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Abstract

We study some properties of interval-valued fuzzy normal subgroups of a group. In particular, we obtain two characteri-
zations of interval-valued fuzzy normal subgroups. Moreover, we introduce the concept of an interval-valued fuzzy coset
and obtain several results which are analogous of some basic theorems of group theory.

Key Words: interval-valued fuzzy normal subgroup, interval-valued fuzzy coset, interval-valued fuzzy quotient group.

1. Introduction and Preliminaries

In 1975, Zadeh[11] introduced the concept of interval-
valued fuzzy sets as the generalization of fuzzy sets in-
troduced by himself[10]. After that time, Biswas[1] ap-
plied the notion of interval-valued fuzzy set to group the-
ory, and Samanta and Montal[9] to topology. Recently,
Choi et al.[2] introduced the concept of interval-valued
smooth topological spaces and studied some of it’s prop-
erties. Hur et al.[3] investigated interval-valued fuzzy re-
lations, Kang and Hur[6] applied the concept of interval-
valued fuzzy sets to algebra. In particular, Kang[7] studied
interval-valued fuzzy subgroups preserved by homomor-
phisms. In this paper, we investigate some properties of
interval-valued fuzzy normal subgroups of a group. In par-
ticular, we obtain two characterizations of interval-valued
fuzzy normal subgroups. introduce the concept of interval-
valued fuzzy subgroups. Moreover, we introduce the con-
cept of an interval-valued fuzzy coset and obtain several re-
sults which are analogous of some basic theorems of group
theory.

Now, we will list some concepts and results related to
interval-valued fuzzy set theory and needed in next sec-
tions.

Let D(I) be the set of all closed subintervals of the
unit interval I = [0, 1]. The elements of D(I) are gen-
erally denoted by capital letters M,N, · · ·, and note that
M = [ML,MU ], where ML and MU are the lower and
the upper end points respectively. Especially, we denoted ,
0 = [0, 0], 1 = [1, 1], and a=[a, a] for every a ∈ (0, 1).

We also note that
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(i) (∀M,N ∈ D(I)) (M = N ⇔ ML = NL,MU =
NU ),

(ii) (∀M,N ∈ D(I)) (M ≤ N ⇔ ML ≤ NL,MU ≤
NU ).
For every M ∈ D(I), the complement of M , denoted by
M c, is defined by M c = 1 −M = [1 −MU , 1 −ML]
(See [9]).

Definition 1.1 [9, 11]. A mappingA : X → D(I) is called
an interval -valued fuzzy set (in short, IVS) in X and is
denoted by A = [AL, AU ]. Thus A(x) = [AL(x), AU (x)],
where AL(x)[resp. AU (x)] is called the lower [resp.
upper ] end point of x to A. For any [a, b] ∈ D(I),
the interval-valued fuzzy set A in X defined by
A(x) = [AL(x), AU (x)] = [a, b] for each x ∈ X

is denoted by ˜[a, b] and if a = b, then the IVS ˜[a, b]
is denoted by simply ã. In particular, 0̃ and 1̃ denote
the interval -valued fuzzy empty set and the interval -
valued fuzzy whole set in X , respectively.

We will denote the set of all IVSs in X as D(I)X . It is
clear that set A = [AL, AU ] ∈ D(I)X for each A ∈ IX .

Definition 1.2 [9]. Let A,B ∈ D(I)X and let {Aα}α∈Γ ⊂
D(I)X . Then

(a) A ⊂ B iff AL ≤ BL and AU ≤ BU .
(b) A = B iff A ⊂ B and B ⊂ A.
(c) AC = [1−AU , 1−AL].
(d) A ∪B = [AL ∨BL, AU ∨BU ].
(d)′

⋃
α∈Γ

Aα = [
∨
α∈Γ

ALα,
∨
α∈Γ

AUα ].

(e) A ∩B = [AL ∧BL, AU ∧BU ].
(e)′

⋂
α∈Γ

Aα = [
∧
α∈Γ

ALα,
∧
α∈Γ

AUα ].

Result 1.A [9, Theorem 1]. Let A,B,C ∈ D(I)X and let
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{Aα}α∈Γ ⊂ D(I)X . Then
(a) 0̃ ⊂ A ⊂ 1̃.
(b) A ∪B = B ∪A , A ∩B = B ∩A.
(c) A ∪ (B ∪ C) = (A ∪B) ∪ C ,
A ∩ (B ∩ C) = (A ∩B) ∩ C.

(d) A,B ⊂ A ∪B , A ∩B ⊂ A,B.
(e) A ∩ (

⋃
α∈Γ

Aα) =
⋃
α∈Γ

(A ∩Aα).

(f) A ∪ (
⋂
α∈Γ

Aα) =
⋂
α∈Γ

(A ∪Aα).

(g) (0̃)
c

= 1̃ , (1̃)
c

= 0̃.
(h) (Ac)c = A.
(i) (

⋃
α∈Γ

Aα)c =
⋂
α∈Γ

Acα , (
⋂
α∈Γ

Aα)c =
⋃
α∈Γ

Acα.

