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Abstract

We introduce the notion of (L, e)-filters with fuzzy partially order e on complete residuated lattice L. We investigate
(L, e)-filters induced by the family of (L, e)-filters and functions. In fact, we study the initial and final structures for the
family of (L, e)-filters and functions. From this result, we define the product and co-product for the family of (L, e)-filters

and functions.
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1. Introduction

Hohle et al. [5,6] introduced the notion of L-filter on a
complete quasi-monoidal lattice (including GL-monoid [4]
) L instead of a completely distributive lattice ([2-4]) as an
extension of fuzzy filters [1,2]. The notion of L-filter facil-
itated to study L-fuzzy topologies [3,5,6], L-fuzzy uniform
spaces [5,6] and topological structures [7]. Kim [9] intro-
duced (L, e)-filters with fuzzy partially order e on complete
residuated lattice L and investigate their properties.

In this paper, we investigate (L, e)-filters induced by the
family of (L, e)-filters and functions. In fact, we investigate
the initial and final structures for the family of (L, e)-filters
and functions. From this result, we define the product and
co-product for the family of (L, e)-filters and functions.

2. Preliminaries

Definition 2.1. [5,6,10] A triple (X, <, ) is called a com-
plete residuated lattice iff it satisfies the following proper-
ties:

(L1) (X,<,1,0) is a complete lattice where 1 is the
universal upper bound and 0 denotes the universal lower
bound;

(L2) (X, *,1) is a commutative monoid;
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(L3) = is distributive over arbitrary joins, i.e.

(\/ a;) * b= \/(ai*b).

el i€l

Let (L, <,®) be a complete residuated lattice. An order
reversing map ¢ : L — L defined by a® = a — 0 is called
a strong negation if a°® = a foreach a € L.

In this paper, we assume (L, <, ®,¢) is a complete resid-
uated lattice with a strong negation °.

Definition 2.2. [5,6,9,10] Let X be a set. A function ex :
X x X — L is called a fuzzy partially order on X if it
satisfies the following conditions:

EDex(z,z)=1foralz € X,

(B2) ex(z,y) @ ex(y,2) < ex(w,2), forall z,y,z €
X,

(B3)ifex(z,y) = ex(y,x) =1, thenz = y.

The pair (X, ex) is a fuzzy partially order set (simply,
fuzzy poset).

Let (X, <,%) be a complete residuated lattice. A
fuzzy poset (X, ex) is a p-fuzzy poset if ex(x1,y1) ©
ex(w2,y2) < ex(x1 * x2,y1 * y2) for each x;,y; € X
andex(z,y) =1lifz <y.

Lemma 2.3. [5,6,9,10] For each x,y, z,x;,y; € L, we
define x — y = \/{z € L | x ® z < y}. Then the
following properties hold.
DODIfy<z (r0y) <(z@z)andz -y <z — 2
and z > x <y — x.
Qzoy<LzAhy<zVy<zdy.

7 /\iEF yi = (Vier y;)¢ and VieF Y = (/\iel“ Yi)©.
B (zoy)—mz=zx—=WY—2)=y— (z—2).



D1 —z=n=2x.

(10)Ifzx <y, thenz — y = 1.
ID(z—y)0(y—2) <z— =z

(12) (x1 = y1) © (v2 = y2) < (71 © T2 = Y1 O Y2).

Definition 2.4. [9] Let (X, <, *) be a complete residuated
lattice and ex a fuzzy poset. A mapping F : X — L
is called a complete residuated valued (L, ex)-filter (for
short, (L, ex)-filter) on X if it satisfies the following con-
ditions:

(F1) F(0) =0and F(1) =1,

(F2) F(zxy) > F(z) © F(y), foreach z,y € X,

(F3) F(2) @ ex(2,y) < F(y).
The pair (X, F) is called an (L, ex)-filter space.

Let ;7 and F; be (L, e)-filters on X. We say JF; is finer
than F5 (or F3 is coarser than Fp) iff Fo < Fi.

Theorem 2.5. [9] Let (X, <, *) be a complete residuated
lattice and (X, ex) a p-fuzzy poset. If H : X — Lisa
function satisfying the following condition:

(C) H(1) = 1 and for every finite index set K,

\/ OiexH(w:) © ex (*iexwi, 0) = 0.
K

We define a function Fy, : LX — L as
Fa(x) = \/(QieKH(v’Ui)) © ex (*iek Ti, T)

where the \/ is taken for every finite set K.

Then:

(1) Fy is an (L, ex)-filter on X,

(2)if H < F and F is an (L, ex)-filter on X, then
Fu < F.

