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ABSTRACT: Morphing is a geometric interpolation technique that is often used by the animation industry to transform 
one form into another seemingly seamlessly. It does this by producing a large number of ‘intermediate’ forms between 
the two ‘extreme’ or ‘parent’ forms. It has already been shown that morphing technique can be a powerful tool for form 
design and as such can be a useful addition to the armoury of product designers. Morphing procedure itself is simple 
and consists of straightforward linear interpolation. However, establishing the correspondence between vertices of the 
parent models is one of the most difficult and important tasks during a morphing process. This paper discusses the 
mesh-merging method employed for this process as against the already established mesh-regularising method. It has 
been found that the merging method minimises the need for manual manipulation, allowing automation to a large extent.  

KEY WORDS: Morphing; Merging method; Hull form generation; Parametric variation; Mesh; Remeshing. 

INTRODUCTION 

Unlike mass produced goods, such as cars and televisions, ships have to be tailor-made according to the requirements of the 
customers. Therefore, designing ships is an exacting task satisfying the given requirements within a set of constrains. Fur-
thermore, the highly competitive world market demands merchant ships to be designed quickly but to high standards. This 
requires a high degree of optimisation with the ultimate objective of the best commercial performance for a given set of 
circumstances.  

As a consequence ship design techniques have been continuously improved in recent times and, with the ever increasing 
computing power, various ship performance evaluation tools are now used routinely in design work (see, for example, the re-
views of key research work in this area by Nowacki (2010) and Sharma, et al. (2012). Computer simulation tools in particular 
have become widely available, replacing much of physical model tests. These numerical tools also allow a large number of 
design alternatives to be evaluated, provided, of course, the required alternatives are available in sufficient detail. In order for 
automatic or semi-automatic optimisation to be successful the designs have to be made available either generated a priori in a 
database or generated ‘on demand’. The databases of systematic hull forms and parametric generation techniques of hull forms 
are very good examples of these. 

Taylor (1915) was one of the first researchers to carry out a systematic study of hull forms. He used a mathematical for-
mulation to generate hull forms, based on parabolic and hyperbolic functions. This method yielded a series of hull forms that 
could be used for exploring the effect of certain hull form parameters on ship resistance. The hull forms that could be defined 
using these mathematical functions, however, were too simple to be anything but very rough approximations of real ship hull  
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forms. Kuiper (1970) introduced a new approach to hull form design, viz, parametric hull form generation. He attempted to use 
initial parameters describing hull characteristics rather than using hull form offset data, to generate waterline, profile, and 
section area curves. Although this method was too simple to represent complex hull forms in sufficient details, the parametric 
approach to hull form generation has influenced research work that followed (Reed and Nowacki, 1974; Harries and Abt, 1998; 
Kim, 2004; Zhang, 2008 to name but a few). 

With more widespread use of digital computer and the increasing availability of computing technology, many mathe-
matical methods were developed to define the surface of the hull forms more accurately. In 1968 Bézier (1968) developed a 
free form curve generation technique for designing automobile bodies while working as an engineer at the car manufacturer 
Renault. The ‘Bézier curve’ is a special case of B-spline curve which is far more flexible to work with. A numerical algo-
rithm for B-spline was developed by de Boor (1971) and Cox (1972), and its application to ship form definition was exp-
lored by Riesenfeld (1972) and Gordon and Riesenfeld (1974). Many researchers have found such curve generation techni-
ques very useful in representing and generating hull form shapes precisely. Creutz and Schubert (1978) developed a B-spline 
method using hull form parameters, and Munchmeyer, Schubert and Nowachi (1979) extended the form parameter method 
to allow knuckle lines and bulbous bow to be created. In addition to these studies, many similar parametric methods based 
on B-spline have been studied and developed by many researchers. However, most of the work has focused on accurate 
representation rather than rapidity or efficiency of generation. Keane (1988) offered a method allowing rapid generation of 
hull forms using conformal mapping technique; however, the method has been found to have a weakness in generating 
certain types of hull forms such as frigate type forms. 