Definition 1.3 [6]. An interval-valued fuzzy set A in G is
called an interval -valued fuzzy
subgroupoid (in short, IVGP) in G if for any x, y ∈ G,
AL(xy) ≥ AL(x) ∧ AL(y) and AU (xy) ≥

AU (x) ∧AU (y).

We will denote IVGPs in G as IVGP(G). Then it is clear
that 0̃ and 1̃ ∈ IVGP(G).

Definition 1.4 [7]. Let A be an IVS in a group G. Then
A is called an interval -valued fuzzy subgroup(in short,
IVG) in G if it satisfies the conditions: For any x, y ∈ G,
(a) AL(xy) ≥ AL(x) ∧ AL(y) and AU (xy) ≥ AU (x) ∧
AU (y).
(b) AL(x−1) ≥ AL(x) and AU (x−1) ≥ AU (x).

We will denote the set of all IVGs of G as IVG(G).

Result 1.B [1, Proposition 3.1]. Let A be an IVG in a
group G.
(a) A(x−1) = A(x),∀x ∈ G.

(b) AL(e) ≥ AL(x) and AU (e) ≥ AU (x),∀x ∈ G.,
where e is the identity of G.

Result 1.C [6, Proposition 4.7]. Let A ∈ IVG(G). If
A(xy−1) = A(e), for any x, y ∈ G, then A(x) = A(y).

Definition 1.5 [6]. Let A be an IVS in a set X and let
[λ, µ] ∈ D(I). Then the set A[λ,µ] = {x ∈ X : AL(x) ≥
λ and AU (x) ≥ µ} is called a [λ, µ]-level subset of A.

Result 1.D [6, Propositions 4.16 and 4.17]. Let A be
an IVS in a group G. Then A ∈ IVG(G) if and only if
for each [λ, µ] ∈ Im A with λ ≤ AL(e) and µ ≤ AU (e),
A[λ,µ] is a subgroup of G.

Result 1.E [7, Proposition 3.2]. Let A be an IVFS in a
set X and let [λ1, µ1], [λ2, µ2] ∈ ImA. If λ1 < λ2 and
λ2 < µ2, then A[λ2,µ2] ⊂ A[λ1,µ1].

Let A be an IVG of a group G. Then for each [λ, µ] ∈
D(I) with A(e) ≥ [t, s], i.e., AL(e) ≥ t and AU (e) ≥
s, the level subset A[λ,µ] is a subgroup of G. If Im A =
{[t0, s0], [t1, s1], ···, [tn, sn]}, the family of level subgroups
{A[ti,si] : 0 ≤ i ≤ n} constitutes the complete list of level
subgroups of A. If the image set of the IVG A of a finite
group G consists of {[t0, s0], [t1, s1], · · ·, [tn, sn]}, where
t0 > t1 > · · · > tn and s0 > s1 > · · · > sn, then, by
Results 1.D and 1.E, the level subgroups ofA form a chain:

A[t0,s0] ⊂ A[t1,s1] ⊂ · · · ⊂ A[tn,sn] = G,

where A(e) = [t0, s0].

Notation. N C G denotes that N is a normal subgroup of
a group G.

2. Interval-valued fuzzy normal subgroups
and interval-valued fuzzy cosets

Lemma 2.1. If A is an IVGP of a finite group G, then A is
an IVG of G.

Proof. Let x ∈ G. Since G is finite, x has finite order,
say n. Then xn = e, where e is the identity of G. Thus
x−1 = xn−1. Since A is an IVGP of G,
AL(x−1) = AL(xn−1) = AL(xn−2x) ≥ AL(x)

and
AU (x−1) = AU (xn−1) = AU (xn−2x) ≥ AU (x).

Hence A is an IVG of G.

Lemma 2.2. Let A be an IVG of a group G and let x ∈ G.
Then A(xy) = A(y), for each y ∈ G if and only if
A(x) = A(e).

Proof. (⇒): SupposeA(xy) = A(y) for each y ∈ G. Then
clearly A(x) = A(e).

(⇐): Suppose A(x) = A(e). Then, by Result 1.B(b),
AL(y) ≤ AL(x) and AU (y) ≤ AU (x) for each y ∈ G.
Since A is an IVG of G, Then AL(xy) ≥ AL(x) ∧ AL(y)
and AU (xy) ≥ AU (x) ∧ AU (y). Thus AL(xy) ≥ AL(y)
and AU (xy) ≥ AU (y) for each y ∈ G.

On the other hand, by the hypothesis and Result 1.B(b),
AL(y) = AL(x−1xy) ≥ AL(x)∧AL(xy) andAU (y) =

AU (x−1xy) ≥ AU (x) ∧AU (xy).
SinceAL(x) ≥ AL(y) for each y ∈ G,AL(x)∧AL(xy) =
AL(xy) and AU (x) ∧ AL(xy) = AU (xy). So
AL(y) ≥ AL(xy) and AU (y) ≥ AU (xy) for each
y ∈ G. Hence A(xy) = A(y) for each y ∈ G.

