# INTERPOLATION PROBLEMS FOR OPERATORS WITH CORANK IN ALG $\mathcal{L}$

Joo Ho Kang

**Abstract.** Let  $\mathcal{L}$  be a subspace lattice on a Hilbert space  $\mathcal{H}$ . And let X and Y be operators acting on a Hilbert space  $\mathcal{H}$ . Let  $sp(x) = \{\alpha x : \alpha \in \mathbb{C}\}$  for any  $x \in \mathcal{H}$ . Assume that  $\mathcal{H} = \overline{range\ X} \oplus sp(h)$  for some  $h \in \mathcal{H}$  and  $h \in \mathcal{H}$  and only if

 $\sup\left\{\frac{\|E^\perp Yf\|}{\|E^\perp Xf\|}: f\in\mathcal{H},\ E\in\mathcal{L}\right\}=K<\infty.\ \text{Moreover, if the necessary condition holds, then we may choose an operator }A\text{ such that }AX=Y\text{ and }\|A\|=K.$ 

## 1. Introduction

On the process of solving operator equation AX = Y for two given operators X and Y in the algebra  $\mathcal{B}(\mathcal{H})$ , the class of all bounded operators acting on a Hilbert space  $\mathcal{H}$ , many mathematicians have applied the problem on their fields. What is a condition for the operator A to be a member of  $\mathcal{A}$  which is a specified subalgebra of  $\mathcal{B}(\mathcal{H})$ ? The subalgebras in this problem were given in various forms and accordingly the solution to the problem has been different.

Douglas[2] used the range inclusion property of operators to show necessary and sufficient conditions for the existence of an operator A satisfying AX = Y. Kadison[10] has done research on C\*-algebras, Lance[12] on nest-algebras, Hopenwasser[3] on CSL-algebras, Munch for Hilbert-Schmidt operators on nest-algebras, and Hopenwasser[4] for

Received July 10, 2012. Accepted July 27, 2012.

<sup>2000</sup> Mathematics Subject Classification. 47L35.

Key words and phrases. Interpolation Problem, Subspace Lattice,  $\mathrm{Alg}\mathcal{L},$  CSL-Alg $\mathcal{L}.$ 

This paper is supported by Daegu University Grant (2010).

Hilbert-Schmidt operators on CSL-algebras, Moore and Trent[13] on CSL-algebra  $Alg \mathcal{L}$ .

Authors[6] obtained a necessary and sufficient condition that there exists an interpolation operator A in  $Alg\mathcal{L}$  when every E in  $\mathcal{L}$  reduces A. And authors[7] showed that the necessary and sufficient condition on [13] is satisfied in  $Alg\mathcal{L}$  when  $\mathcal{L}$  is a subspace lattice. Again authors[9] proved that the condition is a condition for interpolating operator when PE = EP for each E in  $\mathcal{L}$  where P is the projection onto the  $\overline{rangeX}$ . In this paper author investigate an interpolation problem for operators with corank-one in  $Alg\mathcal{L}$ .

Let  $\mathcal{H}$  be a Hilbert space. A subspace lattice  $\mathcal{L}$  is a strongly closed lattice of orthogonal projections on  $\mathcal{H}$  containing the trivial projections 0 and I. The symbol  $\mathrm{Alg}\mathcal{L}$  denotes the algebra of bounded operators on  $\mathcal{H}$  that leave invariant every projection in  $\mathcal{L}$ ;  $\mathrm{Alg}\mathcal{L}$  is a weakly closed subalgebra of  $\mathcal{B}(\mathcal{H})$ . Let  $x_1, \dots, x_n$  be vectors of  $\mathcal{H}$ . Then  $sp(\{x_1, \dots, x_n\}) = \{\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n \mid \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{C} \}$ . Let M be a subset of  $\mathcal{H}$ . Then  $\overline{M}$  means the closure of M and  $\overline{M}^{\perp}$  the orthogonal complement of  $\overline{M}$ . Let  $\mathbb{N}$  be the set of natural numbers and  $\mathbb{C}$  be the set of complex numbers.

### 2. The Equation AX = Y in $Alg \mathcal{L}$

Let  $\mathcal{H}$  be a Hilbert space and let  $\mathcal{B}(\mathcal{H})$  be the algebra of all bounded operators acting on  $\mathcal{H}$ . Let  $\mathcal{L}$  be a subspace lattice on  $\mathcal{H}$ . Then  $\mathrm{Alg}\mathcal{L}$  is the algebra of all bounded linear operators acting on  $\mathcal{H}$  which leave invariant each projection E in  $\mathcal{L}$ . Assume that X and Y are operators in  $\mathcal{B}(\mathcal{H})$  and A is an operator in  $\mathrm{Alg}\mathcal{L}$  such that AX = Y. Then  $\|E^{\perp}Yf\| = \|E^{\perp}AXf\| = \|E^{\perp}AE^{\perp}Xf\| \le \|A\|\|E^{\perp}Xf\|$ , for all  $E \in \mathcal{L}$ . If, for convenience, we adopt the convention that a fraction whose numerator and denominator are both zero is equal to zero, then the inequality above may be stated in the form

$$\sup_{E \in \mathcal{L}} \frac{\|E^{\perp}Yf\|}{\|E^{\perp}Xf\|} \le \|A\|.$$

**Theorem A** [R. G. Douglas][2]. Let X and Y be bounded operators acting on a Hilbert space  $\mathcal{H}$ . Then the following statements are equivalent:

- (1) range $Y^* \subseteq \text{range } X^*$
- (2)  $Y^*Y \leq \lambda^2 X^*X$  for some  $\lambda \geq 0$

- (3) there exists a bounded operator A on  $\mathcal{H}$  so that AX = Y. Moreover, if (1), (2), and (3) are valid, then there exists a unique operator A so that
  - (a)  $||A||^2 = \inf\{\mu : Y^*Y \le \mu X^*X\}$
  - (b)  $kerY^* = kerA^*$  and
  - (c)  $rangeA^* \subseteq rangeX^-$ .

