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INTERPOLATION PROBLEMS FOR OPERATORS
WITH CORANK IN ALGL

Joo Ho KANG

Abstract. Let £ be a subspace lattice on a Hilbert space H. And
let X and Y be operators acting on a Hilbert space H. Let sp(z) =
{az : a € C} for any € H. Assume that H = range X & sp(h)
for some h € H and < h, EX X f >=0 for each f € H and E € L.
Then there exists an operator A in AlgL such that AX =Y if and
only if

1
sup {H :fE€H, E€ Ly =K < oo. Moreover, if the nec-

essary condition holds, then we may choose an operator A such that
AX =Y and ||A|| = K.

1. Introduction

On the process of solving operator equation AX =Y for two given
operators X and Y in the algebra B(H), the class of all bounded opera-
tors acting on a Hilbert space H, many mathematicians have applied the
problem on their fields. What is a condition for the operator A to be a
member of A which is a specified subalgebra of B(#)? The subalgebras
in this problem were given in various forms and accordingly the solution
to the problem has been different.

Douglas[2] used the range inclusion property of operators to show
necessary and sufficient conditions for the existence of an operator A
satisfying AX = Y. Kadison[10] has done research on C*-algebras,
Lance[12] on nest-algebras, Hopenwasser[3] on CSL-algebras, Munch
for Hilbert-Schmidt operators on nest-algebras, and Hopenwasser[4] for
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Hilbert-Schmidt operators on CSL-algebras, Moore and Trent[13] on
CSL-algebra AlgL.

Authors[6] obtained a necessary and sufficient condition that there
exists an interpolation operator A in AlgL when every E in £ reduces
A. And authors[7] showed that the necessary and sufficient condition on
[13] is satisfied in Algl when L is a subspace lattice. Again authors|9]
proved that the condition is a condition for interpolating operator when
PE = EP for each F in £ where P is the projection onto the rangeX.
In this paper author investigate an interpolation problem for operators
with corank-one in AlgL.

Let ‘H be a Hilbert space. A subspace lattice L is a strongly closed
lattice of orthogonal projections on H containing the trivial projections
0 and I. The symbol Algl denotes the algebra of bounded operators
on H that leave invariant every projection in L£; AlgLl is a weakly
closed subalgebra of B(#H). Let x1,---,x, be vectors of H. Then
sp({x1, -+ yxn}) = {oax + agwe + -+ + apey | aq, 9, ,a, € C 1
Let M be a subset of . Then M means the closure of M and ML the
orthogonal complement of M. Let N be the set of natural numbers and
C be the set of complex numbers.

2. The Equation AX =Y in Algl

Let H be a Hilbert space and let B(H) be the algebra of all bounded
operators acting on H. Let £ be a subspace lattice on H. Then AlgLl
is the algebra of all bounded linear operators acting on H which leave
invariant each projection F in £. Assume that X and Y are operators in
B(H) and A is an operator in AlgL such that AX =Y. Then ||[ELY f|| =
|ELAXf|| = |ELAELXF|| < |A||EXX £, for all E € L. Tf, for
convenience, we adopt the convention that a fraction whose numerator
and denominator are both zero is equal to zero, then the inequality above
may be stated in the form

LY g
sup ———— < || 4]
sup mix ) = 1A

Theorem A [R. G. Douglas][2]. Let X and Y be bounded oper-
ators acting on a Hilbert space ‘H. Then the following statements are
equivalent:

(1) rangeY™* C range X*

(2) Y'Y < A2X*X for some A > 0
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(3) there exists a bounded operator A on H so that AX =Y.
Moreover, if (1), (2), and (3) are valid, then there exists a unique oper-
ator A so that

(a) A2 = inf{p: VY < uX*X}

(b) kerY* = kerA* and

(c) rangeA* C rangeX .

Theorem 2.1. Let L be a subspace lattice on a Hilbert space H.
And let X and Y be operators acting on a Hilbert space H. Let H =
range X @ sp(h) for some h € H. If < h, E+Xf >=0 for each f € H
and E € L, then the following are equivalent.

(1) There exists an operator A in AlgL such that AX =Y.

L
(2)sup{w:f€7-[, EEE}:K<OO.

Moreover, if condition (2) holds, we may choose an operator A such that
Al = K.