One of the earliest approaches to hull form generation is to take an existing hull form and modify it to meet the requirements, 
and this method is still widely used in both practical design and research work. The classic example of this is the direct manual 
manipulation of the surface definition data. Whilst being a flexible and effective tool in the hands of experienced designers, it is 
nevertheless difficult to obtain a good hull form. Lackenby (1950) was one of the first researchers who introduced the idea of 
systematic transformation. Alef and Collatz (1976), Versluis (1977), and Rabien (1979) developed Lackenby’s method further, 
and investigated hull form variation from a parent hull without manual manipulations. These methods are still used in modern 
hull design applications, but there is a limit in achieving variation of steep curvature parts such as bow and stern.  

 

 
Fig. 1 Example of morphing for product design (Chen and Parent, 1989). 

 
Morphing, meanwhile, is a geometric interpolation technique that produces intermediate forms between typically two 

extreme forms. Originally the morphing technology was invented as a method of working out the transformation process 
(interpolation) or to expect the future results (extrapolation) from satellite images of the earth’s surface in the early 1960s. More 
recently, morphing technique has become a significant tool of computer-graphics animators by providing an effective means of 
producing a seamless sequence of forms. It is used to display a smooth transition between two models by inserting a sufficient 
number of interpolated models between them. 

There are many strategies of optimisation, but a common feature of design optimisation of any product or system involves 
generating a feasible design followed by the performance evaluation of the design. The morphing technique would be undoub-
tedly useful in this process by offering a relatively painless method of generating a vast number of design alternatives rapidly. 
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In form design this capability can be used to generate a large number of predictable models from a set of given ‘parent’ 
forms. Although the morphing technique holds significant potential for rapid generation of shapes, little attention has been 
given to the application of morphing for product design so far.  

Nevertheless, similar ideas have been used in deriving interpolated or extrapolated forms in 2 D. For example, Chen and 
Parent (1989) developed a transformation algorithm for 3 D lofted models using the integration of 2 D planar contours. Thus, 
only two axes of the 2 D planar contours need to be transformed since each contour of the first parent model corresponds to a 
contour of the second parent model. Fig. 1 shows an example of generating future/retrospective models (1971, 1975, 1987, and 
1991) from existing two Honda Civic models (1979 and 1983) through extrapolation.  

One of the first attempts in the application of morphing to substantial 3 D models of a product was presented by Hsiao and 
Liu (2002). Kang and Lee (2009, 2010) applied mesh-based morphing to rapid generation of ship hull forms. The key step in 
the morphing process is the harmonisation of the mesh structures representing the parent 3 D surfaces, and they investigated the 
use of ‘regularising method’ for this purpose. The essence of this method is to build a mesh structure entirely different from the 
original mesh structures, whilst maintaining the form characteristics of the models. The method was found to be fast and reli-
able as a re-meshing algorithm, but it required extensive manual manipulations. 

‘Merging method’ for establishing a correspondence between two mesh structures, on the other hand, can save much time 
by reducing the need for manual intervention, and it allows the original mesh shape to be maintained. One of the first resear-
chers to discuss this method was Kent, and Parent and Carlson (1991) and Kent, Carlson and Parent (1992), and this method 
has been mainly used for producing animation (Gregory, et al., 1998; Alexa, 2000). 

MORPHING OF 3 D SURFACES USING MERGING METHOD 

Fig. 2 shows an overview of the algorithm used for hull form morphing based on merging method. The first task is mapping 
the original meshes of the 3 D hull forms onto a 2 D parameter plane in order to make it easier to handle the meshes. Then, the 
projected meshes are merged into a single mesh. When this 2 D merged mesh is remapped back onto each original 3 D surface, 
the original meshes which were originally of different structures, have now been made to correspond to each other so that they 
have the same number of faces, vertices, and edges. With the meshes thus harmonised, interpolation between the vertices of the 
parent models can be carried out. These three steps (parameterisation, merging and remapping) are examined in more detail in 
this section. 

 

 
Fig. 2 Outline procedure for the hull form morphing based on merging method. 

Parameterisation 

As indicated earlier, one of the most important and difficult tasks in morphing is finding a proper correspondence between 
the vertices of parent models. This can be achieved by redefining the parent forms in an isomorphic mesh structure, either by 
recreating the mesh or by merging the existing meshes. This paper is concerned with the latter method only.  

