Interval-valued Fuzzy Normal Subgroups

Su Yeon Jang, Kul Hur and Pyung Ki Lim

Division of Mathematics and Informational Statistics, and Nanoscale Science and Technology Institute, Wonkwang University, Iksan, Chonbuk, Korea 570-749

Abstract

We study some properties of interval-valued fuzzy normal subgroups of a group. In particular, we obtain two characterizations of interval-valued fuzzy normal subgroups. Moreover, we introduce the concept of an interval-valued fuzzy coset and obtain several results which are analogous of some basic theorems of group theory.

Key Words: interval-valued fuzzy normal subgroup, interval-valued fuzzy coset, interval-valued fuzzy quotient group.

1. Introduction and Preliminaries

In 1975, Zadeh[11] introduced the concept of intervalvalued fuzzy sets as the generalization of fuzzy sets introduced by himself[10]. After that time, Biswas[1] applied the notion of interval-valued fuzzy set to group theory, and Samanta and Montal[9] to topology. Recently, Choi et al.[2] introduced the concept of interval-valued smooth topological spaces and studied some of it's properties. Hur et al.[3] investigated interval-valued fuzzy relations, Kang and Hur[6] applied the concept of intervalvalued fuzzy sets to algebra. In particular, Kang[7] studied interval-valued fuzzy subgroups preserved by homomorphisms. In this paper, we investigate some properties of interval-valued fuzzy normal subgroups of a group. In particular, we obtain two characterizations of interval-valued fuzzy normal subgroups. introduce the concept of intervalvalued fuzzy subgroups. Moreover, we introduce the concept of an interval-valued fuzzy coset and obtain several results which are analogous of some basic theorems of group theory.

Now, we will list some concepts and results related to interval-valued fuzzy set theory and needed in next sections.

Let D(I) be the set of all closed subintervals of the unit interval I = [0, 1]. The elements of D(I) are generally denoted by capital letters M, N, \cdots , and note that $M = [M^L, M^U]$, where M^L and M^U are the lower and the upper end points respectively. Especially, we denoted, $\mathbf{0} = [0, 0], \mathbf{1} = [1, 1]$, and $\mathbf{a}=[a, a]$ for every $a \in (0, 1)$. We also note that

Manuscript received May. 23, 2012; revised Sep. 21, 2012; accepted Sep. 24, 2012.

(i) $(\forall M, N \in D(I))$ $(M = N \Leftrightarrow M^L = N^L, M^U = N^U)$, (ii) $(\forall M, N \in D(I))$ $(M \le N \Leftrightarrow M^L \le N^L, M^U \le N^U)$.

For every $M \in D(I)$, the *complement* of M, denoted by M^c , is defined by $M^c = 1 - M = [1 - M^U, 1 - M^L]$ (See [9]).

Definition 1.1 [9, 11]. A mapping $A: X \to D(I)$ is called an *interval-valued fuzzy set* (in short, *IVS*) in X and is denoted by $A = [A^L, A^U]$. Thus $A(x) = [A^L(x), A^U(x)]$, where $A^L(x)$ [resp. $A^U(x)$] is called the *lower*[resp. *upper*] end point of x to A. For any $[a,b] \in D(I)$, the interval-valued fuzzy set A in X defined by $A(x) = [A^L(x), A^U(x)] = [a,b]$ for each $x \in X$ is denoted by [a,b] and if a = b, then the IVS [a,b]is denoted by simply \tilde{a} . In particular, $\tilde{0}$ and $\tilde{1}$ denote the *interval-valued fuzzy empty set* and the *interval-valued fuzzy whole set* in X, respectively.

We will denote the set of all IVSs in X as $D(I)^X$. It is clear that set $A = [A^L, A^U] \in D(I)^X$ for each $A \in I^X$.

Definition 1.2 [9]. Let $A, B \in D(I)^X$ and let $\{A_\alpha\}_{\alpha \in \Gamma} \subset D(I)^X$. Then

(a) $A \subset B$ iff $A^{L} \leq B^{L}$ and $A^{U} \leq B^{U}$. (b) A = B iff $A \subset B$ and $B \subset A$. (c) $A^{C} = [1 - A^{U}, 1 - A^{L}]$. (d) $A \cup B = [A^{L} \vee B^{L}, A^{U} \vee B^{U}]$. (d)' $\bigcup_{\alpha \in \Gamma} A_{\alpha} = [\bigvee_{\alpha \in \Gamma} A_{\alpha}^{L}, \bigvee_{\alpha \in \Gamma} A_{\alpha}^{U}]$. (e) $A \cap B = [A^{L} \wedge B^{L}, A^{U} \wedge B^{U}]$. (e)' $\bigcap_{\alpha \in \Gamma} A_{\alpha} = [\bigwedge_{\alpha \in \Gamma} A_{\alpha}^{L}, \bigwedge_{\alpha \in \Gamma} A_{\alpha}^{U}]$.

Result 1.A [9, Theorem 1]. Let $A, B, C \in D(I)^X$ and let

³Corresponding Author : pklim@wonkwang.ac.kr

²⁰⁰⁰ Mathematics Subject Classification. 54A40.

[©] The Korean Institute of Intelligent Systems. All rights reserved.

International Journal of Fuzzy Logic and Intelligent Systems, vol.12, no. 3, September 2012

$$\{A_{\alpha}\}_{\alpha \in \Gamma} \subset D(I)^{X}. \text{ Then} (a) \ \tilde{0} \subset A \subset \tilde{1}. (b) \ A \cup B = B \cup A, \ A \cap B = B \cap A. (c) \ A \cup (B \cup C) = (A \cup B) \cup C, A \cap (B \cap C) = (A \cap B) \cap C. (d) \ A, B \subset A \cup B, \ A \cap B \subset A, B. (e) \ A \cap (\bigcup_{\alpha \in \Gamma} A_{\alpha}) = \bigcup_{\alpha \in \Gamma} (A \cap A_{\alpha}). (f) \ A \cup (\bigcap_{\alpha \in \Gamma} A_{\alpha}) = \bigcap_{\alpha \in \Gamma} (A \cup A_{\alpha}). (g) \ (\tilde{0})^{c} = \tilde{1}, \ (\tilde{1})^{c} = \tilde{0}. (h) \ (A^{c})^{c} = A. (i) \ (\bigcup_{\alpha \in \Gamma} A_{\alpha})^{c} = \bigcap_{\alpha \in \Gamma} A_{\alpha}^{c}, \ (\bigcap_{\alpha \in \Gamma} A_{\alpha})^{c} = \bigcup_{\alpha \in \Gamma} A_{\alpha}^{c}.$$

Definition 1.3 [6]. An interval-valued fuzzy set A in G is called an *interval-valued fuzzy*

 $\begin{array}{l} subgroupoid(\text{in short, IVGP}) \text{ in } G \text{ if for any } x,y \in G, \\ A^L(xy) \geq A^L(x) \wedge A^L(y) \text{ and } A^U(xy) \geq \\ A^U(x) \wedge A^U(y). \end{array}$

We will denote IVGPs in G as IVGP(G). Then it is clear that 0 and $1 \in IVGP(G)$.

Definition 1.4 [7]. Let A be an IVS in a group G. Then A is called an *interval-valued fuzzy subgroup*(in short, *IVG*) in G if it satisfies the conditions: For any $x, y \in G$, (a) $A^L(xy) \ge A^L(x) \land A^L(y)$ and $A^U(xy) \ge A^U(x) \land A^U(y)$.

