
ABSTRACT

The effects on birch (Betula spp.) of elevated carbon
dioxide (CO2) and ozone (O3), which are both increas-
ing in the troposphere, are surveyed in detail based
on the literature. Birches establish themselves in the
open field after disturbances, and then become domi-
nant trees in temperate or boreal forests. Ecophy-
siological approaches include the measurement of
photosynthesis, biomass, growth, and survival of
seedlings and trees. Elevated CO2 levels give rise to
a net enhancement of the growth of birch trees,
whereas high O3 generally reduces growth. Although
the effects of the two are opposed, there is also an
interactive effect. Basic physiological responses of
the single genus Betula to CO2 and O3 are set out,
and some data are summarized regarding ecological
interactions between trees, or between trees and
other organisms.

Key words: Betula, Elevated carbon dioxide, Ozone,
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1. INTRODUCTION

Recent changes in atmospheric composition are like-
ly to have a large influence on forest ecosystems (Lo-
renz and Lal, 2010; Karnosky et al., 2003a). In parti-
cular, in East Asia, the effects are likely to be serious
because of rapid industrialization with emission of
greenhouse gases. Interactions between the atmos-
phere and biosphere have been studied for an extend-
ed period (Quillet et al., 2010; Fowler et al., 2009; Räi-
sänen and Tuomenvirta, 2009; Smith, 1990); the prin-
cipal concerns are the increasing tropospheric concen-
trations of carbon dioxide (CO2) and ozone (O3) and
their effect on future terrestrial ecosystems (IPCC,
2007; Sitch et al., 2007). CO2 is the substrate in photo-
synthesis but O3 is toxic to plants. In considering forest

decline in Japan, it is necessary to examine the role of
O3 (Kume et al., 2009; Tamura et al., 2002). The atmos-
pheric CO2 concentration has steadily been increasing
from 300 ppm at the beginning in 20th century to more
than 390 ppm in 2011 (NOAA, 2012; IPCC, 2007),
and it will reach 400 to 700 ppm at the year 2100
(IPCC, 2007). Tropospheric O3 concentration also has
increased by 0.5 to 2% per year at many monitoring
stations around the world (Naja and Akimoto, 2004;
Vingarzan, 2004), and in most areas of East Asia the
O3 concentration exceeded 40 ppb on yearly average
(Nagashima et al., 2010) and reached 60 ppb in spring-
time (Nagashima et al., 2010; Yamaji et al., 2008).
Ozone concentration in East Asia may reach 60 ppb on
yearly average in 2020 (Yamaji et al., 2008) or during
the 21st century (Vingarzan, 2004).

Reliable data on the effects of elevated CO2 and/or
O3 on forest health and vitality have come from open-
top chambers (OTCs) or free-air concentration enrich-
ment systems (FACEs), which are semi-closed and
open gas-treatment systems respectively, in which
plants are grown in the atmospheric conditions believ-
ed to be likely in the future (Karnosky et al., 2007).
In general, elevated CO2 reduces stomatal conductance,
and this may limit O3 uptake and consequently allevi-
ate the effects of O3 on plants (Volin et al., 1998).

Birch is the collective name for deciduous broad-
leaved tree species in the genus Betula. There are
more than 100 birch species (Govaerts and Frodin,
1998), and natural birch forests are broadly distribut-
ed across continents in the northern hemisphere: Eura-
sia (Hynynen et al., 2010; Mao et al., 2010; Zyryanova
et al., 2010; Alexeyev et al., 2000), North America
(Chapin et al., 2006; Erdmann, 1990; Grelen, 1990;
Lamson, 1990; Safford et al., 1990), and Japan (Mao
et al., 2010). 

Birches are commercially important species, as well
as ecologically important. Following disturbances such
as forest fires or clear cutting of forests, many birch
trees establish themselves in the early stage of forest
succession, because birch has light demanding traits
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and high growth rate (Koike, 1988). As a result, bir-
ches play a key role in forest ecosystems, especially
in boreal forests where the number of tree species is
small. In Hokkaido, the northerly island in Japan, birch
trees occupy about 11% of the total forest timber stock
(Table 1), surpassing other genera in broadleaved
forests (Hokkaido Prefecture, 2011). Moreover, birch
has a high photosynthetic rate and responds rapidly to
the environment (Koike, 1995a, 1988). Furthermore,
birch wood is denser than that of almost all other
dominant tree species in northern regions such as Hok-
kaido (FFPRI, 2004) and Alaska (Packee et al., 1992).
The birch tree therefore has good carbon (C) accumu-
lation capacity as well as its C assimilation capacity.
The birch is regarded as an important tree in forest
dynamics as well as commercial point.