The difficulty, however, lies in the fact that it will be far too complicated, if not impossible, to carry out the merging 
operation in 3 D. Therefore, it is necessary to map the 3 D surfaces onto a 2 D plane first.  
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In this study, Floater’s shape-preserve parameterisation method (1997) has been used for this process. A local surface Si 
(consisting of internal point si and its neighbours sjk) is mapped to an identical 1-ring structured parameter space Pi (consisting 
of internal points pi and its neighbours pjk) so that the edge length in each radial direction is exactly preserved, and the angles 
between two consecutive edges are also preserved as shown in Eqs. (1) and (2), and Fig. 3. Here si and pi denote the ith internal 
point of a local surface and a parameter respectively, and sjk and pjk represents their kth neighbours respectively. k = 1, …, ci, 
where ci signifies the number of the neighbours. 
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where ang (a,b,c) indicates the angle between the edges ab and bc. θi designates the total sum of the angles between two 
consecutive edges of a local surface Si. 

 

           
(a)  (b) 
Fig. 3 An example of local parameterisation. 

 
Having mapped a local surface Si to a parameter space Pi, convex combination coefficients λi,k of Pi can be calculated from 

an internal point Pi and its neighbours pjk (See Floater, 1997). When the convex combination coefficients are uniform, the 
procedure is also known as Tutte’s barycentric method (Tutte, 1959). Here, λi,k represents a convex combination coefficient of 
the ith internal point to its kth

 neighbour. The convex combination coefficients are non-negative and sum up to unity as follows: 
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If there are three neighbours of an internal point, the convex combination coefficients λi,k can be simply found as: 
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where area (a, b, c) means the area of the triangle abc. The idea is illustrated in Fig. 4.  
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Fig. 4 An example of calculating convex combination coefficients λi,k (ci = 3). 
 
With the convex combination coefficients λi,k of a parameter space Pi thus obtained, an internal point pi can be represented 

by its neighbours pjk and their convex combination coefficients λi,k as follows: 

 33,22,11, jijijii pppp λλλ ++=  (5) 

which can be rewritten as: 
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If there are more than three neighbours (ci > 3) of an internal point, the procedure to calculate the convex combination 
coefficients becomes more complex, and requires iterative operations of Eq. (4) as described below.  

 

 
(a) (b) (c) 

Fig. 5 An example of calculating convex combination coefficients λi,k (ci > 3). 
 
For each neighbouring node pl, l ∈ {1, …, ci}, the straight line through pl (pj2 in Fig. 5(b)) and pi intersects a line segment 

with endpoints pr(l) and pr(l)+1 (pj4 and pj5) as shown in Fig. 5. The triangle formed by pl, pr(l) and pr(l)+1 (pj2pj4pj5 in the current 
example) is then taken as the selected triangle for the neighbour pl (pj2). The weighting factors applied to these points δ1, δ2 and 
δ3 are such that δ1 > 0, δ2 > 0, δ3 > 0 and δ1 + δ2 + δ3 = 1. The internal point pi can be represented in a similar manner as Eq. (5) 
by the following expression: 

 },...,1{,1)(3)(21 ilrlrli clpppp ∈++= +δδδ  
(7) 
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(8) 

The weighing factors δ1, δ2 and δ3 can be found by applying Eq. (4); they can also be calculated from Eq. (8), since there are 
two unknown variables (δ1, δ2) and two equations due to the two components U = {u, v} in 2 D. U denotes parameterised nodes, 
and u and v indicate x-axis and y-axis components of U respectively. In order to apply the equations to all the neighbours, a 
more general notation is adopted by substituting μl,l = δ1, μr(l),l = δ2, μr(l)+1,l = δ3, and μk,l = 0

 
for all other k. In case that the 
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neighbour pj2 is selected for pl as shown in Fig. 5(b) and (c), μk,l 
and pi would be:  

 32,522,42,312,22,1 ,,0,,0 δμδμμδμμ =====  
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Finally, the convex combination coefficients of the ith internal point pi and its neighbours pjk are: 
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From Eqs. (10) and (12) the following expression can be derived: 
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In a similar manner to the way the convex combination coefficients are obtained as shown in Eqs. (12), the following equa-
tion can be derived from Eqs. (11) and (12) for the ith internal point pi: 
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Note that Eqs. (13) and (14) are identical to Eqs. (3) and (6) respectively. 
With the convex combination coefficients thus obtained, it is finally possible to parameterise the whole 3 D surface to a 2 D 

plane. The parameterisation starts with mapping the 3 D boundary nodes to the 2 D boundary polygon, and then the internal 
nodes can be mapped to the inside of the boundary polygon. 