Definition 2.6. [9]Let (X, F) and (Y, G) be two (L,ex)
and (L, ey )-filter spaces. Then a function ¢ : X — Y is
said to be:

(1) a filter map iff G(y) < V,cp-1(qy1) F (@), for all
yey,

(2) a filter preserving map iff F(x) < G(¢(x)) for all
e X.

(3) an ordered preserving map iff ex(z,y) <
ey (p(x), p(x)) forall z,y € X.

4) ¢7' 1 Y — X is an ordered preserving relation iff
forallz,y €Y,

ey(m,y) < /\

acp~1({z}),b€p"1({y})

ex(a,b).

Naturally, the composition of filter maps (resp. filter pre-
serving maps) is a filter map (resp. filter preserving map).

Definition 2.7. [9]Let ¢ : X — Y be a function, F an
(L,ex)-filter on X and G an (L, ey )-filter Y.

(L, e)-filters on complete residuated lattice

(1) The image of F is a function ¢7"(F) : Y — L de-
fined by

or (F)y) = \{F@) | z=9¢""(v)}

(2) The preimage of G is a function ¢} (G) : X — L

defined by
o1 (9)(z) = G(o(2)).
(3)LetH : X — Lbeafunctionand x € X. We denote

H](@) = \/ H(y) ©ex(y, ).

yeX

Theorem 2.8. [9] Let (X, <, x*) and (Y, <, x) be complete
residuated lattices. Let ¢ : X — Y be an order preserv-
ing function with ¢(z x y) > ¢(z) x ¢(y), ¢(0) = 0 and
#(1) = 1, ex, ey p-fuzzy posets and G an (L, ey )-filter on
Y. Then:

(1) [¢5 (G)] is the coarsest (L, ex )-filter for which ¢ :
(X, [¢5(G)]) — (Y, Q) is a filter map.

Q) If ex(z,y) = ey(o(z),o(y)) for x,y € X, then
(0L (9)] = o1 (9)-

Theorem 2.9. [9] Let (X, <, %) and (Y, <, x) be complete
residuated lattices. Let ¢ : X — Y be a function with
¢(zxy) < ¢(x)x(y) with ¢(1) = 1and (0) = 0, ex, ey
p-fuzzy posets. Let F and G be (L, ex ) and (L, ey )-filters,
respectively. Then we have the following properties.

(1) If F(z) © ey(¢(z),0) = 0, then [¢p7(F)] is
the coarsest (L, ey )-filter for which ¢ (X, F) —
(Y, [¢7 (F))]) is a filter preserving map.

(2) If ¢ is injective and ¢! is an order-preserving rela-
tion, [¢7" (F)] is an (L, ex )-filter.

(3) If ¢ is surjective, ¢! is an order-preserving relation
and F is an (L, ex)-filter with F(z) ® ey (¢(z),0) = 0,
then ¢ (F) is an (L, ex )-filter.

4 If ¢ : X — Y is an order preserving map with ¢(z *
y) = 6(x) % 6(y), then [67 (65 (G)])] is an (L, ey )-filter
on Y with [677 ([0 (G)])] < .

3. The preimages and images of (L, ¢)-filters

Theorem 3.1. Let (X, <, %) and (X;, <, *;) be complete
residuated lattices. Let ¢; : (X,ex) — (X;,ex,) be or-
der preserving functions with ¢;(x * y) > ¢;(x) *; ¢i(y),
(1) =1, $;(0) = 0, ex, ex, p-fuzzy posets forall ; € T".
Let {G; }icr be a family of (L, e, )-filters on X; satisfying
the following condition:

(C) For every finite subset K of T', ®;cxéf (G;)(x;) ©
E€x (*ieria O) =0.

We define a function [@), . ¢; (G:)] : X — L as

[® o5 (G)(z) = \/(GiGK(b:'_(gi)(xi)@eX(*ieK-Ti7x)

i€l K
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where the \/ is taken for every finite subset K of I". Put
F = [®,cr @5 (Gi)]. Then the following properties hold.
(1) F is the coarsest (L,ex)-filter for which ¢;
(X,F) — (X;,G;) is a filter map.
(2) Ifforeachi € T, p; 0 ¢ : (Y, F*) — (X;,G;) is a
filter map and ey (z,y) > ex(p(x), ¢(y)) forallz,y € Y,
then a map ¢ : (Y, F*) — (X, F) is a filter map.

