson P E, Dellby N and Krivanek O L (2002) Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617-620. https://doi.org/10.1038/nature00972
- Bokov A A, Leshchenko M A, Malitskaya M A and Raevski I P (1999) Dielectric spectra and Vogel-Fulcher scaling in Pb(In0.5Nb0.5)O3 relaxor ferroelectric. J. Phys.: Condensed Matter 11, 4899-4911. https://doi.org/10.1088/0953-8984/11/25/309
- Burton B P and Cockayne E (2001) Prediction of the Na1/2Bi1/2TiO3 ground state. AIP Conference Proceedings in Fundamental Physics of Ferroelectrics 582, 82-90.
- Chiang Y-M, Farrey G W and Soukhojak A N (1998) Lead-free highstrain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite family. Appl. Phys. Lett. 73, 3683-3685. https://doi.org/10.1063/1.122862
- Choi S-Y, Chung S-Y, Yamamoto T, and Ikuhara Y (2009) Direct determination of dopant site selectivity in ordered perovskite CaCu3Ti4O12 polycrystals by aberration-corrected STEM. Adv. Mater. 21, 885-889. https://doi.org/10.1002/adma.200802728
- Choi S-Y, Jeong S-J, Lee D-S, Kim M-S, Lee J-S, Cho J H, Kim B I, and Ikuhara Y (2012) Gigantic electrostrain in duplex structured alkaline niobates. Chem. Mater. 24, 3363-3369. https://doi.org/10.1021/cm301324h
- Chu F, Setter N and Tagantsev A K (1993) The spontaneous relaxorferroelectric transition of Pb(Sc0.5Ta0.5)O3. J. Appl. Phys. 74, 5219- 5134.
- Chung S-Y, Choi S-Y, Yamamoto T and Ikuhara Y (2008) Atomic-scale visualization of antisite defects in LiFePO4. Phys. Rev. Lett. 100, 125502-1-125502-4. https://doi.org/10.1103/PhysRevLett.100.125502
- Chung S-Y, Choi S-Y, Yamamoto T and Ikuhara Y (2009) Orientation- Dependent Arrangement of Antisite Defects in Lithium Iron(II) Phosphate Crystals. Angew. Chem. Int. Ed. 48, 543-546. https://doi.org/10.1002/anie.200803520
- Dai X, Xu Z and Viehland D (1994) The spontaneous relaxor to normal ferroelectric transformation in La-modified lead zirconate titanate. Phil. Mag. B 71, 33-38.
- Dorcet V, Trolliard G and Boullay P (2008a) Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First order rhomboheral to orthorhombic phase transition. Chem. Mater. 20, 5061-5073. https://doi.org/10.1021/cm8004634
- Dorcet V, Trolliard G and Boullay P (2008b) Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part II: Second order orhorhombic to tetragonal phase transition. Chem. Mater. 20, 5074- 5082. https://doi.org/10.1021/cm800464d
- Dorcet V and Troillard G (2008) A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3. Acta. Mater. 56, 1753-1761. https://doi.org/10.1016/j.actamat.2007.12.027
- Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y, and Ikuhara Y (2010) Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 110, 903-923. https://doi.org/10.1016/j.ultramic.2010.04.004
- Haider M, Uhlemann S, Schwan E, Kabius B, Rose H, and Urban K (1998) Electron microscopy image enhanced. Nature 392, 768-769. https://doi.org/10.1038/33823
- Hovden R, Xin H L, and Muller D A (2010) Extended depth of field for high-resolution scanning transmission electron microscopy. Microsc. Microanal. 17, 75-80.
- Ishikawa R, Okunishi E, Sawada H, Kondo Y, Hosokawa F, and Abe E (2010) Direct imaging of hydrogen-atom columns in a crystal by annular bright-fi eld electron microscopy. Nature Mater. 10, 278-281.
- Jia C L, Mi S-B, Urban K, Vrejoiu I, Alexe M, and Hesse D (2008) Atomicscale study of electric dipoles near charged an uncharged domain walls in ferroelectric films. Nature Mater. 7, 57-61. https://doi.org/10.1038/nmat2080
- Jones G O and Thomas P A (2000) The tetragonal phase of Na0.5Bi0.5TiO3 - a new variant of the perovskite structure. Acta. Cryst. B 56, 426- 430. https://doi.org/10.1107/S0108768100001166
- Jones G O and Thomas P A (2002) Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta. Cryst. B 58, 168-178. https://doi.org/10.1107/S0108768101020845
- Klie R F and Browning N D (2000) Atomic scale characterization of oxygen vacancy segregation at SrTiO3 grain boundaries. Appl. Phys. Lett. 87, 3737-3739.
- Kreisel J, Glazer A M, Bouvier P, and Lucazeau G (2001) High-pressure Raman study of a relaxor ferroelectric: the Na1/2Bi1/2TiO3 perovskite. Phys. Rev. B 63, 174106-1-174106-10. https://doi.org/10.1103/PhysRevB.63.174106
- Kreisel J, Glazer A M, Jones G, Thomas P A, Abello L, and Lucazeau G (2000) An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1-xKx)0.5Bi0.5TiO3 (0 < x < 1) solid solution. J. Phys.: Condensed Matter 12, 3627- 3280.