Proof. Assume that su w : EFel;=K Then f

. p HEJ_XfH.fGH, eLy=K <. en for
each E in L, there exists an operator Ag in B(#H) such that Ag(E+X) =
E1Y and |Ag| < K by Theorem A. In particular, if E = 0, then we
have an operator Ay in B(H) such that ApX =Y and [|Ao|| < K. So
Ap(E+X) = EYY = E+AgX. Hence ApE+ = E+Aj on range X for
each E in £. Since < h, E+*X f >=0=< E+h, EL X f > for any f in H,
Eth € range ELXL. By the definitions of Ap and Ag, AgE+h = 0 and
Aph = 0. So ApEtz = E+Agx for x in range XL(: sp(h)). Therefore
AEEJ‘ = EJ_AO on H.

For each F in L,

EYA)E+ = ApE*E+ = AgE+ = E+ Ay
So Ag is an operator in AlgL. O

Theorem 2.2. Let L be a subspace lattice on a Hilbert space H.
And let X and Y be operators acting on a Hilbert space H. Let n
be a natural number(n > 2) and let {hy,--- ,h,} be an orthonormal
set of vectors in ‘H such that H = range X @® sp({h1, - ,hn}). If
< hi{,E*Xf >=0(i=1,---,n) for each f € H and E € L, then the
following are equivalent.

(1) There exists an operator A in AlgL such that AX =Y.
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1YY fIl _
(2)Sup{||EJ_XfH.f€H, EEE}—K<OO.

Moreover, if condition (2) holds, we may choose an operator A such that
Al = K.

Proof. Assume that su w : H,EcL;=K Then f
. pHEinH'fE ,EBely=K<oo. en for
each E in £, there exists an operator Ag in B(H) such that Ag(E+X) =
E1Y and ||Ag| < K by Theorem A. In particular, if E = 0, then we
have an operator Ag in B(#) such that ApX =Y and ||Ao|| < K. So
Ap(EtX) = E'Y = EtApX. Hence ApE+ = E1Aq on range X
for each E in £. Since < hy, E*Xf >= 0 =< E*hy, E*Xf > (i =
1,---,n) for each f € H and E € L, E*h; € range ELXL for each 7 =
1,2, cdots, n. By the definitions of Ag and Ay, AgE+h; = 0 and Agh; =
0 for each i = 1,2,---,n. Hence AgE+ = E+Aj on range XJ'(:
sp({h1,--- ,hn}). Therefore ApE+ = E+Aq on H.
For each F in L,

E+AgE* = AgE+E*- = AgE+ = B+ Aq
So Ag is an operator in AlgL. O

We can generalize the above theorem for the countable case.

Theorem 2.3. Let L be a subspace lattice on a Hilbert space H. And
let X and Y be operators acting on a Hilbert space H. Let {hi, hga,---}
be an orthonormal set of vectors h; in H such that H = range X &
sp({h1,h2,---}). If < h;, E*Xf >=0(i = 1,2,---) for each f € H and
E € L, then the following are equivalent.

(1) There exists an operator A in AlgL such that AX =Y.

4
(2)sup{”EYfH:f€H, EEC}:K<00.

IELX ]|

Moreover, if condition (2) holds, we may choose an operator A such that
Al = K.

Corollary 2.4. Let L be a subspace lattice on a Hilbert space H.
And let X and Y be operators acting on a Hilbert space H. Let B be

a basis of range X' If < h,E+Xf >=0 for each h € B, f € H and
E € L, then the following are equivalent.
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(1) There exists an operator A in AlgL such that AX =Y.

ELY f
(2)Sup{”Ein’\’]:f€H’ EEE}:K<OO.

Moreover, if condition (2) holds, we may choose an operator A such that
1Al = K.

Let H be a Hilbert space and let B(#) be the algebra of all bounded
operators acting on H. Let £ be a subspace lattice on H. Then AlgL is
the algebra of all bounded linear operators acting on H which leave in-
variant each projection E in £. Assume that Xy,--- , X, and Y1,---,Y,
are operators in B(H) and A is an operator in Algl such that AX; =Y;
for each i = 1,--- ,n. Then E1Y;f; = E+AX,f; = EYAELX;f; for
eachi=1,--- ,nand F € L. Hence

| ZELY%J%H = || Z EXAX ||
i=1 =1

=Y ETAELX; fi|

=1

n
< JAINS. B X
i=1
for all £ € L. If, for convenience, we adopt the convention that a fraction
whose numerator and denominator are both zero is equal to zero, then
the inequality above may be stated in the form

sup 1> ELYYqfi
gec | Xoimy ELX fi

< 1AL

Theorem 2.5. Let X1, ---,X,, and Yy, --,Y, be bounded operators
acting on H. Let H = range Xy @ sp(h) for some k in {1,--- ,n} and
some h € H. If < h,E+X;f >=0(i = 1,---,n) for each f € H and
FE € L, then the following are equivalent.