(b) $A^{L}(x^{-1}) \ge A^{L}(x)$ and $A^{U}(x^{-1}) \ge A^{U}(x)$.

We will denote the set of all IVGs of G as IVG(G).

Result 1.B [1, Proposition 3.1]. Let A be an IVG in a group G.

(a) $A(x^{-1}) = A(x), \forall x \in G.$

(b) $A^{L}(e) \geq A^{L}(x)$ and $A^{U}(e) \geq A^{U}(x), \forall x \in G$, where e is the identity of G.

Result 1.C [6, Proposition 4.7]. Let $A \in IVG(G)$. If $A(xy^{-1}) = A(e)$, for any $x, y \in G$, then A(x) = A(y).

Definition 1.5 [6]. Let A be an IVS in a set X and let $[\lambda, \mu] \in D(I)$. Then the set $A^{[\lambda, \mu]} = \{x \in X : A^L(x) \ge \lambda \text{ and } A^U(x) \ge \mu\}$ is called a $[\lambda, \mu]$ -level subset of A.

Result 1.D [6, Propositions 4.16 and 4.17]. Let A be an IVS in a group G. Then $A \in IVG(G)$ if and only if for each $[\lambda, \mu] \in Im A$ with $\lambda \leq A^L(e)$ and $\mu \leq A^U(e)$, $A^{[\lambda,\mu]}$ is a subgroup of G.

Result 1.E [7, Proposition 3.2]. Let A be an IVFS in a set X and let $[\lambda_1, \mu_1], [\lambda_2, \mu_2] \in ImA$. If $\lambda_1 < \lambda_2$ and $\lambda_2 < \mu_2$, then $A^{[\lambda_2, \mu_2]} \subset A^{[\lambda_1, \mu_1]}$.

Let A be an IVG of a group G. Then for each $[\lambda, \mu] \in D(I)$ with $A(e) \geq [t, s]$, i.e., $A^L(e) \geq t$ and $A^U(e) \geq s$, the level subset $A^{[\lambda,\mu]}$ is a subgroup of G. If Im A = $\{[t_0, s_0], [t_1, s_1], \cdots, [t_n, s_n]\}$, the family of level subgroups $\{A^{[t_i, s_i]} : 0 \leq i \leq n\}$ constitutes the complete list of level subgroups of A. If the image set of the IVG A of a finite group G consists of $\{[t_0, s_0], [t_1, s_1], \cdots, [t_n, s_n]\}$, where $t_0 > t_1 > \cdots > t_n$ and $s_0 > s_1 > \cdots > s_n$, then, by Results 1.D and 1.E, the level subgroups of A form a chain:

$$A^{[t_0,s_0]} \subset A^{[t_1,s_1]} \subset \dots \subset A^{[t_n,s_n]} = G,$$

where $A(e) = [t_0, s_0].$

Notation. $N \lhd G$ denotes that N is a normal subgroup of a group G.

2. Interval-valued fuzzy normal subgroups and interval-valued fuzzy cosets

Lemma 2.1. If A is an IVGP of a finite group G, then A is an IVG of G.

Proof. Let $x \in G$. Since G is finite, x has finite order, say n. Then $x^n = e$, where e is the identity of G. Thus $x^{-1} = x^{n-1}$. Since A is an IVGP of G,

 $A^L(x^{-1}) = A^L(x^{n-1}) = A^L(x^{n-2}x) \geq A^L(x)$ and

$$A^U(x^{-1}) = A^U(x^{n-1}) = A^U(x^{n-2}x) \ge A^U(x).$$

Hence A is an IVG of G. \Box

Lemma 2.2. Let A be an IVG of a group G and let $x \in G$. Then A(xy) = A(y), for each $y \in G$ if and only if A(x) = A(e).

Proof. (\Rightarrow) : Suppose A(xy) = A(y) for each $y \in G$. Then clearly A(x) = A(e).

 $\substack{(\Leftarrow): \text{ Suppose } A(x) = A(e). \text{ Then, by Result 1.B(b),} \\ A^L(y) \leq A^L(x) \text{ and } A^U(y) \leq A^U(x) \text{ for each } y \in G. \\ \text{Since } A \text{ is an IVG of } G, \text{ Then } A^L(xy) \geq A^L(x) \wedge A^L(y) \\ \text{ and } A^U(xy) \geq A^U(x) \wedge A^U(y). \text{ Thus } A^L(xy) \geq A^L(y) \\ \text{ and } A^U(xy) \geq A^U(y) \text{ for each } y \in G. \\ \end{cases}$

On the other hand, by the hypothesis and Result 1.B(b), $\begin{array}{l} A^{L}(y) = A^{L}(x^{-1}xy) \geq A^{L}(x) \wedge A^{L}(xy) \text{ and } A^{U}(y) = \\ A^{U}(x^{-1}xy) \geq A^{U}(x) \wedge A^{U}(xy). \end{array}$ Since $A^{L}(x) \geq A^{L}(y)$ for each $y \in G$, $A^{L}(x) \wedge A^{L}(xy) = \\ A^{L}(xy) \text{ and } A^{U}(x) \wedge A^{L}(xy) = A^{U}(xy).$ So $A^{L}(y) \geq A^{L}(xy) \text{ and } A^{U}(y) \geq A^{U}(xy) \text{ for each } \\ y \in G.$ Hence A(xy) = A(y) for each $y \in G.$

Remark 2.3. It is easy to see that if A(x) = A(e), then A(xy) = A(yx) for each $y \in G$.

Definition 2.4. Let A be an IVS of a group G and let $x \in G$. We define two mappings $Ax, xA : G \to D(I)$ as follows, respectively : For each $g \in G$, $Ax(g) = A(gx^{-1})$ and $xA(g) = A(x^{-1}g)$. Then Ax[resp, xA] is called the *interval-valued fuzzy right* [resp.*left*] *coset* of G determined by x and A.

Remark 2.5. Definition 2.4 extends in a natural way to usual definition of a "coset" of a group. This is seen as follows: Let H be a subgroup of a group G and let $A = [\chi_H, \chi_H]$, where χ_H is the characteristic function of H. Let $x, y \in G$. Then $Ax = [\chi_H, \chi_H]$. Suppose $g \in H$. Then

$$Ax(gx) = [\chi_{H_x}(gx), \chi_{H_x}(gx)] = [\chi_H(gxx^{-1}), \chi_H(gxx^{-1})] = [\chi_H(g), \chi_H(g)] = [1, 1].$$

Suppose $g \notin H$. Then

$$\begin{aligned} Ax(gx) &= [\chi_{H_x}(gx), \chi_{H_x}(gx)] \\ &= [\chi_H(gxx^{-1}), \chi_H(gxx^{-1})] \\ &= [\chi_H(g), \chi_H(g)] \\ &= [0, 0]. \end{aligned}$$

So $Ax = [\chi_{H_x}, \chi_{H_x}].$

The following is the immediate result of Definition 2.4.

Proposition 2.6. Let A be an IVG of a group G. Then (a) (xy)A = x(yA). (b) A(xy) = (Ax)y.

(c) xA = A if A(x) = [1, 1].

We know that any two left[resp. right] cosets of a subgroup H of a group G are equal or disjoint. However this fact is not valid in the interval-valued fuzzy case as shown in the following example.