For the 2 D boundary polygon, any shape, size, or number of edges can be chosen; however, it is helpful to have the polygon 
roughly resembling the outline of the original 3 D model so that the shape of the parametric mesh can be checked easily. In 
addition, it is important for the corresponding features of the parent models to be assigned to same vertices in the parametric 
domain so that contextually proper correspondence can be established. For example, the nose tips of bulbous bow of the parent 
models should be assigned to an identical vertex of the 2 D domain. Fig. 6 shows an example of setting a 2 D domain for 
mapping two different 3 D hull forms. 

After setting feature points onto the 2 D polygon, each 3 D boundary segment between two neighbouring feature points is 
mapped to the corresponding edge of the polygon. The boundary nodes on the curve A1B1 of the first parent model and on the 
curve A2B2 of the second are mapped onto the identical straight line between A’ and B’ of the parameter polygon. The 
boundary nodes of each original model are placed on A’B’ maintaining the length ratios. In the similar manner the nodes lying 
on the other boundaries are mapped onto the corresponding edges of the 2 D polygon.  
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Fig. 6 An example of setting a 2 D parameter polygon and selecting feature points on 3 D hull form meshes. 

 
With the boundary nodes mapped on the boundary of 2 D polygon and the convex combination coefficients calculated from 

Eq. (12), internal points can now be parameterised. Let the total number of nodes and internal nodes be N and n respectively, 
then the internal nodes of the mapped 2 D plane would be U1, …, Un and the boundary nodes would be Un+1, …, UN. For the ith 
internal node, i ∈ {1, …, n}, the convex combination coefficients λi,k satisfy the following: 
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where a node Uk is a neighbour of node Ui if (i, k) ∈ E. Here, E is the edge set of the parent model mesh. In a similar way to 
Eqs. (6) and (14), each internal node Ui can be represented by its neighbouring nodes Uk and convex combination coeffi-
cients λi,k as : 
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The first term of the right hand side of Eq. (17) represents the parameterised internal nodes, which are unknown, and the 
second term signifies parameterised boundary nodes, which are known. By grouping the unknown terms on the left hand side 
and the known terms on the right, Eq. (17) can be rewritten in the following form: 
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In 2 D, Ui has two components ui and vi, and therefore it can be expressed in the form of two matrix equations: 

 1b=Au   (19-a) 

 2b=Av  (19-b) 
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Here u and v are the column vectors of (u1, …, un) and (v1, …, vn) respectively, and A is an n × n matrix whose elements are: 
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b1 and b2 are the multiplication of an n × (N − n) matrix by the column vectors of (un+1, …, uN) and (vn+1, …, vN) respect-
tively. The elements of the n × (N − n) matrix are equivalent to λi,k for i = 1, …, n and k = n+1, …, N. Let us take an example 
case with three internal nodes (n = 3) and four boundary nodes (N = 7), the two matrix equations would be: 
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 2b=× vA  

By substituting the values of λi,k and boundary nodes to both matrix equations, the internal nodes mapped onto the 2 D plane 
can be finally obtained by solving the simultaneous equations. Fig. 7 shows the result of mapping an original model of 5,000 
TEU container carrier and another of 300,000 DWT VLCC onto a common 2 D parametric domain, ready for the merging 
operation. 

In order to improve the correspondence between two parent shapes, more feature points can be used for 2 D boundary 
polygon. On the other hand such a practice would increase the subdivisions of surface which can complicate the situation. The 
optimum number and position of the feature points, therefore, still remain to be determined. However, this would call for a 
more systematic investigation and consequently has been left for future research. 

 

 
(a) 

 
(b) 

Fig. 7 Parametric meshes obtained by mapping onto a common 2 D polygon: (a) a container ship; (b) a VLCC. 