(1) There exists an operator A in Algl such that AX; = Y; for
i=1,2,-- ,n.

(BN S YA
(2) sup { IEL(, %)l

Moreover, if condition (2) holds, we may choose an operator A such that
1Al = K.

:f,-eH,Eeﬁ}:K<oo.
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1+ (507, Yifo)l
[+ (i Xifi)ll

Proof. Assume that sup {
oo. Let F be in £ and

Mg = {ZELXifi  fieH }
=1 .

:f,-eH,EeE}:K<

Define A : Mg — H by AE(Z?:l EJ‘XZfZ) = Z?:l EJ‘}/Z‘]CZ Then
Ap is well-defined and bounded linear. Extend Ag on Mg continuously.
Define Apf = 0 for each f € Mpgt. Then Ap : H — H is a bounded
linear and AgE+X; = E1Y; for each i = 1,--- ,n. If E = 0, then
AoX; =Y, fori =1,--- ,n. Hence Ap(E+X;) = E1Y; = E+ApX; for
each i = 1,---,n. We will show that AzE+ = E+Ay on . Since
Ap(E+X}y) = BEYY), = EX(AoXy), ApE+ = E+Aq on range X, for
each £ in L. Since < h, E*X;f >= 0(i = 1,---,n) for any f in H,
< h, " EYXifi >= 0. Hence ELh € Mg . So ApELh = 0 and
Aogh = 0. Hence ApE+ = E+ A on sp(h). Therefore ApE+ = E+ A
on H.
For each F in L,

EYA)E+ = AgEE+ = AgE+ = E+ A,

So Ag is an operator in Algl and AgX; =Y;(i=1,--- ,n). O

Theorem 2.6. Let X1, ---,X, and Y1, ---,Y, be bounded operators
acting on H. Let m be a natural number(m > 2) and let {hy,--- ,hm}
be an orthonormal set of vectors h; in ‘H such that H = range Xj ©
sp({h1,- -+ ,hm}) for some k in {1,2,--- n}. If < hj, EL X} f >=0(i =
1,---,n, j=1,---,m) for each f € H and E € L, then the following
are equivalent.

(1) There exists an operator A in Algl such that AX; = Y; for
i=1,2,,n.

(NS YA
(2) sup { IEL(, %)l

Moreover, if condition (2) holds, we may choose an operator A such that
IA]l = K.

:fie”H,Eeﬁ}:K<oo.
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1+ (507, Yifo)l
[+ (i Xifi)ll

Proof. Assume that sup {
oo. Let F be in £ and

Mg = {ZELXifi | fieH }

=1

:f,-eH,EeE}:K<

Define Ap : Mp — Hby Apg(>ol ELXif;) = Y0 E1Yfi and
Apf =0forall f € Mgt. Then Ag is well-defined and bounded linear.
Extend Ar on Mg continuously. Define Agf = 0 for each f € Mp™t.
Then Ap : H — H is a bounded linear and ApELX; = ELY; for
eachi=1,---,n. If E =0, then AgX; = Y; for i = 1,--- ,n. Hence
Ap(E*+X;) = EYY; = E+AX; for each i = 1,--- ,n. We will show
that ApE+ = E+Ay on H. Since Ap(E+X},) = EYY, = EX(AgXy),
ApE+ = E+ Ay on range X}, for each E in £. Since < hj,ELXif >=
0O(i=1,---,n, j=1,---,m) forany fin H, < hj,Z?zlELXif >=0.
Hence EJ‘hj e Mgt for j = 1,---,m. By the definition of Ag and
Ay, AEElhj = 0 and Aph; = 0 for each j = 1,--- ,m. Hence ApE+ =
E+Aq on range XkJ'(: sp({h1,-++ ,hm}) ). Therefore ApE+ = E+ A
on H.
For each F in L,

EYAyE+ = AgE*E+ = AgE+ = E+ Ay
So Ag is an operator in Algl and AgX; =Y;(i=1,--- ,n). O

Theorem 2.7. Let X1, ---,X,, and Yy, --,Y, be bounded operators
acting on ‘H. Let {hy, hg,---} be an orthonormal set of vectors h; in H
such that H = range Xy @ sp({h1, ha,---}) for some k in {1,2,--- ,n}.
If < hj,EJ-Xif >=00¢=1,---,n, j=1,2,---) for each f € H and
FE € L, then the following are equivalent.

(1) There exists an operator A in Algl such that AX; = Y; for
i=1,2,-,n.

o J IS Yifi)]
(2) sup { B, Xafoll

Moreover, if condition (2) holds, we may choose an operator A such that
Al = K.

s fi € H, Eeﬁ}:K<oo.