Example 2.7. Let $G = \{e, a, b, c, d\}$ be the Klein's four group and let A be the IVG of G defined by: $A(a) = [1, 1], A(b) = [t_1, t_1], A(c) = A(d) = [t_2, t_2],$ where $0 < t_2 \le t_1 < 1$. Then $bA \ne cA$.

Definition 2.8 [6]. Let $A \in IVG(G)$. Then A is called an *interval-valued fuzzy normal subgroup*(in short, *IVNG*) of G if A(xy) = A(yx), for any $x, y \in G$.

We will denote the set of all IVNGs of a group G as IVNG(G).

The following is the immediate result of Definitions 2.4 and 2.8.

Theorem 2.9. Let A be an IVG of a group G. Then the followings are equivalent:

(a) $A^L(xyx^{-1}) \ge A^L(y)$ and $A^U(xyx^{-1}) \ge A^U(y)$ for any $x, y \in G$.

Remark 2.10. Let G be a group.

(a) If A is a fuzzy normal subgroup of G, then $[A, A] \in IVNG(G)$.

(b) If $A = [A^L, A^U] \in IVNG(G)$, then A^L and A^U are fuzzy normal subgroups of G.

Let G be a group and $a, b \in G$. We say that a is conjugate to b if there exists $x \in G$ such that $b = x^{-1}ax$. It is well-known that conjugacy is an equivalence relation on G. The equivalence classes in G under the relation of conjugacy are called *conjugate classes*[4].

Theorem 2.11. Let A be an IVG of a group G. Then $A \in$ IVNG(G) if and only if A is constant on the conjugate classes of G.

Proof. (\Rightarrow) : Suppose $A \in \text{IVNG}(G)$ and let $x, y \in G$. Then $A(y^{-1}xy) = A(xyy^{-1}) = A(x)$. Hence A is constant on the conjugate classes.

 (\Leftarrow) : Suppose the necessary condition holds and let $x, y \in G$. Then $A(xy) = A(xyxx^{-1})$ = $A(x(yx)x^{-1}) = A(yx)$. Hence $A \in IVNG(G)$.

Let G be a group and $x, y \in G$. Then the element $x^{-1}y^{-1}xy$ is usually denoted by x, y and called the *commutator* of x and y. It is clear that if x and y commute with each other, then clearly [x, y] = e. Let H and K be two subgroups of a group G. Then the subgroup [H, K] is defined as the subgroup generated by the elements $\{[x, y] : x \in H, y \in K\}$. It is well-known that $N \triangleleft G$ if and only if $[N, G] \leq N$.

The following is the generalization of the above result using interval-valued fuzzy sets.

Theorem 2.12. Let A be an IVG of a group G. Then $A \in \text{IVNG}(G)$ if and only if $A^L([x, y]) \geq A^L(x)$ and $A^U([x, y]) \geq A^U(x)$ for any $x, y \in G$.

Proof. (\Rightarrow) : Suppose $A \in IVNG(G)$ and let $x, y \in G$.

International Journal of Fuzzy Logic and Intelligent Systems, vol.12, no. 3, September 2012

Then

$$\begin{split} A^{L}([x,y]) =& A^{L}(x^{-1}y^{-1}xy) \\ =& A^{L}(y^{-1}xyx^{-1}) \ \text{(By the hypothesis)} \\ \geq& A^{L}(y^{-1}xy) \wedge A^{L}(x^{-1}) \\ \text{(Since } A \in \mathrm{IVG}(\mathrm{G})) \\ =& A^{L}(x) \wedge A^{L}(x) \\ \text{(By Theorem 2.9 and Result 1.B(a))} \\ =& A^{L}(x). \end{split}$$

By the similar arguments, we have that $A^U([x, y]) \ge A^U(x)$. Hence the necessary conditions hold.

 (\Leftarrow) : Suppose the necessary conditions hold and let $x, z \in G$. Then

$$\begin{aligned} A^{L}(x^{-1}zx) &= A^{L}(zz^{-1}x^{-1}zx) \\ &\geq A^{L}(z) \wedge A^{L}([z,x]) \text{ (Since } A \in \text{IVG(G))} \\ &\geq A^{L}(z) \wedge A^{L}(z) \text{ (By the hypothesis)} \\ &= A^{L}(z). \end{aligned}$$

By the similar arguments, we have that $A^U(x^{-1}zx) \ge A^U(z)$. On the other hand,

$$\begin{array}{lll} A^L(z) &=& A^L(xx^{-1}zxx^{-1})\\ &\geq& A^L(x) \wedge A^L(x^{-1}zx) \wedge A^L(x^{-1})\\ && (\text{Since } A \in \text{IVG(G)})\\ &=& A^L(x) \wedge A^L(x^{-1}zx). \ \text{(By Result 1.B(a))} \end{array}$$

By the similar arguments, we have that $A^U(z) \ge A^U(x) \land A^U(x^{-1}zx)$.

Case(i): Suppose $A^{L}(x) \wedge A^{L}(x^{-1}zx) = A^{L}(x)$ and $A^{U}(x) \wedge A^{U}(x^{1}zx) = A^{U}(x)$. Then $A^{L}(z) \geq A^{L}(x)$ and $A^{U}(z) \geq A^{U}(x)$ for any $x, z \in G$. Thus A is a constant mapping. So A(xy) = A(yx) for any $x, z \in G$, i.e., $A \in$ IVNG(G).

Case(ii): Suppose $A^L(x) \wedge A^L(x^{-1}zx) = A^L(x^{-1}zx)$ and $A^U(x) \wedge A^U(x^{-1}zx) = A^U(x^{-1}zx)$. Then $A^L(z) \ge A^L(x^{-1}zx)$ and $A^U(z) \ge A^U(x^{-1}zx)$ for any $x, z \in G$, i.e., $A(x^{-1}zx) = A(z)$ for any $x, z \in G$. So A is constant on the conjugate classes. By Theorem 2.11, $A \in IVNG(G)$. Hence, in either cases, $A \in IVNG(G)$. This completes the proof. \Box

Proposition 2.13. Let A be an IVNG of a group G and let $[\lambda, \mu] \in D(I)$ such that $\lambda \leq A^L(e), \mu \leq A^U(e)$, where e denotes the identity of G. Then $A^{[\lambda,\mu]} \triangleleft G$.

Proof. By Result 1.D, $A^{[\lambda,\mu]}$ is a subgroup of G. Let $x \in A^{[\lambda,\mu]}$ and let $z \in G$. Since $A \in IVNG(G)$, by Proposition 2.9(b), $A(z^{-1}xz) = A(x)$. Since $x \in A^{[\lambda,\mu]}$, $A^L(x) \ge \lambda$ and $A^U(x) \ge \mu$. Thus $A^L(z^{-1}xz) \ge \lambda$ and $A^U(z^{-1}xz) \ge \mu$. So $z^{-1}xz \in A^{[\lambda,\mu]}$. Hence

$$A^{[\lambda,\mu]} \triangleleft G.$$

Let A be an IVNG of a finite group G with ImA= $\{[t_0, s_0], [t_1, s_1], \dots, [t_r, s_r]\}$, where $t_0 > t_1 > \dots > t_r$ and $s_0 > s_1 > \dots > s_r$. Then it follows from Theorem 2.7 that the level subgroups of A form a chain of normal subgroups:

$$A^{[t_0,s_0]} \subset A^{[t_1,s_1]} \subset \cdots, A^{[t_r,s_r]} = G.$$
(2.1)

The following is the immediate result of Proposition 2.13.