Remark 2.3. It is easy to see that if A(x) = A(e), then
A(xy) = A(yx) for each y ∈ G.
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Definition 2.4. Let A be an IVS of a group G and let
x ∈ G. We define two mappings Ax, xA : G → D(I)
as follows, respectively : For each g ∈ G,
Ax(g) = A(gx−1) and xA(g) = A(x−1g). Then
Ax[resp, xA] is called the interval -valued fuzzy right
[resp.left] coset of G determined by x and A.

Remark 2.5. Definition 2.4 extends in a natural way to
usual definition of a ”coset” of a group. This is seen as
follows: Let H be a subgroup of a group G and let A =
[χH , χH ], where χH is the characteristic function of H .
Let x, y ∈ G. Then Ax = [χH , χH ].
Suppose g ∈ H . Then

Ax(gx) = [χHx(gx), χHx(gx)]

= [χH(gxx−1), χH(gxx−1)]

= [χH(g), χH(g)]

= [1, 1].

Suppose g /∈ H . Then

Ax(gx) = [χHx(gx), χHx(gx)]

= [χH(gxx−1), χH(gxx−1)]

= [χH(g), χH(g)]

= [0, 0].

So Ax = [χHx
, χHx

].

The following is the immediate result of Definition 2.4.

Proposition 2.6. Let A be an IVG of a group G. Then
(a) (xy)A = x(yA).
(b) A(xy) = (Ax)y.
(c) xA = A if A(x) = [1, 1].

We know that any two left[resp. right] cosets of a
subgroup H of a group G are equal or disjoint. However
this fact is not valid in the interval-valued fuzzy case as
shown in the following example.

Example 2.7. Let G = {e, a, b, c, d} be the Klein’s
four group and let A be the IVG of G defined by:
A(a) = [1, 1], A(b) = [t1, t1], A(c) = A(d) = [t2, t2],
where 0 < t2 ≤ t1 < 1. Then bA 6= cA.

Definition 2.8 [6]. Let A ∈ IVG(G). Then A is called an
interval-valued fuzzy normal subgroup(in short, IVNG) of
G if A(xy) = A(yx), for any x, y ∈ G.

We will denote the set of all IVNGs of a group G as
IVNG(G).

The following is the immediate result of Definitions 2.4
and 2.8.

Theorem 2.9. Let A be an IVG of a group G. Then the
followings are equivalent:

(a) AL(xyx−1) ≥ AL(y) and AU (xyx−1) ≥ AU (y) for
any x, y ∈ G.

(b) A(xyx−1) = A(y) for any x, y ∈ G.

(c) A ∈ IVNG(G).

(d) xA = Ax, ∀x ∈ G.

(e) xAx−1 = A, ∀x ∈ G.

Remark 2.10. Let G be a group.

(a) If A is a fuzzy normal subgroup of G, then [A,A] ∈
IVNG(G).

(b) If A = [AL, AU ] ∈ IVNG(G), then AL and AU are
fuzzy normal subgroups of G.

Let G be a group and a, b ∈ G. We say that a is
conjugate to b if there exists x ∈ G such that b = x−1ax.
It is well-known that conjugacy is an equivalence relation
on G. The equivalence classes in G under the relation of
conjugacy are called conjugate classes[4].

Theorem 2.11. Let A be an IVG of a group G. Then A ∈
IVNG(G) if and only if A is constant on the conjugate
classes of G.

Proof. (⇒) : Suppose A ∈ IVNG(G) and let x, y ∈ G.
Then A(y−1xy) = A(xyy−1) = A(x). Hence A is con-
stant on the conjugate classes.

(⇐) : Suppose the necessary condition holds and let
x, y ∈ G. Then A(xy) = A(xyxx−1)
= A(x(yx)x−1) = A(yx). Hence A ∈ IVNG(G).

Let G be a group and x, y ∈ G. Then the element
x−1y−1xy is usually denoted by x, y] and called the
commutator of x and y. It is clear that if x and y commute
with each other, then clearly [x, y] = e. Let H and K be
two subgroups of a group G. Then the subgroup [H,K]
is defined as the subgroup generated by the elements
{[x, y] : x ∈ H, y ∈ K}. It is well-known that N C G if
and only if [N,G] ≤ N .

The following is the generalization of the above result
using interval-valued fuzzy sets.

Theorem 2.12. Let A be an IVG of a group G. Then
A ∈ IVNG(G) if and only if AL([x, y]) ≥ AL(x) and
AU ([x, y]) ≥ AU (x) for any x, y ∈ G.