In this review we describe the effects of elevated
concentrations of CO2 and/or O3 on birch trees and
forests. Although sulfur dioxide and nitrogen oxide
are still important issues of atmospheric environment
in some region, rising CO2 and O3 concentrations have
recently become more major concerns (Paoletti et al.,
2010). These gases have effects on forest ecosystems
including birch forest all around the world. Addition-
ally, we focus on the similarity and difference for the
traits of CO2 and O3, both gases are absorbed through
stomata on leaves but they bring opposite effects on
tree. Different species of birch are all regarded as
‘birches’ and there are differences in characteristics
within a genus, and even among individuals in a sin-
gle species, in response to environmental changes
(Vapaavuori et al., 2009).

2. EFFECTS OF CO2

Increasing atmospheric CO2 is a critical problem
(IPCC, 2007), which can affect several physiological
aspects of plants and biotic interactions between plants
and insects (Körner et al., 2007). Because a forest eco-
system consists of many trees, which contain various
organs, we can detect the responses of whole tree thro-
ugh those organs: leaves, branches, stems and roots.

At leaf level, elevated CO2 stimulates the rate of
photosynthesis (the difference between the uptake
and emission of CO2) in the short-term. Over a long
period, however, acclimation of plants to a higher
concentration of CO2 takes place; this process finally
induces downward- or down-regulation of photosyn-
thesis, observed in the decrease of photosynthetic
parameters such as the maximum rate of carboxyla-
tion and the maximum rate of electron transport (Egu-
chi et al., 2008a; Cao et al., 2007; Zhang and Dang,
2006; Kitao et al., 2005; Rey and Jarvis, 1998; Tjoel-
ker et al., 1998; Koike et al., 1996). The parameters
specifying chlorophyll fluorescence, which indicates
the stress condition of the photosynthetic pathway,
suggests that elevated CO2 should make birches more
susceptible to stresses such as drought or heat (Kitao
et al., 2007, 2005). It is obvious that elevated CO2

affects the photosynthetic process, but over long time-
scales, elevated CO2 may not increase C gain in birches
very much.

Stomatal conductance is an important parameter,
because it indicates gas exchange capacity such as
photosynthesis and transpiration of a leaf. In most
cases, elevated CO2 decreases the stomatal conduc-
tance (Eguchi et al., 2008b; Zhang et al., 2008; Cao
et al., 2007), implying that leaves can prevent water
loss by narrowing their stomata. The decrease in sto-
matal conductance can also be explained as a conse-
quence of the decrease in stomatal density of leaves
(Kürschner et al., 1997; Rey and Jarvis, 1997). For
individual trees, the reduced stomatal conductance of
leaves does not always prevent water loss to the at-
mosphere, because of the higher total leaf area under
elevated CO2 (Kruijt et al., 1999). On the other hand,
there is an exceptional case that stomatal conductance
increased with CO2 enrichment (Kubiske and Pregit-
zer, 1997) and this may be due to increased root vol-
ume for water gain (Wang et al., 1998; Berntson et
al., 1997).

Nitrogen (N) is a component of proteins, including
the enzyme Ribulose-1,5-biphosphate-carboxylase/
oxygenase (Rubisco) which catalyzes the primary reac-
tion involved in CO2 assimilation in photosynthesis in
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Table 1. Major tree genera in Hokkaido and their timber stocks and air-dried wood density.