Corollary 2.13 [6, Proposition 5.4]. Let A be an IVNG of a group G with identity e. Then $G_A \triangleleft G$, where $G_A = \{x \in G : A(x) = A(e)\}.$

The following is the converse of Proposition 2.13.

Proposition 2.14. If A is an IVG of a finite group G such that all the level subgroups of A are normal in G, then $A \in$ IVNG(G).

Proof. Let Im A = { $[t_0, s_0], [t_1, s_1], \dots, [t_r, s_r]$ }, where $t_0 > t_1 > \dots > t_r$ and $s_0 > s_1 > \dots > s_r$. Then the family { $A^{[t_i,s_i]}: 0 \le i \le r$ } is the complete set of level subgroups of *G*. By the hypothesis, $A^{[t_i,s_i]} \lhd G$ for each $0 \le i \le r$. From the definition of the level subgroup, it is clear that $A^{[t_i,s_i]} \setminus A^{[t_{i-1},s_{i-1}]} = \{x \in G : A(x) = [t_i,s_i]\}$. Since a normal subgroup of a group is a complete union of conjugate classes, it follows that in the given chain (2.1) of normal subgroups, each $A^{[t_i,s_i]} \setminus A^{[t_{i-1},s_{i-1}]}$ is a union of some conjugate classes. Since *A* is constant on $A^{[t_i,s_i]} \setminus A^{[t_{i-1},s_{i-1}]}$, it follows that *A* must be constant on each conjugate class of *G*. Hence, by Theorem 2.11, $A \in IVNG(G)$.

Example 2.15. Let G be the group of all symmetries of a square. Then G is a group of order 8 generated by a rotation through $\pi/2$ and a reflection along a diagonal of the square. Let us denote the elements of G by $\{1, 2, 3, 4, 5, 6, 7, 8\}$, where 1 is the identity, 2 is rotation through $\pi/2$ and 5 is a reflection along a diagonal: the multiplication table of G is as shown in Table 1.

	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	3	4	1	6	$\overline{7}$	8	5
3	3	4	1	2	$\overline{7}$	8	5	6
4	4	1	2	3	8	5	6	7
5	5	8	7	6	1	4	3	2
6	6	5	8	$\overline{7}$	2	1	4	3
$\overline{7}$	7	6	5	8	3	2	1	4
8	8	7	6	5	4	3	2	1
Table 1.								

We can easily see that the conjugate classes of G are $\{1\}, \{3\}, \{5,7\}, \{6,8\}, \{2,4\}.$

Let $H = \{1,3\}$ and let $K = \{1,2,3,4\}$. Then clearly, $H \triangleleft G$ and $K \triangleleft G$ (in fact, H is the center of G). Thus we have a chain of normal subgroups given by

$$\{1\} \subset H \subset K \subset G. \tag{2.2}$$

Now we will construct an IVG of G whose level subgroups are precisely the members of the chain (2.2). Let $[t_i, s_i] \in D(I), 0 \le i \le 3$ such that $t_0 > t_1 > t_2 > t_3$ and $s_0 > s_1 > s_2 > s_3$. Define a mapping $A : G \to D(I)$ as follows:

 $A(1) = [t_0, s_0], A(H \setminus \{1\}) = [t_1, s_1], A(K \setminus H) = [t_2, s_2], A(G \setminus K) = [t_3, s_3].$ From the definition of A, it is clear that $A(x) = A(x^{-1})$ for each $x \in G$. Also, we can easily check that for any $x, y \in G$,

$$A^{L}(xy) \ge A^{L}(x) \wedge A^{L}(y)$$
 and $A^{U}(xy) \ge A^{U}(x) \wedge A^{U}(y)$.

Furthermore, it is clear that A is constant on the conjugate classes. Hence, by Theorem 2.11, $A \in IVNG(G)$.

The following can be easily proved and the proof is omitted.

Lemma 2.16. Let A be an IVG of a group and let $x \in G$. Then $A(x) = [\lambda, \mu]$ if and only if $x \in A^{[\lambda, \mu]}$ and $x \notin A^{[t,s]}$ for each $[t, s] \in D(I)$ such that $t > \lambda$ and $s > \mu$.

It is well-known that if N is a normal subgroup of a group G, then $xy \in N$ if and only if $yx \in N$ for any $x, y \in G$.

The following result is the generalization of Proposition 2.14.

Proposition 2.17. Let A be an IVG of a group G. If $A^{[\lambda,\mu]}, [\lambda,\mu] \in \text{Im A}$, is a normal subgroup of G, then $A \in \text{IVNG}(G)$.

Proof. For any $x, y \in G$, let $A(x, y) = [\lambda, \mu]$ and let A(xy) = [t, s] be such that $t > \lambda$ and $s > \mu$. Then, by Lemma 2.16, $xy \in A^{[\lambda,\mu]}$ and $xy \notin A^{[t,s]}$. Thus $yx \in A^{[\lambda,\mu]}$ and $yx \notin A^{[t,s]}$. So $A(yx) = [\lambda,\mu]$, i.e., A(xy) = A(yx). Hence $A \in \text{IVNG}(G)$.

3. Homomorphisms

Definition 3.1 [9]. Let $f : X \to Y$ be a mapping, let $A = [A^L, A^U] \in D(I)^X$ and let $B = [B^L, B^U] \in D(I)^Y$. Then

(a) the *image* of A under f, denoted by f(A), is an IVS

in Y defined as follows: For each $y \in Y$,

$$f(A^{L})(y) = \begin{cases} \bigvee_{\substack{y=f(x)\\0, \\ 0, \\ 0 \end{cases}} A^{L}(x), & \text{if } f^{-1}(y) \neq \emptyset; \\ 0, & \text{otherwise.} \end{cases}$$

and

$$f(A^U)(y) = \begin{cases} \bigvee_{\substack{y=f(x)\\0, \\ 0, \\ 0 \end{cases}} A^U(x), & \text{if } f^{-1}(y) \neq \emptyset; \\ 0, & \text{otherwise.} \end{cases}$$

(b) the *preimage* of B under f, denoted by $f^{-1}(B)$, is an IVS in Y defined as follows: For each $y \in Y$,

$$f^{-1}(B^L)(y) = (B^L \circ f)(x) = B^L(f(x))$$

and

$$f^{-1}(B^U)(y) = (B^U \circ f)(x) = B^U(f(x))$$

It can be easily seen that $f(A) = [f(A^L), f(A^U)]$ and $f^{-1}(B) = [f^{-1}(B^L), f^{-1}(B^U)].$

Result 3.A [9, Theorem 2]. Let $f : X \to Y$ be a mapping and $g : Y \to Z$ be a mapping. Then

(a)
$$f^{-1}(B^c) = [f^{-1}(B)]^c$$
, $\forall B \in D(I)^Y$.
(b) $[f(A)]^c \subset f(A^c)$, $\forall A \in D(I)^Y$.
(c) $B_1 \subset B_2 \Rightarrow f^{-1}(B_1) \subset f^{-1}(B_2)$, where $B_1, B_2 \in D(I)^Y$.
(d) $A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2)$, where $A_1, A_2 \in D(I)^X$.
(e) $f(f^{-1}(B)) \subset B$, $\forall B \in D(I)^Y$.
(f) $A \subset f(f^{-1}(A))$, $\forall A \in D(I)^Y$.
(g) $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$, $\forall C \in D(I)^Z$.
(h) $f^{-1}(\bigcup_{\alpha \in \Gamma} B_\alpha) = \bigcup_{\alpha \in \Gamma} f^{-1}B_\alpha$, where $\{B_\alpha\}_{\alpha \in \Gamma} \in D(I)^Y$.
(h)' $f^{-1}(\bigcap_{\alpha \in \Gamma} B_\alpha) = \bigcap_{\alpha \in \Gamma} f^{-1}B_\alpha$, where $\{B_\alpha\}_{\alpha \in \Gamma} \in D(I)^Y$.