Corollary 2.8. Let X4y, ---,X, and Y1, ---,Y, be bounded oper-
ators acting on H. Let B be a basis of range XkL for some k in
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{1,2,--- ,n}. If < h, E*X;f >=0(i=1,--- ,n) foreachh € B, f € H
and E € L, then the following are equivalent.

(1) There exists an operator A in Algl such that AX; = Y; for
i=1,2,-,n.

L {IEN S YA
(2) sup { IEL(C, Xl

Moreover, if condition (2) holds, we may choose an operator A such that

[A]l = K.

:fiE”H,EGE}:K<oo.

We can generalize above Theorems to the countable case easily.

Let H be a Hilbert space and let B(#) be the algebra of all bounded
operators acting on H. Let £ be a subspace lattice on H. Then Algl
is the algebra of all bounded linear operators acting on H which leave
invariant each projection F in £. Assume that {X;} and {Y;} are op-
erators in B(H) and A is an operator in AlgL such that AX; =Y for
each i = 1,2,---. Then E1Y;f; = E+AX,f; = EXAE+X,f; for each
i=1,2,--- and F € L. Hence

1Y ELYifill = 1Y ELAX
=1 =1
= > EYAE*X;fi|

i=1

n
1L
<A E X
i=1
for all E € L. If, for convenience, we adopt the convention that a fraction

whose numerator and denominator are both zero is equal to zero, then
the inequality above may be stated in the form

i EYYif;
sup ||Zé_1 - H < HAH
pec || ey XX fi|

Theorem 2.9. Let X; and Y; be bounded operators acting on H for
alli =1,2,---. Let H = range Xy @ sp(h) for some k in {1,--- ,n} and
some h € H. If < h, E+X;,f >=0 for each f € H and E € L, then the
following are equivalent.

(1) There exists an operator A in Algl such that AX; = Y; for
i=1,2,-.
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EX(Y1 Y fi
27 { L2 0
1B+ (22, Xafi)ll
Moreover, if condition (2) holds, we may choose an operator A such that
Al = K.

:fieH,Eeﬁ,meN}:K<oo.

Theorem 2.10. Let X; and Y; be bounded operators acting on ‘H for
alli =1,2,---. Let m be a natural number(m > 2) and let {hy, -+ ,hy}
be an orthonormal set of vectors h;j in H such that H = range X; ©
sp({h1,+ ,hp}) for some k in {1,2,--- ,n}. If < hj, B X;f >=0(i =
1,---, j=1,---,m) for each f € H and E € L, then the following are
equivalent.

(1) There exists an operator A in Algl such that AX; = Y; for

1=1,2,---.
EXCM Y fs
2o { LEZ 50
B+ (25 Xafol
Moreover, if condition (2) holds, we may choose an operator A such that
1Al = K.

cfieH, E€L, mEN}—K<oo.

Theorem 2.11. Let X; and Y; be bounded operators acting on ‘H for

alli =1,2,---. Let {h1, ha,-- -} be an orthonormal set of vectors h; in H
such that H = range Xy @ sp({h1, ha,---}) for some k in {1,2,--- n}.
If < hj,ELXif >= 006G =1,---, j = 1,2,--+) for each f € H and

E € L, then the following are equivalent.
(1) There exists an operator A in Algl such that AX; = Y; for

1=1,2,---.
B30 Yifi
B+ Xafi)l
Moreover, if condition (2) holds, we may choose an operator A such that
Al = K.

cfi€H, E€L, mEN}:K<oo.

Corollary 2.12. Let X; and Y; be bounded operators acting on H
for all
i1=1,2,---. Let B be a basis of range X;Cl for some k in {1,2,--- ,n}.
If<h,Et*X;f >=0(i=1,---) foreachh€ B, f € H and E € L, then
the following are equivalent.

(1) There exists an operator A in Algl such that AX; = Y; for
i=1,2,---.
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1B+ (2 Yifi)l
B0 Xafo)

Moreover, if condition (2) holds, we may choose an operator A such that
1Al = K.

(2)sup{ :fZ-EH,EEE,mEN}:K<oo.

3. The Equation Az =y in Algl

Let x and y be vectors in H and A be an operator in AlgL such that
Az = y. Then |[Ety|| = |E+Az|| = |ELAE+ 2| < ||A||||E+2]|| for all
E € L. If, for convenience, we adopt the convention that a fraction
whose numerator and denominator are both zero is equal to zero, then
the above inequality may be stated in the form

| E-+y]|
EeL HEJ'SUH

<Al

We consider the above fact when L is a subspace lattice without the
commutative condition.