Coniferous Broadleaved
Common name

Fir Larch Spruce Birch Oak Linden

Stock (×106 m3) 203 (28%) 93 (13%) 66 (9%) 81 (11%) 52 (7%) 39 (5%)
Density (g/cm3) 0.40 0.50 0.43 0.67 0.68 0.50

Note: Values in parentheses express the proportion of total timber stock. Data on timber stock are from Hokkaido Prefecture (2011). Data
on air-dried wood density are from FFPRI (2004) and refer to the following species: Fir: Abies sachalinensis, Larch: Larix kaempferi,
Spruce: Picea jezoensis, Birch: Betula maximowicziana, Oak: Quercus mongolica var. crispula, Linden: Tilia japonica.



many plants; N concentrations in leaves tend to corre-
late positively with the photosynthetic rate (Lambers et
al., 2008; Cao et al., 2007). In a high CO2 environment,
the leaf N concentration ordinarily decreases (Zhang
et al., 2008; Cao et al., 2007; Mattson et al., 2005;
Juurola, 2003; Kuokkanen et al., 2003; McDonald et
al., 1999; Tjoelker et al., 1998; Kubiske and Pregit-
zer, 1996). The reduction in leaf N is partly explained
by dilution of leaf N with more assimilates from photo-
synthesis under elevated CO2, consistent with increas-
ed starch accumulation (Zhang et al., 2008; Mattson et
al., 2005; Rey and Jarvis, 1998; Tjoelker et al., 1998),
which is believed to be a factor in the down-regula-
tion of photosynthesis (Peterson et al., 1999; Rey and
Jarvis, 1998).

The C/N ratio (i.e. the ratio of C to N amount in
plant tissue) is known to be a good indicator of leaf
chemical characteristics. According to the results men-
tioned above, it is reasonable to suppose that the leaf
C/N ratio increases with increasing CO2 concentration
(Koike et al., 2006; Mattson et al., 2005; Juurola,
2003). The increase in the C/N ratio brings changes in
the photosynthetic capacity and also in defense capa-
bility against herbivores such as insects, which employs
phenolic compounds accumulated in leaves. With
some exceptions, Koike et al. (2006) and Wang et al.
(2009) found a greater amount of tannin in leaves and
an increased C/N ratio with CO2 enrichment; also, her-
bivorous insects fed with leaves from a high CO2 envi-
ronment did less well. Other studies have also found
changes in foliar chemical composition due to CO2

enrichment (Ji et al., 2011; Mattson et al., 2005; Kuok-
kanen et al., 2003; McDonald et al., 1999). Because
herbivory is an important component in C balance of
trees, interactions between insect-herbivore and trees
should also be taken into account in considering the
effect on trees of atmospheric changes (Fig. 1).

An increase in leaf-level C due to CO2 enrichment
implies better growth of the whole tree, leading in turn
to greater biomass of the tree (Kitao et al., 2005; Cas-
tovsky and Bazzaz, 1999; Wang et al., 1998; Berntson
et al., 1997; Rey and Jarvis, 1997; Wayne and Bazzaz,
1997; Poorter et al., 1996) with much more available
resources (Fig. 1). 

A rise in CO2 will also induce changes at broader
ecological levels (Potvin et al., 2007), inducing changes
not only in individual trees but in the overall tree popu-
lation, tree community and the whole forest. Depend-
ing on the growth characteristics of tree species, and
in the low-light conditions at the forest floor, shade-
tolerant trees (e.g. oak and maple) may grow better
than shade-intolerant trees such as birch under elevat-
ed CO2 (Sefcik et al., 2006; Kerstiens, 1998; Kubiske
and Pregitzer, 1996). Shade-intolerant trees are in fact
more responsive to raised CO2 than shade-tolerant
trees in high-light environments such as open fields
(Kubiske and Pregitzer, 1996). It is reasonable to con-
sider that birch forests should expand into harsh fields
by improving drought tolerance (Castovsky and Baz-
zaz, 1999) or nutrient acquisition with mycorrhiza
(Berntson et al., 1997) at elevated CO2 levels. 

These studies show that high levels of CO2 induce
significant responses by birch trees and forests (Fig. 1).
Most research set up experiments in which the ambi-
ent CO2 concentration was set at 350 to 380 ppm, and
elevated CO2 at 500 to 720 ppm. The response of the
forests is not necessarily linear with increasing CO2,
and results over short periods are of little value to
long-term prediction future, so it is necessary to con-
duct researches at high CO2 levels over long periods
in order to estimate the future of the forests. Interac-
tions exist between environmental stress and elevated
CO2 (Song and Cheng, 2010; Luo et al., 1999). Ozone
is one such stress factor.
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Fig. 1. Major trend in ecophysiological responses to elevated CO2 in birch trees.