Merging 

Any number of parent models can be used for morphing, but, for the sake of clarity and ease of discussion the case of two 
parent models is discussed here as an example. The task of merging starts with establishing a merged boundary edge set from 
the two boundary sets of the original parametric meshes. Fig. 8 illustrates an example of the procedure of the boundary merging. 
Since the nodes of both boundary sets are parameterised from different mesh structures, the number and positions of the nodes 
are usually not identical as shown in Fig. 8 (a). The boundary AD (red line) with four vertices and EI (blue line) with five 
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vertices come from the two original model.  
 

(a) 

 

(b) 

Fig. 8 An example of merging at boundaries. 

 
As shown in Fig. 8 (b), a new point set is created by taking all the vertices on the two edges and removing one from 

duplicate vertex pair – in this case E and I (or A and D). Some edges are split by the introduction of a new vertex. For example, 
edge EF (or A’C’) is split into EB and BF (A’B’ and B’C’) by the insertion of vertex B (B’). The nodes of the new vertex set 
are then arranged in the order of occurrence from one end (from the left end in this case). Thus, the new vertex set is {A’, B’, C’, 
D’, E’, F’, G’}, and the new edge set is {A’B’, B’C’, C’D’, D’E’, E’F’, F’G’} in this example. 

The concept of merging internal mesh elements is similar to the boundary merging with some additional considerations. Let 
us take an example case where two parameterised meshes share a same boundary ABCE (black lines), one has edges BE and 
BD (red), and the other has edge AC (blue) for internal mesh elements as shown in Fig. 9. The obvious constituents of the new 
vertex set are the existing vertices of the two parametric meshes. To these some new intersection vertices, created by edges 
crossing, are added (G and F in Fig. 9). 

 

 
(a) (b) 

Fig. 9 An example of additional intersection vertices and consequent new triangular faces. 

 
Some edges can be split into two or more segments by the new vertices thus created. If an edge is not crossed by any edge, 

it simply becomes an element of the new edge set. The new edge set of Fig. 9, for example, will be {AB, BC, CD, DE, EA, AG, 
GF, FC, BG, GE, BF, FD}. However, this edge set is not yet complete, since the newly created vertices have introduced 
non-triangular face GFDE, and this face should be split into two triangular faces by generating the edge GD or FE. 

These new edges can be found by first checking if each of the neighbouring nodes of a vertex is joined to the next neighbour 
by an edge. For example, vertex A has three neighbours {B, G, E}, and they are connected by edges {BG, GE}. The neighbours 
of vertex F, on the other hand, are {B, C, D, G}, but there is no edge between vertices G and D. Consequently the edge GD is 
created and added to the edge set. To begin with nodes F and E, both neighbours of vertex G, also needed a new edge FE, but 
with the edge GD newly created, the neighbours of vertex G are now {A, B, F, D, E}. Each neighbour is connected to its next 
neighbour with edges {AB, BF, FD, DE, EA}, and thus a new edge FE is not required for the vertex G. Consequently, the new 
edge set will be {AB, BC, CD, DE, EA, AG, GF, FC, BG, GE, BF, FD, GD} in this case. 

As briefly mentioned above, non-triangular faces arising from merging two meshes are found and split into triangular faces. 
By operating this process repeatedly for all the vertices, the complete new edge set is established, ensuring that the resultant 
mesh is triangular with no non-triangular faces. Fig. 10 (b) shows the parametric hull form mesh which is the result of merging 
two parameterised parent forms (a) and (c). The merged mesh has all the vertices of the two parent meshes, and there is no 
duplicate vertex or edge. 
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Fig. 10 Parameterised meshes of parent model 1 (a) and parent model 2 (c), and their merged mesh (b). 

Remapping 

In order to remap the merged parametric meshes back to the two 3 D surfaces, let us assume that the vertex sets of the two 3 
D original model meshes are S1 = (xi, yi, zi) and S2 = (xj, yj, zj) respectively, and the vertex sets of their parameterised meshes are 
P1 = (ζi, ξi) and P2 = (ζj, ξj) respectively. Let the vertex set of the merged parameterised mesh be represented as M = (ζk, ξk). The 
vertex set M contains the vertices of both P1 and P2. In addition, P1 and P2 have accurate correspondence with S1 and S2  
respectively, since the vertex sets P1 and P2 are parameterised from the vertex sets of S1 and S2. If the numbers of vertices in S1, 
S2 and M are n1, n2 and n3 respectively, then, i = 0, 1, …, n1, j = 0, 1, …, n2 and k = 0, 1, …, n3.  