**Theorem 2.1.** Let  $\mathcal{L}$  be a subspace lattice on a Hilbert space  $\mathcal{H}$ . And let X and Y be operators acting on a Hilbert space  $\mathcal{H}$ . Let  $\mathcal{H} = \overline{range\ X} \oplus sp(h)$  for some  $h \in \mathcal{H}$ . If  $\langle h, E^{\perp}Xf \rangle = 0$  for each  $f \in \mathcal{H}$  and  $E \in \mathcal{L}$ , then the following are equivalent.

(1) There exists an operator A in  $Alg\mathcal{L}$  such that AX = Y.

(2) 
$$\sup \left\{ \frac{\|E^{\perp}Yf\|}{\|E^{\perp}Xf\|} : f \in \mathcal{H}, \ E \in \mathcal{L} \right\} = K < \infty.$$

Moreover, if condition (2) holds, we may choose an operator A such that ||A|| = K.

Proof. Assume that  $\sup\left\{\frac{\|E^{\perp}Yf\|}{\|E^{\perp}Xf\|}: f\in\mathcal{H}, E\in\mathcal{L}\right\} = K < \infty$ . Then for each E in  $\mathcal{L}$ , there exists an operator  $A_E$  in  $\mathcal{B}(\mathcal{H})$  such that  $A_E(E^{\perp}X) = E^{\perp}Y$  and  $\|A_E\| \leq K$  by Theorem A. In particular, if E = 0, then we have an operator  $A_0$  in  $\mathcal{B}(\mathcal{H})$  such that  $A_0X = Y$  and  $\|A_0\| \leq K$ . So  $A_E(E^{\perp}X) = E^{\perp}Y = E^{\perp}A_0X$ . Hence  $A_EE^{\perp} = E^{\perp}A_0$  on  $\overline{range\ X}$  for each E in  $\mathcal{L}$ . Since  $< h, E^{\perp}Xf >= 0 = < E^{\perp}h, E^{\perp}Xf >$  for any f in  $\mathcal{H}$ ,  $E^{\perp}h \in \overline{range\ E^{\perp}X}^{\perp}$ . By the definitions of  $A_E$  and  $A_0, A_EE^{\perp}h = 0$  and  $A_0h = 0$ . So  $A_EE^{\perp}x = E^{\perp}A_0x$  for x in  $\overline{range\ X}^{\perp}(=sp(h))$ . Therefore  $A_EE^{\perp} = E^{\perp}A_0$  on  $\mathcal{H}$ .

For each E in  $\mathcal{L}$ ,

$$E^{\perp}A_0E^{\perp} = A_EE^{\perp}E^{\perp} = A_EE^{\perp} = E^{\perp}A_0 \ .$$

So  $A_0$  is an operator in Alg $\mathcal{L}$ .

**Theorem 2.2.** Let  $\mathcal{L}$  be a subspace lattice on a Hilbert space  $\mathcal{H}$ . And let X and Y be operators acting on a Hilbert space  $\mathcal{H}$ . Let n be a natural number  $(n \geq 2)$  and let  $\{h_1, \dots, h_n\}$  be an orthonormal set of vectors in  $\mathcal{H}$  such that  $\mathcal{H} = \overline{range\ X} \oplus sp(\{h_1, \dots, h_n\})$ . If  $\langle h_i, E^{\perp}Xf \rangle = 0 (i = 1, \dots, n)$  for each  $f \in \mathcal{H}$  and  $E \in \mathcal{L}$ , then the following are equivalent.

(1) There exists an operator A in  $Alg\mathcal{L}$  such that AX = Y.

$$(2) \sup \left\{ \frac{\|E^{\perp}Yf\|}{\|E^{\perp}Xf\|} : f \in \mathcal{H}, \ E \in \mathcal{L} \right\} = K < \infty.$$

Proof. Assume that  $\sup \left\{ \frac{\|E^{\perp}Yf\|}{\|E^{\perp}Xf\|} : f \in \mathcal{H}, E \in \mathcal{L} \right\} = K < \infty$ . Then for each E in  $\mathcal{L}$ , there exists an operator  $A_E$  in  $\mathcal{B}(\mathcal{H})$  such that  $A_E(E^{\perp}X) = E^{\perp}Y$  and  $\|A_E\| \leq K$  by Theorem A. In particular, if E = 0, then we have an operator  $A_0$  in  $\mathcal{B}(\mathcal{H})$  such that  $A_0X = Y$  and  $\|A_0\| \leq K$ . So  $A_E(E^{\perp}X) = E^{\perp}Y = E^{\perp}A_0X$ . Hence  $A_EE^{\perp} = E^{\perp}A_0$  on  $\overline{range\ X}$  for each E in  $\mathcal{L}$ . Since  $A_E \in \mathcal{L}$  in  $A_E \in \mathcal{L}$ 

For each E in  $\mathcal{L}$ ,

$$E^{\perp}A_0E^{\perp} = A_EE^{\perp}E^{\perp} = A_EE^{\perp} = E^{\perp}A_0$$

So  $A_0$  is an operator in  $Alg \mathcal{L}$ .