3. EFFECTS OF O3

Ozone is formed in the troposphere by a photoche-
mical reaction between hydrocarbons and nitrogen
oxides (NOx), and human activity is responsible for a
proportion of these (Stockwell et al., 1997). Since
there is significant inter-continental transport of these
O3 precursors (Nagashima et al., 2010; Naja and Aki-
moto, 2004), tropospheric O3 pollution is a global
problem (Sitch et al., 2007; Vingarzan, 2004; Aki-
moto, 2003). Ozone has very high oxidative capacity,
and high O3 concentrations cause injury to plants
(Pellinen et al., 2002), although low concentrations
of O3 may stimulate plant growth (Jäger and Krupa,
2009; Yamaji et al., 2003). High O3 levels eventually
lead to significant reduction in whole-plant biomass,
and perhaps increased susceptibility to other stresses
such as insects or pathogens. Compared to preindus-
trial levels, the present O3 level is likely to have reduc-
ed tree biomass by 7% in global terrestrial ecosys-
tems (Wittig et al., 2009). The wood chemistry of pines
(Smith, 1990) and the leaf surface characteristics of
aspen (Percy et al., 2003, 2002) are affected by O3,
which renders trees susceptible to insect attack or
pathogen infestation.

The impact of O3 has been suggested by field obser-
vations such as tree-ring analysis in pine forests (Miller
et al., 1997), and recent experiments now use OTCs
or FACEs (Matyssek et al., 2010) in which trees are
grown under gas treatments. Such kinds of researches
revealed that damage or growth reduction of birch
was observed even after O3 treatment at low concen-
trations, meaning high sensitivity to O3 (Betula pen-
dula and Betula pubescens: Oksanen et al., 2009), but
the O3 sensitivity of birch may be less (Betula platy-
phylla: Yamaguchi et al., 2011; Kohno et al., 2005).
Ozone sensitivity is variable among the genus Betula
(Manninen et al., 2009; Oksanen and Rousi, 2001),
and even among clones (genotypes) within the same
species (Manninen et al., 2009; Oksanen, 2003) and
this prevents us from generalizing unified O3 effects
on a single species.

Ozone is taken up mainly through leaf stomata, and
exerts its toxicity upon foliar internal tissue (Tausz et
al., 2007). Stomatal O3 uptake is largely responsible
for the impact of O3 on leaves and trees (Wittmann et
al., 2007). To explain the reduction in biomass of trees
caused by O3, a leaf-level stomatal flux-based model
has been proposed in which non-stomatal O3 deposi-
tion was taken into account (UNECE, 2004), improv-
ing on the conventional “accumulated exposure over
a threshold” (AOT) model, which involves only the
O3 concentration. This novel flux-based model assumes

that the leaves which are strongly irradiated by sun-
light at the top of the canopy are responsible for the
O3 uptake of the tree. The flux-based model has been
applied to several species (Emberson et al., 2007) and
its validity has been verified (Karlsson et al., 2007;
Uddling et al., 2004). Hoshika et al. (2011a, b) used it
to examine the spatial difference in maps created by
flux-based and AOT modeling of forests in East Asia.
Estimation of O3 uptake by birch forests in China dif-
fered depending on the model, suggesting the impor-
tance of stomatal closure induced by water-stress in
dry regions (Hoshika et al., 2011a).

Here we shall review the responses of birches to O3

stress. High O3 damages chloroplasts (Prozherina et
al., 2003; Pääkkönen et al., 1998) and reduces the
photosynthetic rate (Mäenpää et al., 2011; Shimizu
and Feng, 2007; Uddling et al., 2005; Shavnin et al.,
1999). This can be reflected in changes in chlorophyll
fluorescence that reveals O3 stress in photosynthetic
pathways (Mao et al., 2012; Wittmann et al., 2007;
Shavnin et al., 1999). These negative effects of O3

give rise to visible symptoms on leaves (Mao et al.,
2012; Vahala et al., 2003).