Proof. (⇒): Suppose A ∈ IVNG(G) and let x, y ∈ G.
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Then

AL([x, y]) =AL(x−1y−1xy)

=AL(y−1xyx−1) (By the hypothesis)

≥AL(y−1xy) ∧AL(x−1)

(Since A ∈ IVG(G))

=AL(x) ∧AL(x)

(By Theorem 2.9 and Result 1.B(a))

=AL(x).

By the similar arguments, we have that AU ([x, y]) ≥
AU (x). Hence the necessary conditions hold.

(⇐): Suppose the necessary conditions hold and let
x, z ∈ G. Then

AL(x−1zx) = AL(zz−1x−1zx)

≥ AL(z) ∧AL([z, x]) (Since A ∈ IVG(G))
≥ AL(z) ∧AL(z) (By the hypothesis)
= AL(z).

By the similar arguments, we have that AU (x−1zx) ≥
AU (z). On the other hand,

AL(z) = AL(xx−1zxx−1)

≥ AL(x) ∧AL(x−1zx) ∧AL(x−1)

(Since A ∈ IVG(G))
= AL(x) ∧AL(x−1zx). (By Result 1.B(a))

By the similar arguments, we have that AU (z) ≥ AU (x) ∧
AU (x−1zx).

Case(i): Suppose AL(x) ∧ AL(x−1zx) = AL(x) and
AU (x) ∧AU (x1zx) = AU (x). Then AL(z) ≥ AL(x) and
AU (z) ≥ AU (x) for any x, z ∈ G. Thus A is a constant
mapping. So A(xy) = A(yx) for any x, z ∈ G, i.e., A ∈
IVNG(G).

Case(ii): Suppose AL(x) ∧ AL(x−1zx) = AL(x−1zx)
and AU (x) ∧ AU (x−1zx) = AU (x−1zx). Then
AL(z) ≥ AL(x−1zx) and AU (z) ≥ AU (x−1zx) for any
x, z ∈ G, i.e., A(x−1zx) = A(z) for any x, z ∈ G. So
A is constant on the conjugate classes. By Theorem 2.11,
A ∈ IVNG(G). Hence, in either cases, A ∈ IVNG(G).
This completes the proof.

Proposition 2.13. Let A be an IVNG of a group G and let
[λ, µ] ∈ D(I) such that λ ≤ AL(e), µ ≤ AU (e), where e
denotes the identity of G. Then A[λ,µ] C G.

Proof. By Result 1.D, A[λ,µ] is a subgroup of G. Let
x ∈ A[λ,µ] and let z ∈ G. Since A ∈ IVNG(G), by
Proposition 2.9(b), A(z−1xz) = A(x). Since x ∈ A[λ,µ],
AL(x) ≥ λ and AU (x) ≥ µ. Thus AL(z−1xz) ≥ λ
and AU (z−1xz) ≥ µ. So z−1xz ∈ A[λ,µ]. Hence

A[λ,µ] C G.

Let A be an IVNG of a finite group G with ImA=
{[t0, s0], [t1, s1], · · ·, [tr, sr]}, where t0 > t1 > · · · > tr
and s0 > s1 > · · · > sr. Then it follows from Theorem
2.7 that the level subgroups of A form a chain of normal
subgroups:

A[t0,s0] ⊂ A[t1,s1] ⊂ · · ·, A[tr,sr] = G. (2.1)

The following is the immediate result of Proposition 2.13.

Corollary 2.13 [6, Proposition 5.4]. Let A be an IVNG
of a group G with identity e. Then GA C G, where
GA = {x ∈ G : A(x) = A(e)}.

The following is the converse of Proposition 2.13.

Proposition 2.14. If A is an IVG of a finite group G such
that all the level subgroups of A are normal in G, then A ∈
IVNG(G).

Proof. Let Im A = {[t0, s0], [t1, s1], · · ·, [tr, sr]}, where
t0 > t1 > ··· > tr and s0 > s1 > ··· > sr. Then the family
{A[ti,si] : 0 ≤ i ≤ r} is the complete set of level subgroups
of G. By the hypothesis, A[ti,si] C G for each 0 ≤ i ≤ r.
From the definition of the level subgroup, it is clear that
A[ti,si] \ A[ti−1,si−1] = {x ∈ G : A(x) = [ti, si]}.
Since a normal subgroup of a group is a complete union
of conjugate classes, it follows that in the given chain
(2.1) of normal subgroups, each A[ti,si] \ A[ti−1,si−1] is a
union of some conjugate classes. Since A is constant on
A[ti,si] \A[ti−1,si−1], it follows that A must be constant on
each conjugate class of G. Hence, by Theorem 2.11, A ∈
IVNG(G).

Example 2.15. Let G be the group of all symmetries
of a square. Then G is a group of order 8 generated
by a rotation through π/2 and a reflection along a di-
agonal of the square. Let us denote the elements of
G by {1, 2, 3, 4, 5, 6, 7, 8}, where 1 is the identity, 2
is rotation through π/2 and 5 is a reflection along a di-
agonal: the multiplication table ofG is as shown in Table 1.