Proof. (1) (F1) By the condition (C),

F(0) = \/(@keKd)?(gk)(xk) ® ex (*kexTr,0)) = 0.
K
F(1) > \/(@rexdi (Ge)(1) © ex(1,1)) = 1.

K

(F2) For each two finite subsets K and J of T,

F(x1) © F(x2)
= Vi (Orex o) (Gr)(ur) © ex (*kerxtur, 1)
OV (©jes¢5 (G5)(w;) © ex (xjeswy, T2)

<Vius | Omerur—(kn gm(pm))Q
Oex ((krexur) * (xjeqwj), v1 * T2)
= Vku7s Ome(xur) (gm(pm)®
ex((krexur) * (xjeqwj), v1 * Iz))
S .F(.’tl * 1'2)

where form € K U J,

Gm(um)ifme K —(KnN.J),
S (W) ifm € J — (K NJ),
Om (U * wp,) if m € KN J.

Pm =

because, foreachm € K N J,

Gm(Dm(Um * W) > G (P (u
> G (O (u

(F3) For every finite subsets K,

m) *m Om (W)
m)) © G (Dm (wiy)).

F(z)©ex(x,z)
= Vi (Orer ey (Gr)(z
< Vi (Orex o) (Gr)(@

Since \/me‘b;l({m}) F(x) > o5 (Gi)(z) O ex(x,x) =
Gi(x;) for each i € T', ¢; is a filter map.

Let Vocyt((a,y) 9(2) = Gi(9i(2)) = Gi(x:) be given
for each ¢ € I'. For each finite subset K of I', we have

G(x)
> Vies ' (fany) Iher2k) © ex (ke r 2k, T)
> Voeo (o)) Orex9(zr) © ex (trex 2k, )

> Voes (o)) OrerIr(2r) © ex (ke 2k, )
> OkexGr(Or(2r)) © ex (xrer 2k, T).
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k) ©ex (krex Tk, ) © ex(z, 2)
k) © ex (kperx i, 2)) = F(2).

Hence, by the definition of 7, G > F.

(2) Since for each k € K, \/, mo@ ({zk})]—'*(y) >
Gr(zr), vy = Orexd '({z}) = ¢ (*rer2x) and
F*(y) © eX(y,z) < F*(z), for each ﬁnite index set K
, we have

Vees1(tan F7(2)

> Viep1(ta)) (( VEOker ($508)~ ({z4}) Pw))
@€Y(y, ))

>\/ze¢> 1<{w}> ( svedp ({an)) leng(”f’c))
®€X ))

> @kngk(¢k(2k)) © ex (*r2k, )
= 5 (Gr)(21) © ex (xp 2k, T)

By the definition of F, F(2) <V ,cy-1((op) T (2)-
O

From Theorem 3.1, we can obtain the following corol-
laries.

Corollary 3.2. Let (X, <, %) be a complete residuated lat-
tice. Let {F;}ier be a family of (L, ex)-filters on X and
ex a p-fuzzy poset, satisfying the following condition:

(C) For every finite subset K of I', ®;exFi(x;) ©
ex (*iexxi,0) = 0.

We define a function [

®]: \/ Oiex Fi(wi) © ex (*iexTi, T)

el K

ser Fi)l : X — Las

where the \/ is taken for every finite subset K of I'. Then
(@;cr Fi] is the coarsest (L, ex )-filter finer than F; for
eachz € I'.

Corollary 3.3. Let X = Il;cr X; be a product set and ; :
X — X, projection maps for all @ € T". Let (X, <, %)
and (X;, <,x;) be complete residuated lattices. Let 7; :
(X,ex) — (Xi,ex,) be order preserving functions with
mi(x xy) > m(x) *; m;(y) and ex, ex, p-fuzzy posets for
alli € T. Let {F; };er be a family of (L, ex, )-filters on X;
satisfying the following condition:

(C) For every finite subset K of T', ©;e g7 (F)(z;) ©
ex (*iexxi,0) = 0.

We define a function [)

Q) (Fl@) = \/ (@iexm (F) (@) Oex (vic ki, o)

i€l K

ser ™ (Fi)]: X — Las

where the \/ is taken for every finite subset K of I". Let
F = [®16F = (Fi)] be given. Then:

(1) F is the coarsest (L,ex)-filter for which m;
(X, F) = (X;,F;) is a filter map,

(2) Ifforeachi € T, my0 ¢ : (Y, F*) — (X;, Fi) is a
filter map and ey (x,y) > ex (¢(z), ¢(y)) forallz,y € Y,
then amap ¢ : (Y, F*) — (X, F) is a filter map.