It is generally believed that the stomatal conductance
of birch is not significantly affected by O3 (Matyssek
et al., 2010; Wittig et al., 2007). Although Oksanen
(2003) exceptionally reported that O3 treatment had
increased stomatal conductance, this could be attribut-
ed to increased stomatal density, which is common
response to O3 (Oksanen, 2005; Paoletti and Grulke,
2005; Pääkkönen et al., 1998; Maurer et al., 1997).
Increase in stomatal density may be reflected in small-
er leaf size under elevated O3 (Oksanen, 2003, 2001;
Oksanen and Saleem, 2001; Pääkkönen et al., 1998),
for the ratio of guard cells (equal to stomata) to epider-
mal cells on leaf is unaffected by O3 (Prozherina et
al., 2003). In terms of the reason why stomatal con-
ductance does not increase despite increased density
of stomata under elevated O3, the effectiveness of low
stomatal aperture against O3 stress, or impaired photo-
synthetic pathway by O3 seems to be a good answer
(Paoletti and Grulke, 2005). There are cases where
stomatal conductance decreased by O3 (Shimizu and
Feng, 2007; Oksanen et al., 2005a; Maurer et al.,
1997). Above-mentioned inhibition of photosynthesis
caused by O3, or exacerbation by other stresses (Oksa-
nen et al., 2005a; Maurer et al., 1997) might cause the
decrease in stomatal conductance. Altogether, respons-
es of stomatal conductance to O3 can be variable even
in a single species (Betula pendula: Oksanen, 2005),
and stomatal conductance alone should not be an indi-
cator of O3 stress.

Chemical compounds in leaf can be altered by O3.
Although N concentration in green leaf is not affected
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by O3 so much (Manninen et al., 2009; Shimizu and
Feng, 2007; Karlsson et al., 2003; Oksanen and Rousi,
2001; Saleem et al., 2001; Oksanen and Saleem, 1999;
Pääkkönen et al., 1998), N concentration in leaf litter
(fallen leaves) increased by O3 treatment, suggesting
the impaired capacity of trans-locating N from senes-
cent leaves to tree body (Uddling et al., 2005). This
may lead increased N loss at the whole tree level. On
the other hand, ozone reduces the Rubisco concentra-
tion (Oksanen, 2005; Yamaji et al., 2003; Oksanen and
Rousi, 2001) and the concentration of chlorophyll
(Wittmann et al., 2007; Oksanen et al., 2005a; Oksa-
nen and Saleem, 1999; Shavnin et al., 1999) in leaves,
which is involved in photosynthesis and consists of N
as well as Rubisco. We believe that the allocation pat-
tern of N in a leaf changes and much N is needed for
repair of damaged tissue, resulting in impaired photo-
synthesis. Some other researchers did not observe
decreases in chlorophyll or Rubisco (Shimizu and
Feng, 2007; Saleem et al., 2001) despite decreases in
the photosynthetic rate (Shimizu and Feng, 2007). It
is possible that the slower photosynthetic rate is due
to a decrease in stomatal conductance as a result from
exclusion of O3 from leaves (Shimizu and Feng, 2007).

In the tree, ozone stimulates detoxification substances
such as phenolic compounds (Oksanen, 2005; Yamaji
et al., 2003; Saleem et al., 2001; Pääkkönen et al.,
1998). Sugars for the formation of these substances in
leaves may be increased (Landolt et al., 1997) whereas
starch may decrease (Oksanen, 2003; Oksanen, 2001;
Saleem et al., 2001) under O3 treatment. Antioxidants
such as ascorbates are believed to be stimulated in
leaves by O3, but this is not certain (Riikonen et al.,
2009). These reports above indicate stimulated C
metabolism by O3. As well as N, the allocation pattern
of C also changes so that trees can cope with O3 stress
rather than invest C in their growth (Fig. 2).

Moreover, ozone stress also reduces the chance of
C acquisition, with shorter leaf longevity (Oksanen,
2005; Uddling et al., 2005; Prozherina et al., 2003;
Maurer et al., 1997), or with decreased leaf biomass
(Manninen et al., 2009; Shimizu and Feng, 2007; Ok-
sanen, 2001; Oksanen and Rousi, 2001), leaf area
(Oksanen, 2001; Saleem et al., 2001; Oksanen and
Saleem, 1999; Pääkkönen et al., 1998), and leaf num-
ber (Oksanen and Rousi, 2001; Pääkkönen et al., 1998)
per tree, in addition to impaired photosynthesis. Such
C deficiency may lead to the reduction in tree growth
at elevated O3 (Manninen et al., 2009; Shimizu and
Feng, 2007; Karlsson et al., 2003; Oksanen, 2001;
Maurer and Matyssek, 1997), which in turn reflects
in the growth of tree organ. Decreased stem growth
(Matyssek et al., 2002) implies increased risk of stem
breakage by disturbances such as wind and snow, and
decreased root growth (Shimizu and Feng, 2007; Karls-
son et al., 2003; Matsumura, 2001; Oksanen, 2001;
Oksanen and Rousi, 2001) means water- and nutrient
deficiency in birch trees under O3 stress.