1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 3 4 1 6 7 8 5
3 3 4 1 2 7 8 5 6
4 4 1 2 3 8 5 6 7
5 5 8 7 6 1 4 3 2
6 6 5 8 7 2 1 4 3
7 7 6 5 8 3 2 1 4
8 8 7 6 5 4 3 2 1

Table 1.
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We can easily see that the conjugate classes of G are
{1}, {3}, {5, 7}, {6, 8}, {2, 4}.
Let H = {1, 3} and let K = {1, 2, 3, 4}. Then clearly,
H C G and K C G(in fact, H is the center of G). Thus
we have a chain of normal subgroups given by

{1} ⊂ H ⊂ K ⊂ G. (2.2)

Now we will construct an IVG of G whose level sub-
groups are precisely the members of the chain (2.2). Let
[ti, si] ∈ D(I), 0 ≤ i ≤ 3 such that t0 > t1 > t2 > t3 and
s0 > s1 > s2 > s3. Define a mapping A : G → D(I) as
follows:
A(1) = [t0, s0], A(H \ {1}) = [t1, s1], A(K \ H) =
[t2, s2], A(G \ K) = [t3, s3]. From the definition of A, it
is clear that A(x) = A(x−1) for each x ∈ G. Also, we can
easily check that for any x, y ∈ G,

AL(xy) ≥ AL(x)∧AL(y) andAU (xy) ≥ AU (x)∧AU (y).

Furthermore, it is clear that A is constant on the conjugate
classes. Hence, by Theorem 2.11, A ∈ IVNG(G).

The following can be easily proved and the proof is
omitted.

Lemma 2.16. Let A be an IVG of a group and let x ∈ G.
ThenA(x) = [λ, µ] if and only if x ∈ A[λ,µ] and x 6∈ A[t,s]

for each [t, s] ∈ D(I) such that t > λ and s > µ.
It is well-known that if N is a normal subgroup of a

group G, then xy ∈ N if and only if yx ∈ N for any
x, y ∈ G.

The following result is the generalization of Proposition
2.14.

Proposition 2.17. Let A be an IVG of a group G. If
A[λ,µ], [λ, µ] ∈ Im A, is a normal subgroup of G, then A ∈
IVNG(G).

Proof. For any x, y ∈ G, let A(x, y) = [λ, µ] and let
A(xy) = [t, s] be such that t > λ and s > µ. Then, by
Lemma 2.16, xy ∈ A[λ,µ] and xy 6∈ A[t,s]. Thus yx ∈
A[λ,µ] and yx 6∈ A[t,s]. So A(yx) = [λ, µ], i.e., A(xy) =
A(yx). Hence A ∈ IVNG(G).

3. Homomorphisms

Definition 3.1 [9]. Let f : X → Y be a mapping, let
A = [AL, AU ] ∈ D(I)X and let B = [BL, BU ] ∈ D(I)Y .
Then

(a) the image of A under f , denoted by f(A), is an IVS

in Y defined as follows: For each y ∈ Y ,

f(AL)(y) =


∨

y=f(x)

AL(x), if f−1(y) 6= ∅;

0, otherwise.

and

f(AU )(y) =


∨

y=f(x)

AU (x), if f−1(y) 6= ∅;

0, otherwise.

(b) the preimage of B under f , denoted by f−1(B), is
an IVS in Y defined as follows: For each y ∈ Y ,

f−1(BL)(y) = (BL ◦ f)(x) = BL(f(x))

and

f−1(BU )(y) = (BU ◦ f)(x) = BU (f(x)).

It can be easily seen that f(A) = [f(AL), f(AU )] and
f−1(B) = [f−1(BL), f−1(BU )].

Result 3.A [9, Theorem 2]. Let f : X → Y be a mapping
and g : Y → Z be a mapping. Then

(a) f−1(Bc) = [f−1(B)]c , ∀B ∈ D(I)Y .
(b) [f(A)]c ⊂ f(Ac) , ∀A ∈ D(I)Y .
(c) B1 ⊂ B2 ⇒ f−1(B1) ⊂ f−1(B2), where B1, B2 ∈

D(I)Y .
(d) A1 ⊂ A2 ⇒ f(A1) ⊂ f(A2), where A1, A2 ∈

D(I)X .
(e) f(f−1(B)) ⊂ B, ∀B ∈ D(I)Y .
(f) A ⊂ f(f−1(A)), ∀A ∈ D(I)Y .
(g) (g ◦ f)−1(C) = f−1(g−1(C)), ∀C ∈ D(I)Z .
(h) f−1(

⋃
α∈Γ

Bα) =
⋃
α∈Γ

f−1Bα, where {Bα}α∈Γ ∈

D(I)Y .
(h)′ f−1(

⋂
α∈Γ

Bα) =
⋂
α∈Γ

f−1Bα, where

{Bα}α∈Γ ∈ D(I)Y .

Proposition 3.2. Let f : X → Y be a groupoid homomor-
phism. If A ∈ IVGP(X), then f(A) ∈ IVGP(Y).