Proposition 3.2. Let $f : X \to Y$ be a groupoid homomorphism. If $A \in IVGP(X)$, then $f(A) \in IVGP(Y)$.

Proof. For each $y \in Y$, let $X_y = f^{-1}(y)$. Since f is a homomorphism, it is clear that

$$\begin{split} X_y X_{y'} &\subset X_{yy'} \text{ for any } y, y' \in Y. \end{split} \tag{$(*)$} \\ \text{Let } y, y' \in Y. \end{split}$$

Case (i): Suppose $yy' \notin f(A)$. Then clearly f(A)(yy') = [0,0]. Since $yy' \notin f(X), X_{yy'} = \emptyset$. By (*), $X_y = \emptyset$ or $X_{y'} = \emptyset$. Thus f(A)(y) = [0,0] or f(A)(y') = [0,0]. So

$$f(A)(yy') = [0,0] = [f(A)^{L}(y) \wedge f(A)^{L}(y'), f(A)^{U}(y) \wedge f(A)^{U}(y')].$$

International Journal of Fuzzy Logic and Intelligent Systems, vol.12, no. 3, September 2012

Case (ii): Suppose $yy' \in f(X)$. Then $X_{yy'} \neq \emptyset$. If $X_y = \emptyset$ and $X_{y'} = \emptyset$, then f(A)(y) = [0,0] and f(A)(y') = [0,0]. Thus

$$f(A)^{L}(yy') \ge f(A)^{L}(y) \wedge f(A)^{L}(y')$$

and

$$f(A)^U(yy') \ge f(A)^U(y) \wedge f(A)^U(y').$$

If $X_y \neq \emptyset$ or $X'_y \neq \emptyset$, then, by (*),

$$\begin{split} f(A)^{L}(yy') &= \bigvee_{z \in X_{yy'}} A^{L}(z) \geq \bigvee_{z \in X_{y}X_{y'}} A^{L}(z) \\ &= \bigvee_{x \in X_{y}, x' \in X_{y'}} A^{L}(xx') \\ &\geq \bigvee_{x \in X_{y}, x' \in X_{y'}} (A^{L}(x) \wedge A^{L}(x')) \\ &\quad \text{(Since } A \in \text{IVGP}(\mathbf{X})) \\ &= (\bigvee_{x \in X_{y}} A^{L}(x)) \wedge (\bigvee_{x' \in X_{y'}} A^{L}(x')) \\ &= f(A)^{L}(y) \wedge f(A)^{L}(y'). \end{split}$$

By the similar arguments, we have that $f(A)^U(yy') \ge f(A)^U(y) \land f(A)^U(y')$. Consequently, $f(A)^L(yy') \ge f(A)^L(y) \land f(A)^L(y')$ and $f(A)^U(yy') \ge f(A)^U(y) \land f(A)^U(y')$. Hence $f(A) \in IVGP(Y)$.

Definition 3.3 [1, 6]. Let A be an IVS in a groupoid G. Then A is said to have the *sup-property* if for any $T \in P(G)$, there exists a $t_0 \in T$ such that $A(t_0) = \bigcup_{t \in T} A(t)$, i.e., $A^L(t_0) = \bigvee_{t \in T} A^L(t)$ and $A^U(t_0) = \bigvee_{t \in T} A^U(t)$, where P(G) denotes the power set of G.

Result 3.B [6, Proposition 4.11]. Let $f : G \to G'$ be a group homomorphism, let $A \in IVG(G)$ and let $B \in IVG(G')$. Then the followings hold:

(a) If A has the sup property, then $f(A) \in IVG(G')$. (b) $f^{-1}(B) \in IVG(G)$.

Proposition 3.4. Let $f : X \to Y$ be a group[resp. ring, algebra and field] homomorphism. If $A \in IVG(X)$ [resp. IVR(X), IVA(X) and IVF(X)], then $f(A) \in IVG(Y)$ [resp. IVR(Y), IVA(Y) and IVF(Y)], where IVG(X)[resp. IVR(X), IVA(X) and IVF(X)] denotes the set of all interval-valued fuzzy subgroups[resp. subrings, subalgebras and subfields] of a group[resp. ring, algebra and field] X.

Proof. Suppose $f : X \to Y$ is a group homomorphism and let $A \in IVG(X)$. Then, we need only to show that $f(A)^{L}(y^{-1}) \geq f(A)^{L}(y)$ and $f(A)^{U}(y^{-1}) \geq f(A)^{U}(y)$ for each $y \in Y$. Let $y \in Y$. Case (i): Suppose $y^{-1} \notin f(X)$. Then $y \notin f(X)$. Thus $f(A)(y^{-1}) = [0,0] = f(A)(y)$. Case (ii): Suppose $y^{-1} \in f(X)$. Then $y \in f(X)$. Thus

$$f(A)^{L}(y^{-1}) = \bigvee_{\substack{t^{-1} \in f^{-1}(y^{-1})\\ \geq \bigvee_{t \in f^{-1}(y)} A^{L}(t) = f(A)^{L}(y)}$$

and

$$f(A)^{U}(y^{-1}) = \bigvee_{t^{-1} \in f^{-1}(y^{-1})} A^{U}(t^{-1})$$
$$\geq \bigvee_{t \in f^{-1}(y)} A^{U}(t) = f(A)^{U}(y).$$

Hence $f(A) \in IVG(Y)$. The proofs of the rest are omitted. This completes the proof.

Another Proof : Let $[\lambda, \mu] \in \text{Im } f(A)$. Then there exists a $y \in Y$ such that

$$f(A)(y) = [\bigvee_{x \in f^{-1}(y)} A^{L}(x), \bigvee_{x \in f^{-1}(y)} A^{L}(x)] = [\lambda, \mu].$$

Since $A \in IVG(X)$, by Result 1.B(b), $\lambda \leq A^{L}(e)$ and $\mu \leq A^{U}(e)$.

Case (i): Suppose $[\lambda, \mu] = [0, 0]$. Then clearly $(f(A))^{[\lambda,\mu]} = Y$. So, by Result 1.D, $f(A) \in IVG(Y)$. Case (ii): Suppose $\lambda > 0$. Then

 $z \in (f(A))^{[\lambda,\mu]} \Leftrightarrow f(A)^{L}(z) \ge \lambda \text{ and } f(A)^{U}(z) \ge \mu$ $\Leftrightarrow \bigvee_{x \in f^{-1}(z)} A^{L}(x) \ge \lambda \text{ and } \bigvee_{x \in f^{-1}(z)} A^{U}(x) \ge \mu \Leftrightarrow$ there exists an $x \in X$ such that $f(x) = z, A^{L}(x) \ge \lambda$ and $A^{U}(x) \ge \mu \Leftrightarrow z \in (f(A^{[\lambda,\mu]})).$

Thus $(f(A))^{[\lambda,\mu]} = f(A^{[\lambda,\mu]})$. Since f is a homomorphism and $A^{[\lambda,\mu]}$ is a subgroup of X, $f(A^{[\lambda,\mu]})$ is a subgroup of Y. So, by Result 1.D, $f(A) \in IVG(X)$. Hence, in all, $f(A) \in IVG(X)$.