We can generalize the above theorem for the countable case.

**Theorem 2.3.** Let  $\mathcal{L}$  be a subspace lattice on a Hilbert space  $\mathcal{H}$ . And let X and Y be operators acting on a Hilbert space  $\mathcal{H}$ . Let  $\{h_1, h_2, \dots\}$  be an orthonormal set of vectors  $h_i$  in  $\mathcal{H}$  such that  $\mathcal{H} = \overline{range\ X} \oplus \overline{sp(\{h_1, h_2, \dots\})}$ . If  $\langle h_i, E^{\perp}Xf \rangle = 0 (i = 1, 2, \dots)$  for each  $f \in \mathcal{H}$  and  $E \in \mathcal{L}$ , then the following are equivalent.

(1) There exists an operator A in  $Alg\mathcal{L}$  such that AX = Y.

$$(2) \sup \left\{ \frac{\|E^{\perp}Yf\|}{\|E^{\perp}Xf\|} : f \in \mathcal{H}, \ E \in \mathcal{L} \right\} = K < \infty.$$

Moreover, if condition (2) holds, we may choose an operator A such that ||A|| = K.

**Corollary 2.4.** Let  $\mathcal{L}$  be a subspace lattice on a Hilbert space  $\mathcal{H}$ . And let X and Y be operators acting on a Hilbert space  $\mathcal{H}$ . Let  $\mathcal{B}$  be a basis of  $\overline{range} \ \overline{X}^{\perp}$ . If  $\langle h, E^{\perp}Xf \rangle = 0$  for each  $h \in \mathcal{B}$ ,  $f \in \mathcal{H}$  and  $E \in \mathcal{L}$ , then the following are equivalent.

(1) There exists an operator A in  $Alg\mathcal{L}$  such that AX = Y.

(2) 
$$\sup \left\{ \frac{\|E^{\perp}Yf\|}{\|E^{\perp}Xf\|} : f \in \mathcal{H}, E \in \mathcal{L} \right\} = K < \infty.$$

Moreover, if condition (2) holds, we may choose an operator A such that ||A|| = K.

Let  $\mathcal{H}$  be a Hilbert space and let  $\mathcal{B}(\mathcal{H})$  be the algebra of all bounded operators acting on  $\mathcal{H}$ . Let  $\mathcal{L}$  be a subspace lattice on  $\mathcal{H}$ . Then  $\mathrm{Alg}\mathcal{L}$  is the algebra of all bounded linear operators acting on  $\mathcal{H}$  which leave invariant each projection E in  $\mathcal{L}$ . Assume that  $X_1, \dots, X_n$  and  $Y_1, \dots, Y_n$  are operators in  $\mathcal{B}(\mathcal{H})$  and A is an operator in  $\mathrm{Alg}\mathcal{L}$  such that  $AX_i = Y_i$  for each  $i = 1, \dots, n$ . Then  $E^{\perp}Y_if_i = E^{\perp}AX_if_i = E^{\perp}AE^{\perp}X_if_i$  for each  $i = 1, \dots, n$  and  $E \in \mathcal{L}$ . Hence

$$\| \sum_{i=1}^{n} E^{\perp} Y_{i} f_{i} \| = \| \sum_{i=1}^{n} E^{\perp} A X_{i} f_{i} \|$$

$$= \| \sum_{i=1}^{n} E^{\perp} A E^{\perp} X_{i} f_{i} \|$$

$$\leq \| A \| \| \sum_{i=1}^{n} E^{\perp} X_{i} f_{i} \|$$

for all  $E \in \mathcal{L}$ . If, for convenience, we adopt the convention that a fraction whose numerator and denominator are both zero is equal to zero, then the inequality above may be stated in the form

$$\sup_{E \in \mathcal{L}} \frac{\|\sum_{i=1}^{n} E^{\perp} Y_i f_i\|}{\|\sum_{i=1}^{n} E^{\perp} X_i f_i\|} \le \|A\|.$$

**Theorem 2.5.** Let  $X_1, \dots, X_n$  and  $Y_1, \dots, Y_n$  be bounded operators acting on  $\mathcal{H}$ . Let  $\mathcal{H} = \overline{range} \ X_k \oplus sp(h)$  for some k in  $\{1, \dots, n\}$  and some  $h \in \mathcal{H}$ . If  $\langle h, E^{\perp} X_i f \rangle = 0 (i = 1, \dots, n)$  for each  $f \in \mathcal{H}$  and  $E \in \mathcal{L}$ , then the following are equivalent.

(1) There exists an operator A in  $Alg\mathcal{L}$  such that  $AX_i = Y_i$  for  $i = 1, 2, \dots, n$ .