Proof. For each y ∈ Y , let Xy = f−1(y). Since f is a
homomorphism, it is clear that
XyXy′ ⊂ Xyy′ for any y, y′ ∈ Y. (*)

Let y, y′ ∈ Y .
Case (i): Suppose yy′ 6∈ f(A). Then clearly

f(A)(yy′) = [0, 0]. Since yy′ 6∈ f(X), Xyy′ = ∅. By
(*), Xy = ∅ or Xy′ = ∅. Thus f(A)(y) = [0, 0] or
f(A)(y′) = [0, 0]. So

f(A)(yy′) = [0, 0]

= [f(A)L(y) ∧ f(A)L(y′),

f(A)U (y) ∧ f(A)U (y′)].
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Case (ii): Suppose yy′ ∈ f(X). Then Xyy′ 6= ∅.
If Xy = ∅ and Xy′ = ∅, then f(A)(y) = [0, 0] and
f(A)(y′) = [0, 0]. Thus

f(A)L(yy′) ≥ f(A)L(y) ∧ f(A)L(y′)

and
f(A)U (yy′) ≥ f(A)U (y) ∧ f(A)U (y′).

If Xy 6= ∅ or X ′y 6= ∅, then, by (*),

f(A)L(yy′) =
∨

z∈Xyy′

AL(z) ≥
∨

z∈XyXy′

AL(z)

=
∨

x∈Xy,x′∈Xy′

AL(xx′)

≥
∨

x∈Xy,x′∈Xy′

(AL(x) ∧AL(x′))

(Since A ∈ IVGP(X))

= (
∨
x∈Xy

AL(x)) ∧ (
∨

x′∈Xy′

AL(x′))

= f(A)L(y) ∧ f(A)L(y′).

By the similar arguments, we have that
f(A)U (yy′) ≥ f(A)U (y) ∧ f(A)U (y′). Conse-
quently, f(A)L(yy′) ≥ f(A)L(y) ∧ f(A)L(y′) and
f(A)U (yy′) ≥ f(A)U (y) ∧ f(A)U (y′). Hence f(A) ∈
IVGP(Y).

Definition 3.3 [1, 6]. Let A be an IVS in a groupoid
G. Then A is said to have the sup-property if for
any T ∈ P (G), there exists a t0 ∈ T such that
A(t0) = ∪t∈TA(t), i.e., AL(t0) =

∨
t∈T A

L(t) and
AU (t0) =

∨
t∈T A

U (t), where P (G) denotes the power
set of G.

Result 3.B [6, Proposition 4.11]. Let f : G → G′ be
a group homomorphism, let A ∈ IVG(G) and let B ∈
IVG(G′). Then the followings hold:

(a) If A has the sup property, then f(A) ∈ IVG(G′).
(b) f−1(B) ∈ IVG(G).

Proposition 3.4. Let f : X → Y be a group[resp. ring,
algebra and field] homomorphism. If A ∈ IVG(X)[resp.
IVR(X), IVA(X) and IVF(X)], then f(A) ∈ IVG(Y)[resp.
IVR(Y), IVA(Y) and IVF(Y)], where IVG(X)[resp.
IVR(X), IVA(X) and IVF(X)] denotes the set of all
interval-valued fuzzy subgroups[resp. subrings, subalge-
bras and subfields] of a group[resp. ring, algebra and field]
X.

Proof. Suppose f : X → Y is a group homomorphism
and let A ∈ IVG(X). Then, we need only to show that
f(A)L(y−1) ≥ f(A)L(y) and f(A)U (y−1) ≥ f(A)U (y)
for each y ∈ Y . Let y ∈ Y .

Case (i): Suppose y−1 6∈ f(X). Then y 6∈ f(X). Thus
f(A)(y−1) = [0, 0] = f(A)(y).

Case (ii): Suppose y−1 ∈ f(X). Then y ∈ f(X). Thus

f(A)L(y−1) =
∨

t−1∈f−1(y−1)

AL(t−1)

≥
∨

t∈f−1(y)

AL(t) = f(A)L(y)

and

f(A)U (y−1) =
∨

t−1∈f−1(y−1)

AU (t−1)

≥
∨

t∈f−1(y)

AU (t) = f(A)U (y).

Hence f(A) ∈ IVG(Y). The proofs of the rest are omitted.
This completes the proof.

Another Proof : Let [λ, µ] ∈ Im f(A). Then there exists a
y ∈ Y such that

f(A)(y) = [
∨

x∈f−1(y)

AL(x),
∨

x∈f−1(y)

AL(x)] = [λ, µ].

Since A ∈ IVG(X), by Result 1.B(b), λ ≤ AL(e) and µ ≤
AU (e).

Case (i): Suppose [λ, µ] = [0, 0]. Then clearly
(f(A))[λ,µ] = Y . So, by Result 1.D, f(A) ∈ IVG(Y).