Let x,y and g be non-zero vectors in H. Let X = xz®gand Y = y®g.
Then we can obtain the following by Theorem 2.1 and Corollary 2.4.

Theorem 3.1. Let L be a subspace lattice on H and let x and y be
vectors in H. If < h, E+x >= 0 for each h € sp(x)*" and E € L, then
the following are equivalent.

(1) There exists an operator A in AlgL such that Ax = y.

| ELyll
2 : Fel =K, .
()Sup{HEJ-:nH € 0 < o0

Moreover, if condition (2) holds, we may choose an operator A such that
1Al = Ko
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Byl
| |ETal
zero vectors in H and X =z ® g and ¥ =y ® g. Then

Proof. Assume that { E e [,} = Ky < co. Let g be non-

IELY fll = |1E-(y @ 9) ]
=B < f.9 >yl
= < f.g>E"y| and
IEXXf]| = |IE*(z @ 9)f|

- ”El < f:g > JZ‘H
= | <fg>E"z|.
|ELY £ } By
Hencesup{:fé%andEEE = sup s BFel
[ELX L [ E+a|
Since N
|E-Y [l : .
sup m :feHand E € L} < oo, there exists an operator A in
Algl such that AX =Y by Theorem 2.1. Since AX = Az ® g) =
(Ar)@g=y®g, Az =y. O
Let x;,y;(i = 1,--- ,n) and g be non-zero vectors in H. Let X = z;®g

and Y = y; ® g. Then the next theorem is obtained by modifying the
proof used in Theorem 2.5 and Corollary 2.8.

Let z1,--- ,x, and y1, - -,y be vectors in H and A be an operator
in Algl such that Az; = y;(i = 1,--- ,n). Then E+tauy; = Eto; Ax; =
o, E+*AE+‘z; = EXAE+ oz, for all E € £. Hence

n

1> Byl = 1Y Eaidx|

=1 =1
n
= H Z EJ‘AEJ'OQ'xiH

i=1

n
L
< Al Bt aii|
i=1

for all E € L. If, for convenience, we adopt the convention that a fraction
whose numerator and denominator are both zero is equal to zero, then
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the above inequality may be stated in the form

L DR RPN
sup H Zzn:l J_OélyZH S ||A||
pec || 221 Etoux|

Theorem 3.2. Let L be a subspace lattice on H and let x1,--- ,zp,
and yy,- -+ ,y, be vectors inH. If < h, E+x; >=0(i = 1,--- ,n) for each
h € sp(zp)t, E € £ and for some k in {1,2,--- ,n}, then the following
are equivalent.

(1) There exists an operator A in AlgL such that Ax; = y; for i =
1,2, ,n.

ELS7 g
(2) sup { HEL %ﬁfl ZZZZ“ : FeL, a; € (C} = Kp < o0.
i=1 QiTi

Moreover, if condition (2) holds, we may choose an operator A such that
[A]l = Ko.

BT cayill

Proof. Assume that sup{ = cEBel, 0, eCr=Kp<
B+ 3 0 i '

oo. Let g be a non-zero vector in H and X; = z; ® g and Y; = y; ® g for

i=1,---,n. Then

1BVl = 11 B v 9) il

i=1 i=1

n
=Y E" < fig>ul

=1

n
=B+ < fi,g > yill and
=1

IEXQ S Xifoll = 1> E (@ @ 9) fil

=1 =1

n
IS B < fig >

i=1

n
| EES < fing > ail
i=1
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tonee JEECCIL Yl _ 150 < fug > Ehy
O IETEL XA T T < fig > Bl

Since | e

Sup{ 1= > i il
BT, ol

an operator A in Algl such that AX; = Y;(i = 1,--- ,n) by Theorem

2.5. Since AX; = A(z; ® g) = (Az;) ® g = y; ® g, y; = Ax; for each

i=1,---,n. O

for each £ € L.

Fel o€ (C} = Ky < o0, then there exists

We can extend Theorem 3.2 to countably infinite vectors and get the
following theorem from Theorem 2.9 and Corollary 2.12.

Theorem 3.3. Let L be a subspace lattice on H and let x; and y; be
vectors in H for i € N. If < h, E*+x; >= 0 for each h € sp(ack)L, Eecl
and for some k in {1,2,---}, then the following are equivalent.

(1) There exists an operator A in AlgL such that Ax; = y; for i =
1,2, --.

EL Ny
(2) sup { \|||E¢ %ﬁllzlzl“ c Eel, a;eCne N} =Ky < .
i=1 XiTi

Moreover, if condition (2) holds, we may choose an operator A such that
[A]l = Ko.
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