(2) 
$$\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{n} Y_i f_i)\|}{\|E^{\perp}(\sum_{i=1}^{n} X_i f_i)\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L} \right\} = K < \infty.$$

Moreover, if condition (2) holds, we may choose an operator A such that ||A|| = K.

*Proof.* Assume that  $\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{n} Y_i f_i)\|}{\|E^{\perp}(\sum_{i=1}^{n} X_i f_i)\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L} \right\} = K < \infty$ . Let E be in  $\mathcal{L}$  and

$$\mathcal{M}_E = \left\{ \sum_{i=1}^n E^{\perp} X_i f_i : f_i \in \mathcal{H} \right\}$$

Define  $A_E: \mathcal{M}_E \to \mathcal{H}$  by  $A_E(\sum_{i=1}^n E^{\perp}X_if_i) = \sum_{i=1}^n E^{\perp}Y_if_i$ . Then  $A_E$  is well-defined and bounded linear. Extend  $A_E$  on  $\overline{\mathcal{M}}_E$  continuously. Define  $A_Ef=0$  for each  $f\in \mathcal{M}_E^{\perp}$ . Then  $A_E:\mathcal{H}\to\mathcal{H}$  is a bounded linear and  $A_EE^{\perp}X_i=E^{\perp}Y_i$  for each  $i=1,\cdots,n$ . If E=0, then  $A_0X_i=Y_i$  for  $i=1,\cdots,n$ . Hence  $A_E(E^{\perp}X_i)=E^{\perp}Y_i=E^{\perp}A_0X_i$  for each  $i=1,\cdots,n$ . We will show that  $A_EE^{\perp}=E^{\perp}A_0$  on  $\overline{\mathcal{H}}$ . Since  $A_E(E^{\perp}X_k)=E^{\perp}Y_k=E^{\perp}(A_0X_k), \ A_EE^{\perp}=E^{\perp}A_0$  on  $\overline{\mathcal{H}}$  for each E in  $\mathcal{L}$ . Since  $A_E(E^{\perp}X_i)=A_0$  on  $A_E(E^{\perp}X_i)=A_0$  on A

For each E in  $\mathcal{L}$ ,

$$E^{\perp}A_0E^{\perp} = A_EE^{\perp}E^{\perp} = A_EE^{\perp} = E^{\perp}A_0 \ .$$

So  $A_0$  is an operator in Alg $\mathcal{L}$  and  $A_0X_i = Y_i (i = 1, \dots, n)$ .

**Theorem 2.6.** Let  $X_1, \dots, X_n$  and  $Y_1, \dots, Y_n$  be bounded operators acting on  $\mathcal{H}$ . Let m be a natural number  $(m \geq 2)$  and let  $\{h_1, \dots, h_m\}$  be an orthonormal set of vectors  $h_j$  in  $\mathcal{H}$  such that  $\mathcal{H} = \overline{range\ X_k} \oplus sp(\{h_1, \dots, h_m\})$  for some k in  $\{1, 2, \dots, n\}$ . If  $\{h_j, E^{\perp}X_k f\} >= 0$  ( $i = 1, \dots, n, j = 1, \dots, m$ ) for each  $f \in \mathcal{H}$  and  $E \in \mathcal{L}$ , then the following are equivalent.

(1) There exists an operator A in  $Alg\mathcal{L}$  such that  $AX_i = Y_i$  for  $i = 1, 2, \dots, n$ .

(2) 
$$\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{n} Y_i f_i)\|}{\|E^{\perp}(\sum_{i=1}^{n} X_i f_i)\|} : f_i \in \mathcal{H}, E \in \mathcal{L} \right\} = K < \infty.$$

Moreover, if condition (2) holds, we may choose an operator A such that ||A|| = K.

*Proof.* Assume that  $\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{n}Y_{i}f_{i})\|}{\|E^{\perp}(\sum_{i=1}^{n}X_{i}f_{i})\|} : f_{i} \in \mathcal{H}, \ E \in \mathcal{L} \right\} = K < \infty$ . Let E be in  $\mathcal{L}$  and

$$\mathcal{M}_E = \left\{ \sum_{i=1}^n E^{\perp} X_i f_i \mid f_i \in \mathcal{H} \right\}$$

Define  $A_E: \mathcal{M}_E \to \mathcal{H}$  by  $A_E(\sum_{i=1}^n E^\perp X_i f_i) = \sum_{i=1}^n E^\perp Y_i f_i$  and  $A_E f = 0$  for all  $f \in \mathcal{M}_E^\perp$ . Then  $A_E$  is well-defined and bounded linear. Extend  $A_E$  on  $\overline{\mathcal{M}_E}$  continuously. Define  $A_E f = 0$  for each  $f \in \mathcal{M}_E^\perp$ . Then  $A_E: \mathcal{H} \to \mathcal{H}$  is a bounded linear and  $A_E E^\perp X_i = E^\perp Y_i$  for each  $i = 1, \cdots, n$ . If E = 0, then  $A_0 X_i = Y_i$  for  $i = 1, \cdots, n$ . Hence  $A_E(E^\perp X_i) = E^\perp Y_i = E^\perp A_0 X_i$  for each  $i = 1, \cdots, n$ . We will show that  $A_E E^\perp = E^\perp A_0$  on  $\overline{\mathcal{H}}$ . Since  $A_E(E^\perp X_k) = E^\perp Y_k = E^\perp (A_0 X_k)$ ,  $A_E E^\perp = E^\perp A_0$  on  $\overline{\mathcal{H}}$  for each E in E. Since E in E

For each E in  $\mathcal{L}$ ,

$$E^{\perp}A_0E^{\perp} = A_EE^{\perp}E^{\perp} = A_EE^{\perp} = E^{\perp}A_0.$$

So  $A_0$  is an operator in Alg $\mathcal{L}$  and  $A_0X_i = Y_i (i = 1, \dots, n)$ .