Remark 3.5. In Result 3.B, *A* has the sup property but in Proposition 3.4, there is no restriction on *A*.

Proposition 3.6. Let $f : G \to G'$ be a group homomorphism, let $A \in \text{IVNG}(G)$ and let $B \in \text{IVNG}(G')$. Then the followings hold:

(a) If f is surjective, then $f(A) \in \text{IVNG}(G')$. (b) $f^{-1}(B) \in \text{IVNG}(G)$.

Proof. (a) By Proposition 3.4, $f(A) \in \text{IVG}(G')$. Let $[\lambda, \mu] \in \text{Im } f(A)$. From the process of the another proof of Proposition 3.4, it is clear that $\lambda \leq A^L(e), \mu \leq A^U(e)$ and $(f(A))^{[\lambda,\mu]} = f(A^{[\lambda,\mu]})$. Since $A \in \text{IVNG}(G)$, by Proposition 2.13, $A^{[\lambda,\mu]} \triangleleft G$. Since f is an epimorphism, $(f(A))^{[\lambda,\mu]} = f(A^{[\lambda,\mu]}) \triangleleft G'$. Hence, by Proposition 2.17, $f(A) \in \text{IVNG}(G')$.

(b) By Result 3.B(b), $f^{-1}(B) \in IVG(G)$. Let $x, y \in G$. Then

$$\begin{split} f^{-1}(B)(xy) &= [f^{-1}(B^L)(xy), f^1(B^U)(xy)] \\ &= [B^L(f(xy)), B^U(f(xy))] \\ &= [B^L(f(x)f(y)), B^U(f(x)f(y))] \\ &\quad (Since f is a homomorphism) \\ &= [B^L(f(y)f(x)), B^U(f(y)f(x))] \\ &\quad (Since B \in IVNG(f(G)) \\ &= [B^L(f(yx)), B^U(f(yx))] \\ &\quad (Since f is a homomorphism) \\ &= [f^{-1}(B^L)(yx), f^{-1}(B^U)(yx)] \\ &= f^{-1}(B)(yx). \end{split}$$

Hence $f^{-1}(B) \in IVNG(G).$

Hence $f^{-1}(B) \in IVNG(G)$.

Result 3.C [6, Propositions 4.6 and 5.4]. Let G be a group.

(a) If $A \in IVG(G)$, then G_A is a subgroup of G.

(b) If $A \in IVNG(G)$, then $G_A \lhd G$, where $G_A = x \in G : A(x) = A(e).$

Theorem 3.7. Let A be an IVNG of a group G with identity e. We define a mapping \hat{A} : $G/G_A \rightarrow D(I)$ as follows: For each $x \in G$, $\hat{A}(G_A x) = A(x)$. Then $\hat{A} \in \text{IVNG} (G/G_A)$. Conversely, if $N \triangleleft G$ and $\hat{B} \in$ IVNG(G/N) such that $\hat{B}(N_q) = \hat{B}(N)$ only when $g \in N$, then there exists an $A \in IVNG(G)$ such that $G_A = N$ and A = B.

Proof. It is clear that $G_A \triangleleft G$ from Result 3.C(b). Moreover $\hat{A} \in D(I)^{G/G_A}$ from the definition of \hat{A} . Suppose $G_A x = G_A y$ for some $x, y \in G$. Then, by Corollary 2.13, $xy^{-1} \in G_A$. Thus $A(xy^{-1}) = A(e)$. By Result 1.C, A(x) = A(y). So $\hat{A}(G_A x) = \hat{A}(G_A y)$. Hence \hat{A} is well-defined. Furthermore, it is easy to see that $\hat{A} \in$ IVG (G/G_A) . Let $x, y \in G$. Then

$$\begin{aligned} \hat{A}(G_A x G_A y) &= \hat{A}(G_A x y) \\ &= A(xy) \\ &= A(yx) \text{ (Since } A \in \text{IVNG(G))} \\ &= \hat{A}(G_A y G_A x). \end{aligned}$$

Hence $\hat{A} \in \text{IVNG}(G/G_A)$.

Now let $N \triangleleft G$ and let $\hat{B} \in \text{IVNG}(G/G_A)$ such that $\hat{B}(N_q) = \hat{B}(N)$ only when $q \in N$. We define a mapping $A: G \to D(I)$ as follows: For each $x \in G, A(x) =$ $\hat{B}(Nx)$. Then we can easily see that A is well-defined and $A \in IVG(G)$. Let $x, y \in G$. Then

$$\begin{aligned} A(y^{-1}xy)) &= \hat{B}(Ny^{-1}xy) \\ &= \hat{B}(Ny^{-1}NxNy) \\ &= \hat{B}(Nx) \text{ (Since } \hat{B} \in \text{IVNG}(G/N)) \\ &= A(x). \end{aligned}$$

Thus A is constant on the conjugate classes of G. So, by Theorem 2.11, $A \in IVNG(G)$.

Now let $g \in N$. Then $A(g) = B(N_g) = B(N) = A(e)$. Thus $g \in G_A$. So $N \subset G_A$. Let $x \in G_A$. Then A(x) =A(e). Thus $\hat{B}(Nx) = \hat{B}(N)$. So $x \in N$, i.e., $G_A \subset N$. Hence $N = G_A$. Furthermore, $\hat{A} = \hat{B}$. This completes the proof. \square

4. Interval-valued fuzzy Lagrange's Theorem

Let A be an IVS in a group G and for each $x \in G$, $_xf: G \to G[\text{resp. } f_x: G \to G]$ be a mapping defined as follows, respectively: For each $g \in G$, $_{x}f(g) = xg$ [resp. $f_{x}(g) = gx$].

Proposition 4.1. Let A be an IVG of a group G. Then $_{x}f(A) = xA$ [resp. $f_{x}(A) = Ax$] for each $x \in G$.

Proof. Let $g \in G$. Then

$$f_x(A)^L(g) = \bigvee_{\substack{g' \in f_x^{-1}(g) \\ g'x=q}} A^L(g')$$
$$= \bigvee_{\substack{g'x=q}} A^L(g') = A^L(gx^{-1})$$

and

$$f_x(A)^U(g) = \bigvee_{\substack{g' \in f_x^{-1}(g) \\ g' \neq g_x}} A^U(g')$$
$$= \bigvee_{\substack{g' \neq g \\ g' = g}} A^U(g') = A^U(gx^{-1}).$$

Hence, $f_x(A) = Ax$. Similarly, we can see that $_{x}f(A) = xA.$ \square

Theorem 4.2. Let A be an IVG of a group G and let $g_1, g_2 \in G$. Then $g_1A = g_2A[\text{resp.} Ag_1 = Ag_2]$ if and only if $A(g_1^{-1}g_2) = A(g_2^{-1}g_1) = A(e)$ [resp. $A(g_1g_2^{-1}) = A(g_2g_1^{-1}) = A(e)$].

Proof.(\Rightarrow): Suppose $g_1A = g_2A$. Then $g_1A(g_1) =$ $g_2A((g_1) \text{ and } g_1A(g_2) = g_2A((g_2)) \cdot A(g_2^{-1}g_1) = A(e)$ and $A(g_1^{-1}g_2) = A(e)$. Hence $A(g_2^{-1}g_1) = A(g_1^{-1}g_2) =$ A(e).

