DOI QR코드

DOI QR Code

산-염기 표면처리된 MWNTs의 첨가가 탄소섬유 강화 복합재료의 기계적 계면특성에 미치는 영향

Influence of Acid and Base Surface Treatment of Multi-Walled Carbon Nanotubes on Mechanical Interfacial Properties of Carbon Fibers-Reinforced Composites

  • Jung, Gun (Department of Polymer Nano Science & Technology, Chonbuk National University) ;
  • Nah, Chang-Woon (Department of Polymer Nano Science & Technology, Chonbuk National University) ;
  • Seo, Min-Kang (Jeonju Institute of Machinery and Carbon Composites) ;
  • Byun, Joon-Hyung (Composite Materials Group, Korea Institute of Materials Science) ;
  • Lee, Kyu-Hwan (Composite Materials Group, Korea Institute of Materials Science) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • 투고 : 2012.02.17
  • 심사 : 2012.05.31
  • 발행 : 2012.09.25

초록

본 연구는 표면처리에 따른 탄소나노튜브의 표면특성변화가 탄소섬유 강화 복합재료의 기계적 물성에 미치는 영향에 대하여 살펴보았다. 표면처리된 탄소나노튜브의 표면특성은 산-염기도 측정, FTIR, 그리고 XPS를 통하여 알아보았다. 복합재료의 기계적 계면특성은 층간전단강도(interlaminar shear strength; ILSS)와 임계응력세기인자(critical stress intensity factor; $K_{IC}$)를 통하여 고찰하였다. 실험결과 산-염기 상호반응에 의한 각각의 표면처리된 탄소나노튜브의 표면특성의 변화를 가져오며, 산처리한 MWNTs/탄소섬유/에폭시 복합재료의 경우 미처리 MWNTs, 염기 처리 MWNTs와 비교하여 우수한 기계적 물성을 보였다. 이는 산성을 가지는 MWNTs와 염기성의 에폭시 수지가 산-염기 및 수소결합에 의한 계면 결합력의 향상 때문이라 판단된다.

In this work, the effect of chemical treatments of multi-walled carbon nanotubes (MWNTs) on the mechanical interfacial properties of carbon fiber fabric-reinforced composites was investigated. The surface properties of the MWNTs were determined by acid and base values, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analyses. The mechanical interfacial properties of the composites were assessed by interlaminar shear stress (ILSS) and critical stress intensity factor ($K_{IC}$). The chemical treatments based on acid and base reactions led to a significant change of surface characteristics of the MWNTs, especially A-MWNTs/carbon fibers/epoxy composites had higher mechanical properties than those of B-MWNTs and non-treated MWNTs/carbon fibers/epoxy composites. These results were probably due to the improvement of interfacial bonding strength, resulting from the acid-base interaction and hydrogen bonding between the epoxy resins and the MWNT fillers.

키워드

과제정보

연구 과제 주관 기관 : 지식경제부, 교육과학기술부

참고문헌

  1. G. Savage, Carbon-Carbon Composites, Chapman and Hall, London, 1993.
  2. M. M. Schwartz, Composite Materials Handbook, 2nd ed., McGraw-Hill, New York, 1992.
  3. C. R. Thomas, Essentials of Carbon-Carbon Composites, Royal Society of Chemistry, Cambridge, 1993.
  4. J. Rodriguez-Mirasol, P. A. Thrower, and L. R. Radovic, Carbon, 33, 545 (1995). https://doi.org/10.1016/0008-6223(94)00180-8
  5. E. Jeong, J. Kim, and Y. S. Lee, Carbon Lett., 11, 293 (2011).
  6. S. J. Park and M. K. Seo, Interface Science and Composites, Elsevier, New York, 2011.
  7. S. J. Park, M. H. Kim, J. R. Lee, and S. Choi, J. Colloid Interface Sci., 228, 287 (2000). https://doi.org/10.1006/jcis.2000.6953
  8. S. J. Park and J. B. Donnet, J. Colloid Interface Sci., 206, 29 (1998). https://doi.org/10.1006/jcis.1998.5672
  9. E. Fitzer, Carbon Fibers and Their Composites, Springer-Verlag, New York, 1985.
  10. B. K. Min, Polymer(Korea), 12, 599 (1988).
  11. L. Matejka, O. Dukh, and J. Kolarik, Polymer, 41, 1449 (2000). https://doi.org/10.1016/S0032-3861(99)00317-1
  12. L. Matejka, K. Dusek, J. Plestil, J. Kriz, and F. Lednicky, Polymer, 40, 171 (1998).
  13. K. H. Haas and H. Wolter, Curr. Opin. Solid St. M., 4, 571 (1999). https://doi.org/10.1016/S1359-0286(00)00009-7
  14. N. Salahuddin, A. Moet, A. Hiltner, and E. Baer, Eur. Polym. J., 38, 1477 (2002). https://doi.org/10.1016/S0014-3057(02)00015-0
  15. L. Matejka, O. Dukh, and J. Kolarik, Polymer, 41, 1449 (2000). https://doi.org/10.1016/S0032-3861(99)00317-1
  16. J. O. Kim, H. G. Im, and J. H. Kim, Appl. Chem. Eng., 22, 266 (2011).
  17. S. J. Park and Y. S. Jang, J. Colloid Interface Sci., 237, 91 (2001). https://doi.org/10.1006/jcis.2001.7441
  18. J. M. Breiner, J. E. Mark, and G. Beaucage, J. Polym. Sci. Part B: Polym. Phys., 37, 1421 (1999). https://doi.org/10.1002/(SICI)1099-0488(19990701)37:13<1421::AID-POLB8>3.0.CO;2-M
  19. S. J. Park, K. M. Bae, and M. K. Seo, J. Ind. Eng. Chem., 16, 337 (2010). https://doi.org/10.1016/j.jiec.2010.01.051
  20. L. G. Wang and G. B. Yan, Desalination, 274, 81 (2011). https://doi.org/10.1016/j.desal.2011.01.082
  21. M. K. Seo and S. J. Park, Korean Chem. Eng. Res., 43, 401 (2005).
  22. J. B. Alms, S. G. Advani, and J. L. Glancey, Compos. Part A: Appl Sci. Manuf., 42, 57 (2011). https://doi.org/10.1016/j.compositesa.2010.10.002
  23. H. P. Boehm, Adv. Catal., 16, 179 (1966). https://doi.org/10.1016/S0360-0564(08)60354-5
  24. P. Gopal, L. R. Dharani, and F. D. Blum, Polym. Polym. Compos., 5, 327 (1997).
  25. A. Griffith, Phil. Trans. R. Soc. Lond., A221, 163 (1920).
  26. D. G. Munz, L. J. Bubsey, and T. Raymond, Int. J. Fract., 16, 137 (1980). https://doi.org/10.1007/BF00013393