**Theorem 2.7.** Let  $X_1, \dots, X_n$  and  $Y_1, \dots, Y_n$  be bounded operators acting on  $\mathcal{H}$ . Let  $\{h_1, h_2, \dots\}$  be an orthonormal set of vectors  $h_j$  in  $\mathcal{H}$  such that  $\mathcal{H} = \overline{range} \ \overline{X_k} \oplus \overline{sp(\{h_1, h_2, \dots\})}$  for some k in  $\{1, 2, \dots, n\}$ . If  $\langle h_j, E^{\perp}X_i f \rangle = 0 (i = 1, \dots, n, j = 1, 2, \dots)$  for each  $f \in \mathcal{H}$  and  $E \in \mathcal{L}$ , then the following are equivalent.

(1) There exists an operator A in  $Alg\mathcal{L}$  such that  $AX_i = Y_i$  for  $i = 1, 2, \dots, n$ .

(2) 
$$\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{n} Y_i f_i)\|}{\|E^{\perp}(\sum_{i=1}^{n} X_i f_i)\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L} \right\} = K < \infty.$$

Moreover, if condition (2) holds, we may choose an operator A such that ||A|| = K.

**Corollary 2.8.** Let  $X_1, \dots, X_n$  and  $Y_1, \dots, Y_n$  be bounded operators acting on  $\mathcal{H}$ . Let  $\mathcal{B}$  be a basis of  $\overline{range X_k}^{\perp}$  for some k in

- $\{1, 2, \dots, n\}$ . If  $\langle h, E^{\perp}X_i f \rangle = 0 (i = 1, \dots, n)$  for each  $h \in \mathcal{B}$ ,  $f \in \mathcal{H}$  and  $E \in \mathcal{L}$ , then the following are equivalent.
- (1) There exists an operator A in  $Alg\mathcal{L}$  such that  $AX_i = Y_i$  for  $i = 1, 2, \dots, n$ .

(2) 
$$\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{n} Y_i f_i)\|}{\|E^{\perp}(\sum_{i=1}^{n} X_i f_i)\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L} \right\} = K < \infty.$$

We can generalize above Theorems to the countable case easily.

Let  $\mathcal{H}$  be a Hilbert space and let  $\mathcal{B}(\mathcal{H})$  be the algebra of all bounded operators acting on  $\mathcal{H}$ . Let  $\mathcal{L}$  be a subspace lattice on  $\mathcal{H}$ . Then  $\mathrm{Alg}\mathcal{L}$  is the algebra of all bounded linear operators acting on  $\mathcal{H}$  which leave invariant each projection E in  $\mathcal{L}$ . Assume that  $\{X_i\}$  and  $\{Y_i\}$  are operators in  $\mathcal{B}(\mathcal{H})$  and A is an operator in  $\mathrm{Alg}\mathcal{L}$  such that  $AX_i = Y_i$  for each  $i = 1, 2, \cdots$ . Then  $E^{\perp}Y_if_i = E^{\perp}AX_if_i = E^{\perp}AE^{\perp}X_if_i$  for each  $i = 1, 2, \cdots$  and  $E \in \mathcal{L}$ . Hence

$$\| \sum_{i=1}^{n} E^{\perp} Y_{i} f_{i} \| = \| \sum_{i=1}^{n} E^{\perp} A X_{i} f_{i} \|$$

$$= \| \sum_{i=1}^{n} E^{\perp} A E^{\perp} X_{i} f_{i} \|$$

$$\leq \| A \| \| \sum_{i=1}^{n} E^{\perp} X_{i} f_{i} \|$$

for all  $E \in \mathcal{L}$ . If, for convenience, we adopt the convention that a fraction whose numerator and denominator are both zero is equal to zero, then the inequality above may be stated in the form

$$\sup_{E \in \mathcal{L}} \frac{\| \sum_{i=1}^{n} E^{\perp} Y_i f_i \|}{\| \sum_{i=1}^{n} E^{\perp} X_i f_i \|} \le \|A\|.$$

**Theorem 2.9.** Let  $X_i$  and  $Y_i$  be bounded operators acting on  $\mathcal{H}$  for all  $i=1,2,\cdots$ . Let  $\mathcal{H}=\overline{range}\ X_k\oplus sp(h)$  for some k in  $\{1,\cdots,n\}$  and some  $h\in\mathcal{H}$ . If  $<h,E^{\perp}X_kf>=0$  for each  $f\in\mathcal{H}$  and  $E\in\mathcal{L}$ , then the following are equivalent.

(1) There exists an operator A in  $Alg\mathcal{L}$  such that  $AX_i = Y_i$  for  $i = 1, 2, \cdots$ .