(\Leftarrow): Suppose $A(g_1^{-1}g_2) = A(g_2^{-1}g_1) = A(e)$. let $x \in$ G. Then $g_1A(x) = A(g_1^{-1}x) = A(g_1^{-1}g_2g_2^{-1}x)$. Since A is a IVG(G),

By the similar arguments, we have that $A^U(g_1^{-1}x) \geq$ $A^U(g_2^{-1}x)$. Thus $g_2A \subset g_1A$. Similarly, we have that $g_1A \subset g_2A$. Hence $g_1A = g_2A$. This completes the proof.

Proposition 4.3. Let A be an IVG of a group G. If $Ag_1 = Ag_2$ for any $g_1, g_2 \in G$, then $A(g_1) = A(g_2)$.

Proof. Suppose $Ag_1 = Ag_2$ for any $g_1, g_2 \in G$. Then $Ag_1(g_2) = Ag_2(g_2)$. Thus $A(g_2g_1^{-1}) = A(e)$. Hence, by Result 1.C, $A(g_1) = A(g_2)$.

Proposition 4.4. Let A be an IVG of a group G. If $A^{[\lambda,\mu]}x = A^{[\lambda,\mu]}y$ for any $x,y \in G \setminus A^{[\lambda,\mu]}$ and each $[\lambda, \mu] \in D(I)$, then A(x) = A(y).

Proof. Suppose $A^{[\lambda,\mu]}x = A^{[\lambda,\mu]}y$ for any $x, y \in G \setminus$ $\begin{array}{l} A^{[\lambda,\mu]} \text{ and each } [\lambda,\mu] \in D(I). \text{ Then } yx^{-1} \in A^{[\lambda,\mu]}. \text{ Thus } \\ A^{L}(yx^{-1}) \geq \lambda \text{ and } A^{U}(yx^{-1}) \geq \mu. \text{ Since } x \in G \setminus \\ A^{[\lambda,\mu]}, A^{L}(x) < \lambda \text{ and } A^{U}(x) < \mu. \text{ On the other hand,} \end{array}$

$$A^{L}(y) = A^{L}(yx^{-1}x) \ge A^{L}(yx^{-1}) \land A^{L}(x)$$

and

$$A^{U}(y) = A^{U}(yx^{-1}x) \ge A^{U}(yx^{-1}) \land A^{U}(x)$$

Thus $A^{L}(y) \geq A^{L}(x)$ and $A^{U}(y) \geq A^{U}(x)$. By the similar arguments, we have that $A^{L}(y) \leq A^{L}(x)$ and $A^U(y) \leq A^U(x)$. Hence A(x) = A(y).

Proposition 4.5. Let A be an IVNG of a group G and let $x \in G$. Then Ax(xg) = Ax(gx) = A(g) for each $g \in G$.

Proof. Let $g \in G$. Then

Similarly, we have that Ax(qx) = A(q). This completes the proof.

Remark 4.6. Proposition 4.5 is analogous to the result in group theory that if $N \triangleleft G$, then Nx = xN for each $x \in G$.

If N is a normal subgroup of a group G, then the cosets of G with respect to N form a group(called the quotient group G/N). For an IVNG, we have the analogous result:

Proposition 4.7. Let A be an IVNG of a group G and let G/A be the set of all the interval-valued fuzzy cosets of A. We define an operation * on G/A as follows: For any $x, y \in G$, Ax * Ay = Axy. Then (G/A, *)is a group. In this case, G/A is called the intervalvalued fuzzy quotient group induced by A.

Proof. Let $x, y, x_0, y_0 \in G$ such that $Ax = Ax_0$ and Ay = Ay_0 , and let $g \in G$. Then $Axy(g) = A(gy^{-1}x^{-1})$ and $Ax_0y_0(g) = A(gy_0^{-1}x_0^{-1})$. On the other hand,

$$\begin{aligned} A^{L}(gy^{-1}x^{-1}) &= A^{L}(gy^{-1}_{0}y_{0}y^{-1}x^{-1}) \\ &= A^{L}(gy^{-1}_{0}x^{-1}_{0}x_{0}y_{0}y^{-1}x^{-1}) \\ &\geq A^{L}(gy^{-1}_{0}x^{-1}_{0}) \wedge A^{L}(x_{0}y_{0}y^{-1}x^{-1}). \\ &\quad (\text{Since } A \in \text{IVG(G)}) \end{aligned}$$

$$(4.1)$$

By the similar arguments, we have that

 $A^U(gy^{-1}x^{-1})$ $A^U(gy_0^{-1}x_0^{-1})$ >Λ $A^{U}(x_{0}y_{0}y^{-1}x^{-1}).(4.2)$ Since $Ax - Ax_0$ and $Ay = Ay_0$, $A(gx^{-1}) = A(gx_0^{-1})$ and

 $A(gy^{-1}) = A(gy_0^{-1})$. In Particular,

$$\begin{array}{lll} A(x_0y_0y^{-1}x^{-1}) &=& A(x_0y_0y^{-1}x_0^{-1}) \\ &=& A(y_0y^{-1}) \text{ (Since } A \in \text{IVNG(G))} \\ &=& A(e). \end{array}$$

 \geq Thus, by (4.1) and (4.2), $A^{L}(gy^{-1}x^{-1}) \ge A^{L}(gy_{0}^{-1}x_{0}^{-1})$ and $A^{U}(gy^{-1}x^{-1}) \ge A^{U}(gy_{0}^{-1}x_{0}^{-1})$. By the similar arguments, we have that $A^{L}(gy_{0}^{-1}x_{0}^{-1}) \ge A^{L}(gy^{-1}x^{-1})$

and

 $\begin{array}{ll} A^U(gy_0^{-1}x_0^{-1}) \geq A^L(gy^{-1}x^{-1}).\\ \text{So} \ A(gy_0^{-1}x_0^{-1}) \ = \ A(gy^{-1}x^{-1}), \ \text{i.e.,} \ Ax_0y_0(g) \ = \end{array}$ Axy(g). Hence * is well-defined. Furthermore, we can easily check that the followings are true:

(i) * is associative.

(ii) Ax^{-1} is the inverse of Ax for each $x \in G$.

(iii) Ae = A is the identity of G/A. Therefore (G/A, *)is a group. This completes the proof

Proposition 4.8. Let A be an IVNG of a group G. We define a mapping $\overline{A} : G/A \to D(I)$ as follows: For each $x \in G$, $\overline{A}(Ax) = Ax$. Then \overline{A} is an IVG of G/A. In this case, \overline{A} is called the interval- valued fuzzy subquotient group determined by A.

Proof. From the definition of \overline{A} , it is clear that $\overline{A} \in$

 $D(I)^{G/A}$. Let $x, y \in G$. Then

$$\begin{aligned} \bar{A}^{L}(Ax * Ay) &= \bar{A}^{L}(Axy) \\ &= \bar{A}^{L}(xy) \\ &\geq A^{L}(x) \wedge A^{L}(y) \\ &= \bar{A}^{L}(Ax) \wedge \bar{A}^{L}(Ay). \end{aligned}$$

By the similar arguments, we have that $\bar{A}^U(Ax * Ay) \geq$ $\bar{A}^U(Ax) \wedge \bar{A}^U(Ay)$. On the other hand,

$$\bar{A}^{L}((Ax)^{-1}) = \bar{A}^{L}(Ax^{-1}) = \bar{A}^{L}(x)^{-1})$$
$$\geq A^{L}(x) = \bar{A}^{L}(Ax)$$

and

$$\bar{A}^{U}((Ax)^{-1}) = \bar{A}^{U}(Ax^{-1}) = \bar{A}^{U}(x)^{-1})$$
$$\geq A^{U}(x) = \bar{A}^{U}(Ax).$$

Hence $\overline{A} \in IVG(G/A)$.