In Corollary 3.3, the structure [Q), . 7, (F;)] is called
a product (L, ex)-filter on X.

Example 3.4. Let (X = L = [0,1],®) be the complete
residuated lattice with z ©y = (x+y—1) V0. We define p-
fuzzy partially order e : [0, 1] x [0,1] — [0, 1] as follows:

1if z <y,
0 otherwise,

eo(z,y) = {

Define functions F; : [0,1] — [0,1] as follows: for x €
[0,1],

Fi(z) =1 0eo(1,2))V (0.6 en(0.6,z))

V(0.3 ®€0(0.2,2))

(1oeg(l,z)) V(0.5 en(0.2,2))

=(1®eg(l,z)) V(0.4 ©ep(0.6,2))
V(0.3 ® e(0.1,2))

]:2 (3;‘)
]:3 (l‘)

Each F; fori = 1,2,3is a ([0, 1], eo)-filter.
(1) [F1 ® F2] does not exist from:
(2) We can obtain [F» ® F3] as

[Fo@ Fsl(z) =1 oex(l,z)) V(0.5 e(0.2,2))

V(0.3 ® e0(0.1,z)).

Example 3.5. We define ([0, 1], eg)-filters F; : X — [0, 1]
and 75 : Y — [0, 1] as follows

.Fl (x)
Fa(y)

=(1®eo(l,z)) V(0.5 e(0.3,x))
= (1 O] 60(1, y)) V (06 © 60(0.67 y))
V(0.2 ® e0(0.2,)).

Letm : X XY — Xandms : X XY — Y be projection
maps. We can obtain the product ([0, 1], ex xy )-filter F =
[r ! (F1) @ my (F2)] as

Flz,y) =1 0exxy(l, (z,y)))
\/(0 306 eXxY((O'?’v 1)7 (x,y)))
\/(O 60 €X><Y((1>O'6)7 (m,y)))
V(0-2 ® eXXY((1?0'2)’ (x,y)))
\/(01 O] €X><Y((O-37 06)7 (1‘, y)))

where ex xy ((21,91), (22,y2)) = eo(x1, x2) Aeo(y1, Y2).

Theorem 3.6. Let (X, <,*) and (X, <,*;) be complete
residuated lattices. Let ¢; : (X, *;) — (X, *) be functions
with ¢;(z; *i yi) < ¢i(wi) x ¢i(yi) and ex, ex, p-fuzzy
posets for all i € T'. Let {F; }ier be a family of (L, ex;, )-
filters on X; satisfying the following condition:

(C) For every finite subset K, O;ex(Fi(z;) ©
eX(*iEK(bi(xi)a 0) =0.

We define a function [, #77(Fi)] : X — L as

[@ ¢ (Fi)l(z) = \/(GieK]:i(xi)QeX(*ieK¢i(xi)vx))

€K K

(L, e)-filters on complete residuated lattice

where the \/ is taken for every finite subset K of T'.

Let F = [P, ¢;” (F:)] be given.

Then (1) F is the coarsest (L, ex )-filter for which ¢; :
(X, Fi) — (X, F) is a filter preserving map,

(2)Ifforeachi € ', pog; : (X;, F;) — (Y, G) is afilter
preserving map and ¢ is an order preserving map, then a
map ¢ : (X, F) = (Y,G) is an (L, ex)-filter preserving
map.

Proof. (1) (F1) By the condition (C), F(0) = 0. Since
ex(@:(1),1) = 1, F(1) = 1.
(F2) For each two finite subsets K and .J,

F(x) © F(z)

= Vi (Orex Fr(zr) © ex (ke r (¢r(zr)), T)

OV (0jesFj(z) © ex (kjes(¢5(25)), 2)

< \/KJ ((QmE(KUJ)—(KﬁJ)-Fm(wm))

O(OmernnyFm(Tm *m Zm)))

Oex (kuek (Pr(@n)) * (xjea(95(25))), © * 2)

= | Ome(xuy) Fon (W) © ex (*me(KUJ)¢7rL(wm)a T % 2)

< Flxxz)
where form € K U J,

T ifm e K —(KNJ),
zmifmeJ—(KNJ),
Ton *m 2m ifm € KN J.

Wy =

because, for each m € K N J, Fp(®m *m 2m) >
Fon(@m) © Fn(2m) and

ex (kuerng (Or(Zr *k Yr), *ke kNI Pk (2k) * o1 (1))
Oex (*rernt (xuekns Ok (Tr) * dr(xr), T * 2)
< ex (*kerng (Or(Tr *k Yi), T * 2)

Since F(¢i(x:)) = Fiwi) © ex(dizi), dilx:)) =
Fi(x;) for each i € T, ¢; is an (L, ex )-filter preserving
map.