For remapping the parametric mesh onto the first 3 D parent model, the vertices of the merged mesh M = (ζk, ξk) need to be 
divided into two groups: ’P1 group’ and ’non-P1 group’. If a vertex of M = (ζk, ξk) is an element of P1 = (ζi, ξi), the vertex 
belongs to the ’P1 group’, and its corresponding vertex of S1 = (xi, yi, zi) can easily be found. If not, however, the vertex is put 
into the ’non-P1 group’, and it should be remapped to the 3 D surface with barycentric coordinates of P1 = (ζi, ξi). 

A similar operation can be carried out with the second parent model. Unlike remapping of the vertex set, the edge and face 
sets of the parametric merged mesh can be directly used for both of the remapped meshes, since the structure of remapped 3 D 
meshes are identical to the one of the merged parameterised mesh. 

Fig. 11 shows the original parent model meshes ((a) and (b)), with their merged meshes ((c) and (d)). The mesh structures of 
the original parent models are quite different, but it is apparent that the two re-meshed models have an identical mesh structure. 

 

    
Fig. 11 Original parent model 1 (a) and parent model 2 (b), and their re-meshed models (c) and (d). 

MORPHING 

With the two re-meshed models holding an identical mesh structure, a perfect correspondence is established and there is no 
problem now in proceeding with morphing proper. In this paper, only linear morphing has been investigated and it is defined by: 

 ]1,0[,)1()( 10 ∈⋅+⋅−= tPtPttM  (22) 
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where t is the morphing parameter, M(t) is the generated model and P0 and P1 denote the source and target models respectively. 
The model at t = 0 is equivalent to the first parent model while the model at t = 1 corresponds to the second parent model. Since 
t can take on an unlimited number of values between 0 and 1, an infinite number of intermediate forms can be generated. 
Fig. 12 shows examples of intermediate hull forms in various views (in this example t = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) using the 
merging method. The two parent models are a 5,000 TEU container carrier and a 300,000 DWT VLCC.  

 

       
(a) (b) (c) 

 
(d) (e) (f) 

Fig. 12 Hull form morphing using the merged method. 



Inter J Nav Archit Oc Engng (2012) 4:228~240 239 

CONCLUSIONS 

It has been found that the morphing technique allows an infinite number of predictable hull forms to be generated rapidly on 
demand. One of the key steps in 3 D form morphing is establishing mesh correspondence. This is achieved by re-meshing and 
in this paper the mesh-merging technique was successfully applied to this crucial process. Its alternative, mesh-regularising 
method is possibly much faster in the remeshing algorithm itself. However, mesh-merging requires much less manual 
intervention and manipulations, making it ultimately more efficient and less error-prone. In any case the time penalty is 
negligible, measured in seconds rather than hours. It took approximately 15 seconds using the mesh-merging approach to 
re-mesh a container ship model of 550 vertices and 993 faces and a VLCC model of 559 vertices and 993 faces, so that both of 
them had identical mesh structure with 4900 vertices and 9788 faces. The computer used was a PC with Intel Core i5-480M 
Processor and 4 GB of RAM. Fig. 13 illustrates comparison of the re-meshed container ship model by the mesh-regularising (b) 
and merging (c) methods from original model (a). 

 

 
Fig. 13 Original mesh of a 5,000 TEU container carrier ship and its re-meshed models by mesh-regularising and 

merging methods: (a) original mesh; (b) regularised mesh; (c) merged mesh with a VLCC model mesh. 
 
It was also found that two models of widely differing shapes, such as a mono hull and catamaran hull, can be morphed, 

although this paper does not mention it in detail. Moreover, it is also possible to apply morphing to local features, such as bul-
bous bow and flare. These exercises will serve as an example of morphing as a powerful tool of idea generation.  

Much work still needs to be done before morphing can be used as a practical design tool. One of the uncertainties is the 
question of the continuity of the surfaces created through morphing. On the face of it, a form generated by linear interpolation of 
two forms both of which have continuity of degree k would have similar continuity. However, this requires a more rigorous 
proof. Application of surface smoothing algorithms such as Laplacian smoothing may also be required. 
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