Proposition 4.9. Let A be an IVNG of a group G. We define a mapping π : $G \rightarrow G/A$ as follows: For each $x \in G, \pi(x) = Ax$. Then π is a homomorphism with $Ker(\pi) = G_A$. In this case, π is called the natural homomorphism.

Proof. Let $x, y \in G$. Then $\pi(xy) = Axy = Ax * Ay =$ $\pi(x) * \pi(y)$. So π is a homomorphism. Furthermore,

$$Ker(\pi) = \{x \in G : \pi(x) = Ae\} \\ = \{x \in G : A(x) = Ae\} \\ = \{x \in G : Ax(x) = Ae(x)\} \\ = \{x \in G : A(e) = A(x)\} \\ = G_A.$$

This completes the proof.

Now we obtain for interval-valued fuzzy subgroups an analogous result of the "Fundamental Theorem of Homomorphism of Groups".

Proposition 4.10. Let $A \in IVNG(G)$. Then each intervalvalued fuzzy(normal) subgroup of G/A corresponds in a natural way to an interval-valued fuzzy(normal) subgroup of G.

Proof. Let A^* be an interval-valued fuzzy subgroup of G/A. Define a mapping $B : G \to D(I)$ as follows: For each $x \in G, B(x) = A^*(Ax)$. By the definition of B, it is clear that $B \in D(I)^G$. Let $x, y \in G$. Then

 \square

By the similar arguments, we have that $B^U(xy) \geq 0$ $B^U(x) \wedge B^U(y)$. Since $A^* \in IVG(G/A), A^*(Ax^{-1}) =$ $A^*(Ax)$. Thus

$$B(x^{-1}) = [B^{L}(x^{-1}), B^{U}(x^{-1})]$$

= $[A^{*L}(Ax^{-1}), A^{*U}(Ax^{-1})]$
= $[A^{*L}(Ax), A^{*U}(Ax)]$
= $[B^{L}(x) \wedge B^{U}(y)] = B(x).$

Hence $B \in IVG(G)$. It is easy to see that if B is an IVNG of G/A, then B is an IVNG of G. This completes the proof. \square

Now we will obtain an interval-valued fuzzy analog of the famous "Lagrange's Theorem" for finite groups which is a basic result in group theory. Let A be an IVG of a finite group G. Then it clear that G/A is finite.

Definition 4.11. Let A be an IVG of a finite group G. Then the cardinality |G/A| of G/A is called the *index* of Α.

Theorem 4.12 (Interval-valued Fuzzy Lagrange's **Theorem**). Let A be an IVG of a finite group G. Then the index of A divides the order of G.

Proof. By Proposition 4.9, there is the natural homomorphism $\pi: G \to G/A$. Let H be the subgroup of G defined by $H = \{h \in G : Ah = Ae\}$, where e is the identity of G. Let $h \in H$. Then Ah(g) = Ae(g) or $A(gh^{-1}) = A(g)$ for each $g \in G$. In particular, $A(h^{-1}) = A(e)$. Since A is an IVG of G, by Result 1.B(a), A(h) = A(e). Thus $h \in G_A$. So $H \subset G_A$. Now let $h \in G_A$. Then A(h) = A(e). Thus, by Result 1.B(a), $A(h^{-1}) = A(e)$. By Lemma 2.2, $A(gh^{-1}) = A(g)$ or Ah(g) = Ae(g) for each $g \in G$. Thus Ah = Ae, i.e., $h \in H$. So $G_A \subset H$. Hence $H = G_A.$

Now decompose G as a disjoint union of the cosets of Gwith respect to H:

$$G = Hx_1 \cup Hx_2 \cup \dots \cup Hx_k \tag{4.3}$$

where $hx_1 = H$. We show that corresponding to each coset Hx_i given in (4.3), there is an interval-valued fuzzy coset belonging to G/A, and further that this correspondence is injective. Consider any coset Hx_i . Let $h \in H$. Then $\pi(hx_i) = Ahx_i = Ah * Ax_i = Ae * Ax_i = Ax_i.$ Thus π maps each element of Hx_i into the interval-valued fuzzy coset Ax_i . Now we define a mapping $\bar{\pi} : \{Hx_i : 1 \leq i\}$ $i \leq k$ $\} \rightarrow G/A$ as follows: For each $i \in \{1, 2, \dots, K\}$,

|G/A| = k. Since k divides the order of G, |G/A| also divides the order of G. This completes the proof.

References

- [1] R.Biswas, "Rosenfeld's fuzzy subgroups with interval-valued membership functions," *Fuzzy Sets and Systems*, vol. 63, pp. 87-90, 1994.
- [2] J.Y.Choi, S.R.Kim and K.Hur, "Interval-valued smooth topological spaces," *Honam Math.J.*, vol. 32, pp. 711-738, 2010.
- [3] M.B. Gorzalczany, "A method of inference in approximate reasoning based on interval-valued fuzzy sets," *Fuzzy Sets and Systems*, vol. 21, pp. 1-17, 1987.
- [4] T.W.Hungerford, "Abstract Algebra: An Introduction, Saunders College Publishing, a division of Holt," *Rinehart and Winston, Inc.*, 1990.
- [5] K.Hur, J.G.Lee and J.Y.Choi, "Interval-valued fuzzy relations," *J.Korean Institute of Intelligent systems*, vol. 19, pp. 425-432, 2009.
- [6] K.Hur and H.W.Kang, "Interval-valued fuzzy subgroups and rings," *Honam Math.J.*, vol. 32, pp. 593-617, 2010.
- [7] H.W.Kang, "Interval-valued fuzzy subgroups and homomorphisms," *Honam Math.J.*, vol. 33, 2011.
- [8] Wang-jin Liu, "Fuzzy invariant subgroups and fuzzy ideals," *Fuzzy Sets and Systems*, vol. 8, pp. 133-139, 1982.

- [9] T.K.Mondal and S.K.Samanta, "Topology of intervalvalued fuzzy sets," *Indian J. Pure Appl. Math.*, vol. 30, pp. 20-38, 1999.
- [10] L.A.Zadeh, "Fuzzy sets," *Inform and Control*, vol. 8, pp. 338-353, 1965.
- [11] L.A.Zadeh, "The concept of a linguistic variable and its application to approximate reasoning-I," *Inform. Sci*, vol. 8, pp. 199-249, 1975.

Su Yeon Jang

Professor in Wonkwang University Her research interests are Category Theory, Hyperspace and Topology. E-mail : soyoun12@wonkwang.ac.kr

Kul Hur

Professor in Wonkwang University His research interests are Category Theory, Hyperspace and Topology. E-mail : kulhur@wonkwang.ac.kr

Pyung Ki Lim

Professor in Wonkwang University His research interests are Category Theory, Hyperspace and Topology. E-mail : pklim@wonkwang.ac.kr