(2) 
$$\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{m} Y_i f_i)\|}{\|E^{\perp}(\sum_{i=1}^{m} X_i f_i)\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L}, \ m \in \mathbb{N} \right\} = K < \infty.$$

**Theorem 2.10.** Let  $X_i$  and  $Y_i$  be bounded operators acting on  $\mathcal{H}$  for all  $i=1,2,\cdots$ . Let m be a natural number  $(m \geq 2)$  and let  $\{\underline{h_1,\cdots,h_m}\}$  be an orthonormal set of vectors  $h_j$  in  $\mathcal{H}$  such that  $\mathcal{H} = \overline{range\ X_k} \oplus sp(\{h_1,\cdots,h_m\})$  for some k in  $\{1,2,\cdots,n\}$ . If  $\{h_j,E^{\perp}X_if\} >= 0$  ( $i=1,\cdots,j=1,\cdots,m$ ) for each  $f\in\mathcal{H}$  and  $E\in\mathcal{L}$ , then the following are equivalent.

(1) There exists an operator A in  $Alg\mathcal{L}$  such that  $AX_i = Y_i$  for  $i = 1, 2, \cdots$ .

(2) 
$$\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{m} Y_i f_i)\|}{\|E^{\perp}(\sum_{i=1}^{m} X_i f_i)\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L}, \ m \in \mathbb{N} \right\} = K < \infty.$$

Moreover, if condition (2) holds, we may choose an operator A such that ||A|| = K.

**Theorem 2.11.** Let  $X_i$  and  $Y_i$  be bounded operators acting on  $\mathcal{H}$  for all  $i=1,2,\cdots$ . Let  $\{h_1,h_2,\cdots\}$  be an orthonormal set of vectors  $h_j$  in  $\mathcal{H}$  such that  $\mathcal{H}=\overline{range\ X_k}\oplus \overline{sp(\{h_1,h_2,\cdots\})}$  for some k in  $\{1,2,\cdots,n\}$ . If  $(h_j,E^{\perp}X_if)>=0$  ( $(i=1,\cdots,j=1,2,\cdots)$ ) for each  $(i=1,2,\cdots)$  for each  $(i=1,2,\cdots)$  for the following are equivalent.

(1) There exists an operator A in  $Alg\mathcal{L}$  such that  $AX_i = Y_i$  for  $i = 1, 2, \cdots$ .

(2) 
$$\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{m} Y_i f_i)\|}{\|E^{\perp}(\sum_{i=1}^{m} X_i f_i)\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L}, \ m \in \mathbb{N} \right\} = K < \infty.$$

Moreover, if condition (2) holds, we may choose an operator A such that ||A|| = K.

Corollary 2.12. Let  $X_i$  and  $Y_i$  be bounded operators acting on  $\mathcal{H}$  for all

i = 1,2,.... Let  $\mathcal{B}$  be a basis of  $\overline{range\ X_k}^{\perp}$  for some k in  $\{1,2,\dots,n\}$ . If  $\langle h, E^{\perp}X_i f \rangle = 0 (i = 1,\dots)$  for each  $h \in \mathcal{B}$ ,  $f \in \mathcal{H}$  and  $E \in \mathcal{L}$ , then the following are equivalent.

(1) There exists an operator A in  $Alg\mathcal{L}$  such that  $AX_i = Y_i$  for  $i = 1, 2, \cdots$ .

(2) 
$$\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{m} Y_i f_i)\|}{\|E^{\perp}(\sum_{i=1}^{m} X_i f_i)\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L}, \ m \in \mathbb{N} \right\} = K < \infty.$$

## 3. The Equation Ax = y in $Alg \mathcal{L}$

Let x and y be vectors in  $\mathcal{H}$  and A be an operator in  $\mathrm{Alg}\mathcal{L}$  such that Ax = y. Then  $\|E^{\perp}y\| = \|E^{\perp}Ax\| = \|E^{\perp}AE^{\perp}x\| \leq \|A\|\|E^{\perp}x\|$  for all  $E \in \mathcal{L}$ . If, for convenience, we adopt the convention that a fraction whose numerator and denominator are both zero is equal to zero, then the above inequality may be stated in the form

$$\sup_{E \in \mathcal{L}} \frac{\|E^{\perp}y\|}{\|E^{\perp}x\|} \le \|A\|.$$

We consider the above fact when  $\mathcal{L}$  is a subspace lattice without the commutative condition.

Let x, y and g be non-zero vectors in  $\mathcal{H}$ . Let  $X = x \otimes g$  and  $Y = y \otimes g$ . Then we can obtain the following by Theorem 2.1 and Corollary 2.4.

**Theorem 3.1.** Let  $\mathcal{L}$  be a subspace lattice on  $\mathcal{H}$  and let x and y be vectors in  $\mathcal{H}$ . If  $\langle h, E^{\perp} x \rangle = 0$  for each  $h \in sp(x)^{\perp}$  and  $E \in \mathcal{L}$ , then the following are equivalent.

(1) There exists an operator A in  $Alg\mathcal{L}$  such that Ax = y.

$$(2) \sup \left\{ \frac{\|E^{\perp}y\|}{\|E^{\perp}x\|} : E \in \mathcal{L} \right\} = K_0 < \infty.$$

Moreover, if condition (2) holds, we may choose an operator A such that  $||A|| = K_0$ .