Let G(¢;(x;)) > Fi(z;) be given for each i € T'. For
each finite subset K of T, since G(¢r(z1)) > Fr(zy) for
all k € K, we have

G(r) > Grrexr(zr)) © ex (xpex Pr(Tr), ®
> OkexG(Pr(zr)) © ex (xker Ok (Tr), T)

> OrerxFr(zr) © ex (xkerx dr(xr), ).

Hence, by the definition of F, G > F.

(2) Since foreach k € K, ¢po ¢y, : (Xg, Fr) — (Y, F*)
is an L-filter preserving map;i.e. Fr(z) < F*(popr(zk))
for each finite index set K , we have

F(9(2)) > OrexF*((¢ o dr)(wr))
Oey (xrek (¢ 0 o) (wk), #(2)) (by (F2))
> OrexFr(xr) © ey (ke k Ok (Tk), 2)-

By the definition of F, F(z) < F*(4(z)).
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From Theorem 3.6, we can obtain the following corol-
lary.

Corollary 3.7. Let X = @;crX; be a direct sum and p; :
X; — X inclusion maps for all ¢ € T'. Let (X, «) and
(X, *;) be complete residuated lattices.

Let p; : (X, #;) — (X,*) be functions with p;(x; *;
yi) < pi(z;) * pi(y;) and ex, ex, p-fuzzy posets for all
i € T. Let {F;}ier be a family of (L, ex,)-filters on X;
satisfying the following condition:

(C) For every finite subset K, O;cx(Fi(z
eX(*ieK,ui(xi), 0) =0.

We define a function [, p;7 (Fi)] : X — L as

[@ p; (Fi)l(z) = \/(QieK]:i(l“i)QeX (kier pi(;), )
i€eK K

i) ©

where the \/ is taken for every finite subset K of I.

Let F = [, i ;7 (Fi)] be given.

Then (1) F is the coarsest (L, ex )-filter for which p; :
(X;, Fi) — (X, F) is a filter preserving map,

(2)Ifforeachi € T', pou; : (X;, F;) — (Y, G) is afilter
preserving map and y is an order preserving map, then a
map p : (X, F) — (Y,G) is an (L, ex)-filter preserving
map.

In Corollary 3.7, the structure [P, p;” (F;)] is called
a co-product (L, ex )-filter on X.

Example 38. Let (X = {0,1,1},0), (Y =
{0,1,4,2,1},®) and (L = [0, 1], ®) be complete residu-
ated lattices withz @y = (x +y—1)VO0andz — y =
(1 =z +y) A 1. Define functions ¢; : X — Y as follows:

1 3
$1(0) = 07¢1(§) = 1#251(1) =1,¢2(z) =
1 1
¢3(0) = 0,93(5) = 7,¢5(1) =1
Define functions F; : X — [0, 1] as follows:
1if =1, 1if =1,
Filz)={ 3if a=1, Fole)={ 3if z=1
0if =0, 0if z=0.
eo,e1: X x X — [0, 1] as follows:

1if x <y,
0 otherwise,

eo(z,y) = {

and ey (z,y) =2 — y.

(1) Since (Fi(71) © Fo(x2) ®eo(P1(x1) © da(r2),0) =
0, we obtain ([0, 1], eq)-filter [¢77 (F1) @ @57 (F2)] : Y —
[0, 1] as follows:

1if =1,
éif x:%,
(677 (F1) ® &3 (F2)l(z) = ¢ 7if x=3,
éif ng
1 1
0if = =0.

236

(2) Since (Fi(z1) © Fa(w2) ©eq(f1(x1) © p2(x2),0) =

0, we obtain ([0, 1], ey )-filter [¢77 (F1) ® ¢35 (F2)] : Y —
[0, 1] as follows:
1if =1,
% if = %
(91" (F1) © 03" (F2)](2) = gif T=a
0if z=0.

(3) Since (fl(%) © Fa(3) @ eo(¢1(3) © ¢3(3),0) =
1030e9(3©1,0) = 1 # 0, we cannot obtaln ([O 1], e9)-
ﬁlter [@1 (F; ) o5 (F )} By a similarly, we cannot obtain
([0,1], e1)-filter [¢77 (F1) ® ¢35 (F2)]. Moreover,

1 1 1
1= %501 £65(5) 0¢s(1) = 7.
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