Case (ii): Suppose λ > 0. Then
z ∈ (f(A))[λ,µ] ⇔ f(A)L(z) ≥ λ and f(A)U (z) ≥ µ

⇔
∨
x∈f−1(z)A

L(x) ≥ λ and
∨
x∈f−1(z)A

U (x) ≥ µ ⇔
there exists an x ∈ X such that f(x) = z,AL(x) ≥ λ and
AU (x) ≥ µ⇔ z ∈ (f(A[λ,µ])).
Thus (f(A))[λ,µ] = f(A[λ,µ]). Since f is a homomor-
phism and A[λ,µ] is a subgroup of X , f(A[λ,µ]) is a
subgroup of Y . So, by Result 1.D, f(A) ∈ IVG(X).
Hence, in all, f(A) ∈ IVG(X).

Remark 3.5. In Result 3.B, A has the sup property but in
Proposition 3.4, there is no restriction on A.

Proposition 3.6. Let f : G → G′ be a group homomor-
phism, let A ∈ IVNG(G) and let B ∈ IVNG (G′). Then
the followings hold:

(a) If f is surjective, then f(A) ∈ IVNG (G′).
(b) f−1(B) ∈ IVNG(G).

Proof. (a) By Proposition 3.4, f(A) ∈ IVG (G′). Let
[λ, µ] ∈ Im f(A). From the process of the another proof
of Proposition 3.4, it is clear that λ ≤ AL(e), µ ≤ AU (e)
and (f(A))[λ,µ] = f(A[λ,µ]). Since A ∈ IVNG(G), by
Proposition 2.13, A[λ,µ] C G. Since f is an epimorphism,
(f(A))[λ,µ] = f(A[λ,µ]) C G′. Hence, by Proposition
2.17, f(A) ∈ IVNG (G′).
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(b) By Result 3.B(b), f−1(B) ∈ IVG(G). Let x, y ∈ G.
Then

f−1(B)(xy) = [f−1(BL)(xy), f 1(BU )(xy)]

= [BL(f(xy)), BU (f(xy))]

= [BL(f(x)f(y)), BU (f(x)f(y))]

(Since f is a homomorphism)
= [BL(f(y)f(x)), BU (f(y)f(x))]

(Since B ∈ IVNG(f(G))
= [BL(f(yx)), BU (f(yx))]

(Since f is a homomorphism)
= [f−1(BL)(yx), f−1(BU )(yx)]

= f−1(B)(yx).

Hence f−1(B) ∈ IVNG(G).

Result 3.C [6, Propositions 4.6 and 5.4]. Let G be a
group.

(a) If A ∈IVG(G), then GA is a subgroup of G.
(b) If A ∈ IVNG(G), then GA C G, where

GA = x ∈ G : A(x) = A(e).

Theorem 3.7. Let A be an IVNG of a group G with
identity e. We define a mapping Â : G/GA → D(I)
as follows: For each x ∈ G, Â(GAx) = A(x). Then
Â ∈ IVNG (G/GA). Conversely, if N C G and B̂ ∈
IVNG(G/N) such that B̂(Ng) = B̂(N) only when g ∈ N ,
then there exists an A ∈ IVNG(G) such that GA = N and
Â = B̂.

Proof. It is clear that GA C G from Result 3.C(b). More-
over Â ∈ D(I)G/GA from the definition of Â. Suppose
GAx = GAy for some x, y ∈ G. Then, by Corollary
2.13, xy−1 ∈ GA. Thus A(xy−1) = A(e). By Result
1.C, A(x) = A(y). So Â(GAx) = Â(GAy). Hence Â
is well-defined. Furthermore, it is easy to see that Â ∈
IVG(G/GA). Let x, y ∈ G. Then

Â(GAxGAy) = Â(GAxy)

= A(xy)

= A(yx) (Since A ∈ IVNG(G))
= Â(GAyGAx).

Hence Â ∈ IVNG(G/GA).
Now let N C G and let B̂ ∈ IVNG(G/GA) such that

B̂(Ng) = B̂(N) only when g ∈ N . We define a mapping
A : G → D(I) as follows: For each x ∈ G,A(x) =
B̂(Nx). Then we can easily see that A is well-defined and
A ∈ IVG(G). Let x, y ∈ G. Then

A(y−1xy)) = B̂(Ny−1xy)

= B̂(Ny−1NxNy)

= B̂(Nx) (Since B̂ ∈ IVNG(G/N ))
= A(x).

Thus A is constant on the conjugate classes of G. So, by
Theorem 2.11, A ∈ IVNG(G).
Now let g ∈ N . Then A(g) = B̂(Ng) = B̂(N) = A(e).
Thus g ∈ GA. So N ⊂ GA. Let x ∈ GA. Then A(x) =
A(e). Thus B̂(Nx) = B̂(N). So x ∈ N , i.e., GA ⊂ N .
Hence N = GA. Furthermore, Â = B̂. This completes the
proof.