- Krunmins A, Shiosaki T, and Koizumi S (1994) Spontaneous trasition between relaxor and ferroelectric states in lanthanum-modifi ed lead zirconate titanate (6-7)/65/35. Jpn. J. Appl. Phys. 33, 4940-4945. https://doi.org/10.1143/JJAP.33.4940
- Levin I and Reaney I M (2012) Nano-and mesoscale structure of Na1/2Bi1/2TiO3: a TEM perspective. Adv. Func. Mater. 22, 3445- 3452. https://doi.org/10.1002/adfm.201200282
- Lupini A R and Pennycook S J (2007) Aberration corrected imaging in the STEM. Microsc. Microanal. 13, 1146-1147.
- Mizoguchi T, Olovsson W, Ikeno H and Tanaka I (2010) Theoretical ELNES using one-particle and multi-particle calculations. Micron 41, 695- 709. https://doi.org/10.1016/j.micron.2010.05.011
- Muller D A, Nakagawa N, Ohtomo A, Grazul J L, and Hwang H Y (2004) Atomic-scale imaging of nanoengineered oxygen vacancy profi les in SrTiO3. Nature 430, 657-661. https://doi.org/10.1038/nature02756
- Nellist P D, Chisholm M F, Dellby N, Krivanek O L, Murfi tt M F, Szilagy Z S, Lupini A R, Borisevich A, Sides Jr. W H, and Pennycook S J (2004) Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741. https://doi.org/10.1126/science.1100965
- Okunishi E, Ishikawa I, Sawada H, Hosokawa F, Hori M, and Kondo Y (2009) Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy. Microsc. Microanal. 15, 164-165. https://doi.org/10.1017/S1431927609093891
- Park S-E, Chung S-J, Kim I-T, and Hong K S (1994) Nonstoichiometry and the long-range cation ordering in crystals of (Na1/2Bi1/2) TiO3. J. Am. Ceram. Soc. 77, 2641-2647. https://doi.org/10.1111/j.1151-2916.1994.tb04655.x
- Petzelt J, Kamba S, Fabry J, Noujni D, Porokhonskyy V, Pashkin A, Franke I, Roleder K, Suchanicz J, Klein R, and Kugel G E (2004) Infrared, Raman and high-frequency dielectric sspectroscopy and the phase transition in Na1/2Bi1/2TiO3. J. Phys.: Condensed Matter 16, 2719- 2731. https://doi.org/10.1088/0953-8984/16/15/022
- Sciau P, Calvarin G, and Ravez J (2000) X-ray diffraction study of BaTi0.65Zr0.35O3 and Ba0.92Ca0.08Ti0.75Zr0.25O3 compositions: influence of electric field. Sol. Stat. Commun. 113, 77- 82.
- Simon A, Ravez J J, and Maglione M (2004) The crossover from a ferroelectric to a relaxor state in lead-free solid solutions. J. Phys.: Condensed Matter 16, 963. https://doi.org/10.1088/0953-8984/16/6/023
- Siny G, Smirnova T A, and Krunzina T V (1991) The phase transition dynamics in Na1/2Bi1/2TiO3. Ferroelectrics 124, 207-212. https://doi.org/10.1080/00150199108209439
- Smolenskii G A, Isupov V A, Agranovskaya A I, and Krainik N N (1961a) New ferroelectrics of complex composition. Sov. Phys. Solid State 2, 2651-2654.
- Smolenskii G A, Isupov V A, Agranovskaya A I, and Popov S N (1961b) Ferroelectrics with diffuse phase transitions. Sov. Phys. Solid State 2, 2584-2594.
- Tagantsev A K and Galzounov A E (1998) Mechanism of polarization response in the ergodic phase of a relaxor ferroelectric. Phys. Rev. B 57, 18-21. https://doi.org/10.1103/PhysRevB.57.18
- Tai C W and Lereah Y (2009) Nanoscale oxygen octahedral tilting in 0.90(Bi1/2Na1/2)TiO3-0.05(Bi1/2K1/2)TiO3-0.05BaTiO3 leadfree perovskite piezoelectric ceramics. Appl. Phys. Lett. 95, 062901-1-062901-3. https://doi.org/10.1063/1.3193544
- Tu C S, Siny I G, and Schmidt V H (1994) Brillouin scattering in Na1/2Bi1/2TiO3. Ferroelectrics 152, 403-408. https://doi.org/10.1080/00150199408017654
- Vakhrushev S B, Isupov V A, Kvyatkovsky B E, Okuneva N M, Pronin I P, Smolensky G A, and Syrnikov P P. Phase transition and soft modes in sodium bismuth titanate. Ferroelectrics 63, 153-160.
- Xu Y-N and Ching W Y (2000) Electronic structure of Na1/2Bi1/2TiO3 and its solid solution with BaTiO3. Phy. Mag. B 80, 1141-1151. https://doi.org/10.1080/13642810008208587
- Yao J, Ge W, Yan Li, Reynolds W T, Li J, Viehland D, Keselev D A, Kholkin A L, Zhang Q, and Luo H (2012) The influence of Mn substitution on the local structure of Na0.5Bi0.5TiO3 crystals: increased ferroelectric ordering and coexisting octahedral tilts. J. Appl. Phys. 111, 064109-1-064109-6. https://doi.org/10.1063/1.3699010
- Yasuda N, Ohwa H, and Asano S (1996) Dielectric properties and phase transitions of Ba(Ti1-xSnx)O3 solid solution. Jpn. J. Appl. Phys. 35, 5099. https://doi.org/10.1143/JJAP.35.5099