Although such biomass reductions have been observ-
ed in most cases, O3-induced compensatory responses
have been reported, yielding either greater leaf bio-
mass (Wittmann et al., 2007; Karlsson et al., 2003) or
greater stem height (Oksanen and Rousi, 2001) or both
(Yamaji et al., 2003). Perhaps the annual growth pat-
terns of trees (Kolb and Matyssek, 2003) or hormesis,
i.e., growth stimulation by toxins at low concentrations
(Jäger and Krupa, 2009) are related to this process.

In the way described, O3 has a negative impact on
the growth of birch trees, in contrast to the effect of
CO2 (Fig. 2). However, it is not easy to estimate inter-
actions between O3 and other stresses, and there are
difficulties in scaling from results of individual- or
population level experiments to a mature community
(Matyssek and Sandermann, 2003). Drought (or water-
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Fig. 2. Major trend in ecophysiological responses to elevated O3 in birch trees.



ing) or application of fertilizer has been used in com-
bination with O3 (drought: Shimizu and Feng, 2007;
Pääkkönen et al., 1998; fertilization: Shavnin et al.,
1999; Landolt et al., 1997; Maurer and Matyssek,
1997; Maurer et al., 1997). Since these environmen-
tal factors and high CO2 can influence and even negate
the effect of O3 (Yamaguchi et al., 2011), sensitivity
to O3 of every tree species must be evaluated accord-
ing to the physical environment around trees (i.e., soil
moisture or soil nutrient).

4. COMBINED EFFECTS OF 
CO2 AND O3

Of several types of environmental stress, O3 was
the strongest interactive factor with the atmospheric
CO2 concentration, because high CO2 greatly mitigat-
ed the effect of O3 on trees (Poorter and Pérez-Soba,
2001). It is important to assess the impacts of these
gases on forests, because the gases are first absorbed
through stomata into the leaf and may largely counter-
act the effects of each other. Mortensen (1995) first
looked at the combined effects of CO2 and O3 on birch.
The experimental period was relatively short, about
one month, but the concentrations of the gases were
about 560 ppm for (elevated) CO2 and about 60 ppb
for (elevated) O3, which are realistic values. The Aspen
FACE in the north-central USA is the only site that
enables a free-air enrichment system of CO2 and O3 to
forest stands, and many data gathered there have been
published on the effect of elevated CO2 and O3 on
birch forests (Karnosky et al., 2005, 2003b). King et
al. (2005) reported a 5-year study at the Aspen FACE,
revealing larger differences between treatments at the
longer timescale. In many cases the increases in the
biomass of birch trees due to elevated CO2 were weak-
ened in the presence of high O3 (Betula papyrifera:
Kostiainen et al., 2008; King et al., 2005; Betula pub-
escens: Mortensen, 1995), but Riikonen et al. (2004:
Betula pendula) and Matsumura et al. (2005: Betula
platyphylla) found compensation, namely that com-
bined treatment with both elevated CO2 and O3 result-
ed in no growth reduction compared to the trees under
elevated CO2 alone. There seems to be species differ-
ence in responses to the treatments among birch trees.

The compensated biomass under higher CO2 and
O3 regimes is reflected in the difference in growth
increment of trees (Kostiainen et al., 2006; Riikonen
et al., 2004), which is further mediated by leaf pro-
cesses. Responses of trees in the amount of foliage
(Talhelm et al., 2012; King et al., 2005; Riikonen et
al., 2004) and also in the total leaf area (Uddling et
al., 2008; Kull et al., 2005; Riikonen et al., 2004) are

significant, as elevated CO2 alleviated the negative
effects of O3. These parameters may be affected by
the treatments through changes in spatial leaf distri-
bution within trees (Kull et al., 2003), leaf size (Riiko-
nen et al., 2010, 2008a; Peltonen et al., 2005; Morten-
sen, 1995), and leaf thickness (Riikonen et al., 2010,
2008a, 2004; Oksanen et al., 2005b; Eichelmann et
al., 2004).

