DOI QR코드

DOI QR Code

Effect of Heat Treatment on the Bending Strength and Hardness of Wood

  • Won, Kyung-Rok (College of Agriculture & Life Science, Gyeongsang National University) ;
  • Kim, Tae-Hong (College of Agriculture & Life Science, Gyeongsang National University) ;
  • Hwang, Kyo-Kil (College of Agriculture & Life Science, Gyeongsang National University) ;
  • Chong, Song-Ho (Forest Training Institute, Korea Forest Service) ;
  • Hong, Nam-Euy (College of Agriculture & Life Science, Gyeongsang National University) ;
  • Byeon, Hee-Seop (College of Agriculture & Life Science, IALS. Gyeongsang National University)
  • Received : 2012.06.26
  • Accepted : 2012.09.11
  • Published : 2012.09.25

Abstract

Heat treatment improves dimensional stability and sound absorption properties of wood. However, mechanical properties of wood can be deteriorated during the heat treatment. The effect of heat treatment on the bending strength and hardness of wood for Korean paulownia, Pinus densiflora, Lidiodendron tulipifera and Betula costata were measured. The heat treatment temperature has been investigated at $175^{\circ}C$ and $200^{\circ}C$, respectively. The results showed that the weight and density of wood decreased after heat treatment. It was found that the density by heat treatment was lower at $200^{\circ}C$ than that at $175^{\circ}C$. And, MOE increased with the reduced density. On the contrary, MOR and hardness decreased. In all conditions, It was found that there was a high correlation of 1% level between bending modulus of elasticity and modulus of rupture.