*Proof.* Assume that  $\left\{\frac{\|E^{\perp}y\|}{\|E^{\perp}x\|}: E \in \mathcal{L}\right\} = K_0 < \infty$ . Let g be non-zero vectors in  $\mathcal{H}$  and  $X = x \otimes g$  and  $Y = y \otimes g$ . Then

$$\begin{split} \|E^{\perp}Yf\| &= \|E^{\perp}(y \otimes g)f\| \\ &= \|E^{\perp} < f, g > y\| \\ &= \| < f, g > E^{\perp}y\| \text{ and } \\ \|E^{\perp}Xf\| &= \|E^{\perp}(x \otimes g)f\| \\ &= \|E^{\perp} < f, g > x\| \\ &= \| < f, g > E^{\perp}x\| \;. \end{split}$$

Hence  $\sup \left\{ \frac{\|E^{\perp}Yf\|}{\|E^{\perp}Xf\|} : f \in \mathcal{H} \text{ and } E \in \mathcal{L} \right\} = \sup \left\{ \frac{\|E^{\perp}y\|}{\|E^{\perp}x\|} : E \in \mathcal{L} \right\}$ . Since  $\sup \left\{ \frac{\|E^{\perp}Yf\|}{\|E^{\perp}Xf\|} : f \in \mathcal{H} \text{ and } E \in \mathcal{L} \right\} < \infty$ , there exists an operator A in  $A \lg \mathcal{L}$  such that AX = Y by Theorem 2.1. Since  $AX = A(x \otimes g) = (Ax) \otimes g = y \otimes g$ , Ax = y.

Let  $x_i, y_i (i = 1, \dots, n)$  and g be non-zero vectors in  $\mathcal{H}$ . Let  $X = x_i \otimes g$  and  $Y = y_i \otimes g$ . Then the next theorem is obtained by modifying the proof used in Theorem 2.5 and Corollary 2.8.

Let  $x_1, \dots, x_n$  and  $y_1, \dots, y_n$  be vectors in  $\mathcal{H}$  and A be an operator in Alg $\mathcal{L}$  such that  $Ax_i = y_i (i = 1, \dots, n)$ . Then  $E^{\perp} \alpha_i y_i = E^{\perp} \alpha_i A x_i = \alpha_i E^{\perp} A E^{\perp} x_i = E^{\perp} A E^{\perp} \alpha_i x_i$  for all  $E \in \mathcal{L}$ . Hence

$$\| \sum_{i=1}^{n} E^{\perp} \alpha_{i} y_{i} \| = \| \sum_{i=1}^{n} E^{\perp} \alpha_{i} A x_{i} \|$$

$$= \| \sum_{i=1}^{n} E^{\perp} A E^{\perp} \alpha_{i} x_{i} \|$$

$$\leq \| A \| \| \sum_{i=1}^{n} E^{\perp} \alpha_{i} x_{i} \|$$

for all  $E \in \mathcal{L}$ . If, for convenience, we adopt the convention that a fraction whose numerator and denominator are both zero is equal to zero, then

the above inequality may be stated in the form

$$\sup_{E \in \mathcal{L}} \frac{\| \sum_{i=1}^{n} E^{\perp} \alpha_{i} y_{i} \|}{\| \sum_{i=1}^{n} E^{\perp} \alpha_{i} x \|} \le \|A\|.$$

**Theorem 3.2.** Let  $\mathcal{L}$  be a subspace lattice on  $\mathcal{H}$  and let  $x_1, \dots, x_n$  and  $y_1, \dots, y_n$  be vectors in  $\mathcal{H}$ . If  $\langle h, E^{\perp} x_i \rangle = 0 (i = 1, \dots, n)$  for each  $h \in sp(x_k)^{\perp}$ ,  $E \in \mathcal{L}$  and for some k in  $\{1, 2, \dots, n\}$ , then the following are equivalent.

(1) There exists an operator A in Alg $\mathcal{L}$  such that  $Ax_i = y_i$  for  $i = 1, 2, \dots, n$ .

$$(2) \sup \left\{ \frac{\|E^{\perp} \sum_{i=1}^{n} \alpha_i y_i\|}{\|E^{\perp} \sum_{i=1}^{n} \alpha_i x_i\|} : E \in \mathcal{L}, \ \alpha_i \in \mathbb{C} \right\} = K_0 < \infty.$$

Moreover, if condition (2) holds, we may choose an operator A such that  $||A|| = K_0$ .

Proof. Assume that  $\sup\left\{\frac{\|E^{\perp}\sum_{i=1}^{n}\alpha_{i}y_{i}\|}{\|E^{\perp}\sum_{i=1}^{n}\alpha_{i}x_{i}\|}: E\in\mathcal{L}, \ \alpha_{i}\in\mathbb{C}\right\}=K_{0}<\infty$ . Let g be a non-zero vector in  $\mathcal{H}$  and  $X_{i}=x_{i}\otimes g$  and  $Y_{i}=y_{i}\otimes g$  for  $i=1,\cdots,n$ . Then

$$||E^{\perp}(\sum_{i=1}^{n} Y_{i}f_{i})|| = ||\sum_{i=1}^{n} E^{\perp}(y_{i} \otimes g)f_{i}||$$

$$= ||\sum_{i=1}^{n} E^{\perp} < f_{i}, g > y_{i}||$$

$$= ||E^{\perp}\sum_{i=1}^{n} < f_{i}, g > y_{i}|| \text{ and}$$

$$||E^{\perp}(\sum_{i=1}^{n} X_{i}f_{i})|| = ||\sum_{i=1}^{n} E^{\perp}(x_{i} \otimes g)f_{i}||$$