Negative effects of O3 on many photosynthetic para-
meters were alleviated by high CO2 (Riikonen et al.,
2008a, 2005; Eichelmann et al., 2004; Karnosky et
al., 2003b). Analyses of chlorophyll fluorescence
indicated that the stress condition of the photosynthe-
tic system caused by O3 alone was relieved in a mix-
ture of elevated CO2 and O3 (Kontunen-Soppela et al.,
2010; Riikonen et al., 2005). For down-regulation of
photosynthesis, which is typically triggered by high
CO2 concentrations, Riikonen et al. (2005) found little
effect of O3 alone or in combination with elevated
CO2.

Ozone uptake to leaves was limited under elevated
CO2++O3 conditions, as a result of lower stomatal con-
ductance than in the ambient CO2 environment (Uddl-
ing et al., 2009; Riikonen et al., 2008a, b, 2005; Padu
et al., 2005). Based on these works, we understand that
the O3-induced depression of photosynthesis is slight-
ly improved by high CO2 at the leaf level. However,
Uddling et al. (2010) stated that high CO2 reduced
stomatal conductance in only a single piece of FACE
experiments. Canopy conductance is believed to incre-
ase, largely because of increased foliage and root bio-
mass under elevated CO2++O3 conditions (Uddling et
al., 2009). Stomata act to exclude O3 from leaves, but
some defense functions within a leaf, such as accumu-
lation of antioxidants, may be more effective than
stomatal closure in reducing damage due to O3 (Padu
et al., 2005; Peltonen et al., 2005). There is no clear
trend in the response of stomatal density to changes in
elevated CO2/O3 (Riikonen et al., 2010, 2008b; Oksa-
nen et al., 2005b; Vanhatalo et al., 2001). More studies
on stomatal density should be conducted, because sam-
ple number in each study is very low.

The amount and the activity of Rubisco were decre-
ased by elevated CO2 or O3 treatment; Rubisco also
decreased under the combination treatment (Kontunen-
Soppela et al., 2010; Riikonen et al., 2005; Eichelmann
et al., 2004). Elevated CO2 induced a decrease in the
leaf N concentration whether or not O3 was elevated
(Riikonen et al., 2005), and the combination of the
gases reduces leaf N more than treatments with either
high CO2 or high O3 (Agrell et al., 2005; Kopper et
al., 2001; Lindroth et al., 2001). Also, the starch con-
centration in leaves tends to increase under a combi-
nation of elevated CO2++O3 more than in high concen-
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trations of CO2 or O3 alone (Riikonen et al., 2008a;
Agrell et al., 2005; Lindroth et al., 2001; Kopper et
al., 2001). Consequently, we can say that the photo-
synthetic down-regulation in birch can be exacerbated
under higher CO2 and O3 regime.

Birch leaves are relatively undesirable as food for
insects when the concentrations of CO2 and O3 are
both high because phenolic compounds increases more
under CO2++O3 enrichment than with CO2 alone (Pel-
tonen et al., 2010; Karonen et al., 2006; Agrell et al.,
2005; Kopper et al., 2001; Lindroth et al., 2001). Be-
sides aboveground C dynamics, atmospheric changes
can alter belowground C dynamics through changes
in foliar chemistry. Fallen leaves decompose on forest
soil. Much work has focused on changes in decompo-
sition rate of leaf litter (Parsons et al., 2008; Kasurinen
et al., 2007, 2006). Elevated O3 accelerated, and ele-
vated CO2 delayed, the decomposition of leaves. There
was an interactive effect, such that the decomposition
rate was slowest under the combined treatment (Par-
sons et al., 2008). The decomposition of leaves by
soil microbes and living roots of trees involves respi-
ration, and has been investigated. Only CO2 treatment
causes difference in soil respiration in general (Kasuri-
nen et al., 2004; King et al., 2001), but the combina-
tion treatments yielded the highest respiration rates
(Pregitzer et al., 2006; Kasurinen et al., 2004). These
interactive results might be due to changes in soil tem-
perature which is affected by leaf area (Pregitzer et al.,
2006). Therefore, under elevated CO2 and O3 regime,
CO2 emission from forest soil may offset increased C
sequestration capacity of the soil.