Keywords

References

  1. Borrega, M. and P. P. Karenlamopi. 2008. Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz als Roh-und Werkstoff 66: 63-69. https://doi.org/10.1007/s00107-007-0207-3
  2. Bridgwater, A. V. 2003. Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J 91(2-3): 87-102. https://doi.org/10.1016/S1385-8947(02)00142-0
  3. Byeon, H. S., H. M. Park, and F. Lam. 2005. Nondestructive evaluation of strength performance for finger-jointed wood using flexural vibration techniques. Forestry Products Journal 55(10): 37-42.
  4. Byeon, H. S., J. H. Park, K. K. Hwang, H. M. Park, B. S. Park, and S. H. Chong. 2010. Sound absorption property of heat-treated wood at a low temperature and vacuum conditions. Mokchae Konghak 38(2): 123-129.
  5. Chang, Y. S., Y. J. Han, C. D. Eom, J. S. Park, M. J. Park, I. G, Choi, and H. M. Yeo. 2012. Analysis of factors affecting the hygroscopic performance of thermally treated Pinus koraiensis wood. Mokchae Konghak 40(1): 10-18. https://doi.org/10.5658/WOOD.2012.40.1.10
  6. Demirbas, A. 2002. Gaseous products from biomass by pyrolysis and gasification: Effects of catalyst on hydrogen yield. Energy conversion and management 43(7): 897-909. https://doi.org/10.1016/S0196-8904(01)00080-2
  7. Esteves, B., A. V. Marques, I. Domingos, and H. Pereira. 2007. Influence of steam heating on the properties of pine (Pinus Pinaster) and eucalypt (Eucalypus globulus) wood. Wood Sci Technol 41(3): 193-207. https://doi.org/10.1007/s00226-006-0099-0
  8. Garrote, G., H. Dominguez, and J. C. Parajo. 1999. Hydrothermal processing of lignocellulosic materials. European J. of wood and wood products 57(3): 191-202. https://doi.org/10.1007/s001070050039
  9. Hakkou M, M. Petrissens, A. Zoulalian, and P. Gerardin. 2005. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer degradation and stability 89(1): 1-5. https://doi.org/10.1016/j.polymdegradstab.2004.10.017
  10. Kamdem D. P., A. Pizzi, and A. Jermammaud. 2002. Durability of heat-treated wood. Holz als Roh-und Werkstoff 60: 1-6. https://doi.org/10.1007/s00107-001-0261-1
  11. Kim, K. M., J. H. Park, B. S. Park, D. W. Son, J. S. Park, W. S. Kim, B. N. Kim, and S. R. Shim. 2009. Physical and mechanical properties of heat-treated domestic cedar. Mokchae Konghak 37(4): 330-339.
  12. Kim, K. M., J. H. Park, B. S. Park, D. W. Son, J. S. Park, W. S. Kim, B. N. Kim, and S. R. Shim. 2009. Physical and mechanical properties of heat-treated domestic yellow poplar. Mokchae Konghak 38(1): 17-25. https://doi.org/10.5658/WOOD.2010.38.1.17
  13. Kocaefe D, S. Poncsak and J. Tang. 2010. Effect of heat treatment on the mechanical properties of North American jack pine: thermogravimetric study. J Mater Sic 45: 681-687. https://doi.org/10.1007/s10853-009-3985-7
  14. Kocaefe D, S. Poncsak and Y. Boluk. 2008. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. Bioresources 3(2): 517-537.
  15. Lee, S. H., Y. C. Choi, J. G. Lee, and J. H. Kim. 2003. Pyrolysis characteristic study of lumber wastes. Theories and Applications of Chem. Eng 3-6.
  16. Manninen, A. M., P. Pasanen, and J. K. Holopainen. 2002. Comparing the VOC emissions between air-dried and heat-treated Scots pine wood. Atmospheric Environment 36(11): 1763-1768. https://doi.org/10.1016/S1352-2310(02)00152-8
  17. Nakai, T. 1984. Full size bending strength of sugi timber. Wood industry 39(11): 42-46.
  18. Pavlo, B. and P. Niemz. 2003. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5): 539-546.
  19. Poncsak S, D. Kocaefe, M. Bouazara, and A. Pichette. 2006. Effect of high temperature treatment on the mechanical properties of birch. Wood Sci Technol 40(8): 647-663. https://doi.org/10.1007/s00226-006-0082-9
  20. Shafizadeh, F. and G. D. McGinnis. 1971. Chemical composition and thermal analysis of cottonwood. Carbohydrate Research 16(2): 273-277. https://doi.org/10.1016/S0008-6215(00)81161-1
  21. Shin, R. H., S. H. Yoon, T. H. Han, and J. H. Kwon. 2009. A study on the development of living products using heat and color conversion treated woods. KFS Journal 20(5): 457-466.
  22. Sivonen H, S. L. Maunu, F. Sundholm, S. J Jamsa, and P. Viitaniemi. 2002. Magnetic Resonance Studies of Thermally Modified Wood. Holzforschung 56(6): 648-654.
  23. Stamm A. J., H. K. Burr and A. A. Kline. 1946. Staybwood-Heat-Stabilized Wood. Ind Eng Chem 38(6): 630-634. https://doi.org/10.1021/ie50438a027
  24. Tjeerdsma B. F., M. Boonstra, A. Pizzi, H. Tekely and H. Millitz. 1998. Characterisation of thermally modified wood: molecular reasons for wood performance improvement. European J. of wood and wood products 56(3): 149-153. https://doi.org/10.1007/s001070050287
  25. Yildiz, S., E. D. Gezer, and U. C. Yildiz. 2006. Mechanical and chemical behavior of spruce wood modified by heat Building and Environment. 41(12): 1762-1766. https://doi.org/10.1016/j.buildenv.2005.07.017

Cited by

  1. Nondestructive Evaluation of Strength Performance for Heat-Treated Wood Using Impact Hammer & Transducer vol.41, pp.5, 2013, https://doi.org/10.5658/WOOD.2013.41.5.466
  2. Thin Flooring Panel Development for Energy Efficiency of an Ondol Heating System vol.22, pp.1, 2013, https://doi.org/10.1177/1420326X12470410