$$= ||\sum_{i=1}^{n} E^{\perp} < f_{i}, g > x_{i}||$$

$$= ||E^{\perp}\sum_{i=1}^{n} < f_{i}, g > x_{i}||$$

Hence 
$$\frac{\|E^{\perp}(\sum_{i=1}^{n}Y_{i}f_{i})\|}{\|E^{\perp}(\sum_{i=1}^{n}X_{i}f_{i})\|} = \frac{\|\sum_{i=1}^{n} \langle f_{i}, g \rangle E^{\perp}y\|}{\|\sum_{i=1}^{n} \langle f_{i}, g \rangle E^{\perp}x\|} \text{ for each } E \in \mathcal{L}.$$
 Since 
$$\sup \left\{ \frac{\|E^{\perp}\sum_{i=1}^{n}\alpha_{i}y_{i}\|}{\|E^{\perp}\sum_{i=1}^{n}\alpha_{i}x_{i}\|} : E \in \mathcal{L}, \ \alpha_{i} \in \mathbb{C} \right\} = K_{0} < \infty, \text{ then there exists}$$
 an operator  $A$  in  $Alg\mathcal{L}$  such that  $AX_{i} = Y_{i}(i = 1, \dots, n)$  by Theorem 2.5. Since  $AX_{i} = A(x_{i} \otimes g) = (Ax_{i}) \otimes g = y_{i} \otimes g, \ y_{i} = Ax_{i} \text{ for each } i = 1, \dots, n.$ 

We can extend Theorem 3.2 to countably infinite vectors and get the following theorem from Theorem 2.9 and Corollary 2.12.

**Theorem 3.3.** Let  $\mathcal{L}$  be a subspace lattice on  $\mathcal{H}$  and let  $x_i$  and  $y_i$  be vectors in  $\mathcal{H}$  for  $i \in \mathbb{N}$ . If  $\langle h, E^{\perp} x_i \rangle = 0$  for each  $h \in sp(x_k)^{\perp}$ ,  $E \in \mathcal{L}$  and for some k in  $\{1, 2, \dots\}$ , then the following are equivalent.

(1) There exists an operator A in Alg $\mathcal{L}$  such that  $Ax_i = y_i$  for  $i = 1, 2, \cdots$ .

$$(2) \sup \left\{ \frac{\|E^{\perp} \sum_{i=1}^{n} \alpha_i y_i\|}{\|E^{\perp} \sum_{i=1}^{n} \alpha_i x_i\|} : E \in \mathcal{L}, \ \alpha_i \in \mathbb{C}, n \in \mathbb{N} \right\} = K_0 < \infty.$$

Moreover, if condition (2) holds, we may choose an operator A such that  $||A|| = K_0$ .

#### References

- [1] Anoussis, M.; Katsoulis. E.; Moore, R. L.; Trent, T. T., Interpolation problems for ideals in nest algebras, Math. Proc. Camb. Phil. Soc. 117(1992), 151-160.
- [2] Douglas, R. G., On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17(1966), 413-415.
- [3] Hopenwasser, A., The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. **20**(1980), 121-126.
- [4] Hopenwasser, A., Hilbert-Schmidt interpolation in CSL-algebras, Illinois J. Math. 33(1989), 657-672.
- [5] Jo, Y. S. and Kang, J. H., Interpolation problems in CSL-algebras AlgL, Rocky mountain J. Math. 33, no 3 (2003), 903-914.
- [6] Jo, Y. S. and Kang, J. H., *Interpolation problems in AlgL*, J. of appl. Math. and computing. **18**(2005), 513-524.
- [7] Jo, Y. S.; Kang, J. H.; Kim, K. S., On operator interpolation problems, J. of K. M. S. 41, no 2 (2004), .
- [8] Jo, Y. S.; Kang, J. H.; Moore, R. L.; Trent, T. T., Interpolation in self-adjoint settings, Proc. Amer. Math. Soc. 130, no 11, 3269-3281.
- [9] Jo, Y. S.; Kang, J. H.; Park, Dongwan, Equations AX = Y and Ax = y in  $Alg\mathcal{L}$ , J.Korean Math. Soc. **43**(2006), 399-411.

- [10] Kadison, R., Irreducible Operator Algebras, Pro. Nat. Acad. Sci. U. S. A. (1957), 273-276.
- [11] Katsoulis, E.; Moore, R. L.; Trent, T. T., Interpolation in nest algebras and applications to operator Corona Theorems, J. Operator Theory. 29(1993), 115-123
- [12] Lance, E. C., Some properties of nest algebras, Proc. London Math. Soc. 19(1969), 45-68.
- [13] Moore, R. and Trent, T. T., *Linear equations in subspaces of operators*, Proc. of A.M.S.. **128**, no 3 (2000), 781-788.
- [14] Moore, R. and Trent, T. T., Interpolation in inflated Hilbert spaces, Proc. of A.M.S.. 127, no 2 (1999), 499-507.

Joo Ho Kang Department of Mathematics, Daegu University, Daegu, Korea.

 $\hbox{E-mail: jhkang@daegu.ac.kr}$