Nutrient dynamics in forest soil is similarly affected.
Elevated CO2 increased, and elevated O3 decreased,
the input of many nutrients to soil (Talhelm et al., 2012;
Liu et al., 2007). This is due to litter amount, and O3

has also detrimental effects on soil microbes control-
ling soil N dynamics, with which mineralization, nitri-
fication, and immobilization processes are all involv-
ed (Holmes et al., 2003), and on mycorrhizae (Kasuri-
nen et al., 2005). In this way, belowground changes
in soil nutrient, in mycorrhiza association, and in root
volume are considered to cause aboveground respons-
es to atmospheric changes (Zak et al., 2007a; Kasuri-
nen et al., 2005; Holmes et al., 2003). In addition, since
the responses in N acquisition of birch and aspen trees
to changing CO2/O3 regimes clearly differ (Zak et al.,
2007b), the better survival of birch than aspen when
they grow together (Kubiske et al., 2007) implies
changes in the community composition of birch forests
in the future. Changes in nutrient concentration of plant
bodies might therefore have a large effect on future
ecosystem dynamics through complex processes (Lind-
roth, 2010), and we do not have any unified trends

especially in interactive effects of elevated CO2 and
O3 on belowground processes.

Darbah et al. (2008) found that O3 stimulated flower-
ing of the birch trees, and CO2 improved the seed qual-
ity. It is possible that allergy due to birch pollen will
increase in the future. As the greatest amount of cat-
kins under combined CO2++O3 treatment indicated
(Vanhatalo et al., 2003), O3 may accelerate aging of
birch trees; the trees come into bloom at a younger
age, and a greater C amount under elevated CO2 gives
rise to higher seed biomass (Riikonen et al., 2004).
Interactions of these gases in the future may lead to
changes in propagation process of birch trees.

Overall, negative effects of O3 are alleviated under
elevated CO2. It is easy to overestimate or underesti-
mate the structure and function of birch forests when
either of elevated CO2 or O3 alone is considered. Al-
though there are many publications, most derive from
researches in the Aspen FACE or in Finland, not Asian
birch forests. Because uncertainties still exist about
photosynthesis, especially regarding stomatal response
(Onandia et al., 2011) and down-regulation, and C/N
allocation for repair of leaves, it is particularly impor-
tant to determine how CO2 and O3, independently and
together, influence photosynthetic and metabolic path-
ways.

5. CONCLUSIONS

Changes in tree biomass caused by rising atmospher-
ic CO2 and O3 have been confirmed. Because of enrich-
ed CO2, birch forests are likely to accumulate much C
in the future, particularly if tropospheric O3 is low.
Where the O3 level is high, the fertilization effect of
CO2 will be reduced. For photosynthesis and for within-
tree allocation of C and N, the responses to changing
CO2 and O3 have not yet been quantified adequately
because the researchers have been reported variable
results. There are not size-dependent, or species-spe-
cific differences in response to the gas treatments in
most cases. The number of birch species used in the
experiments is about 10. The ages and/or sizes of the
trees in the experiments are comparable. Although
the degree of compensation in biomass under elevated
CO2 plus O3 regimes tends to differ depending on the
species, other responses under the condition may vary
rather than have general trends. This is considered to
be results from experimental condition such as soil
environment or short-term responses to other stresses.
Furthermore, scaling presents further difficulties (Kolb
and Matyssek, 2003; Matyssek and Sandermann,
2003). Responses to O3 may differ between juvenile
and mature trees, due to differences in the amount of
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living tissue which involves respiratory costs, stoma-
tal aperture, C allocation and the light conditions in
the tree canopy (Kolb and Matyssek, 2003). Responses
of mature birch trees have not been elucidated experi-
mentally. On the other hand, high CO2/O3 treatment
for short periods could cause long-term carry-ever
effects (Oksanen and Saleem, 2001; Rey and Jarvis,
1997), so that it is reasonable to consider the effects
of atmospheric change by seedling experiments. Field
surveys of trees and their environmental conditions,
and comparison of the resulting data, should make it
possible to find a new factor currently missing but
evidently needed to determine responses to environ-
mental stresses.
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