4. Interval-valued fuzzy Lagrange’s Theorem

Let A be an IVS in a group G and for each x ∈ G,
xf : G → G[resp. fx : G → G] be a mapping defined as
follows, respectively: For each g ∈ G,
xf(g) = xg [resp. fx(g) = gx].

Proposition 4.1. Let A be an IVG of a group G. Then
xf(A) = xA [resp. fx(A) = Ax] for each x ∈ G.

Proof. Let g ∈ G. Then

fx(A)L(g) =
∨

g′∈f−1
x (g)

AL(g′)

=
∨
g′x=g

AL(g′) = AL(gx−1)

and

fx(A)U (g) =
∨

g′∈f−1
x (g)

AU (g′)

=
∨
g′x=g

AU (g′) = AU (gx−1).

Hence, fx(A) = Ax. Similarly, we can see that
xf(A) = xA.

Theorem 4.2. Let A be an IVG of a group G and let
g1, g2 ∈ G. Then g1A = g2A[resp. Ag1 = Ag2]
if and only if A(g−1

1 g2) = A(g−1
2 g1) = A(e)[resp.

A(g1g
−1
2 ) = A(g2g

−1
1 ) = A(e)].

Proof.(⇒): Suppose g1A = g2A. Then g1A(g1) =
g2A((g1) and g1A(g2) = g2A((g2). A(g−1

2 g1) = A(e)
and A(g−1

1 g2) = A(e). Hence A(g−1
2 g1) = A(g−1

1 g2) =
A(e).

(⇐): Suppose A(g−1
1 g2) = A(g−1

2 g1) = A(e). let x ∈
G. Then g1A(x) = A(g−1

1 x) = A(g−1
1 g2g

−1
2 x). Since A

is a IVG(G),

AL(g−1
1 x) = AL(g−1

1 xg2g
−1
2 x)

= AL(g−1
1 g2) ∧AL(g−1

2 x)

= AL(e) ∧AL(g−1
2 x)

= AL(g−1
2 x). (By Result 1.B(b))
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By the similar arguments, we have that AU (g−1
1 x) ≥

AU (g−1
2 x). Thus g2A ⊂ g1A. Similarly, we have that

g1A ⊂ g2A. Hence g1A = g2A. This completes the
proof.

Proposition 4.3. Let A be an IVG of a group G. If
Ag1 = Ag2 for any g1, g2 ∈ G, then A(g1) = A(g2).

Proof. Suppose Ag1 = Ag2 for any g1, g2 ∈ G. Then
Ag1(g2) = Ag2(g2). Thus A(g2g

−1
1 ) = A(e). Hence, by

Result 1.C, A(g1) = A(g2).

Proposition 4.4. Let A be an IVG of a group G. If
A[λ,µ]x = A[λ,µ]y for any x, y ∈ G \ A[λ,µ] and each
[λ, µ] ∈ D(I), then A(x) = A(y).

Proof. Suppose A[λ,µ]x = A]λ,µ]y for any x, y ∈ G \
A[λ,µ] and each [λ, µ] ∈ D(I). Then yx−1 ∈ A[λ,µ]. Thus
AL(yx−1) ≥ λ and AU (yx−1) ≥ µ. Since x ∈ G \
A[λ,µ], AL(x) < λ and AU (x) < µ. On the other hand,

AL(y) = AL(yx−1x) ≥ AL(yx−1) ∧AL(x)

and

AU (y) = AU (yx−1x) ≥ AU (yx−1) ∧AU (x).

Thus AL(y) ≥ AL(x) and AU (y) ≥ AU (x). By the
similar arguments, we have that AL(y) ≤ AL(x) and
AU (y) ≤ AU (x). Hence A(x) = A(y).

Proposition 4.5. Let A be an IVNG of a group G and let
x ∈ G. Then Ax(xg) = Ax(gx) = A(g) for each g ∈ G.

Proof. Let g ∈ G. Then

Ax(xg) = [ALx (xg), AUx (xg)]

= [ALx (xgx−1x), AUx (xgx−1x)]

= [ALx (xgx−1xx−1), AUx (xgx−1xx−1)]

(By the definition of Ax)
= [ALx (xgx−1), AUx (xgx−1)]

= [ALx (g), AUx (g)] (By Theorem 2.11)
= A(g).

Similarly, we have that Ax(gx) = A(g). This completes
the proof.

Remark 4.6. Proposition 4.5 is analogous to the result
in group theory that if N C G, then Nx = xN for each
x ∈ G.

If N is a normal subgroup of a group G, then the
cosets of G with respect to N form a group(called the
quotient group G/N ). For an IVNG, we have the analo-
gous result:

Proposition 4.7. Let A be an IVNG of a group G and
let G/A be the set of all the interval-valued fuzzy cosets
of A. We define an operation∗ on G/A as follows:
For any x, y ∈ G, Ax ∗ Ay = Axy. Then (G/A, ∗)
is a group. In this case, G/A is called the interval -
valued fuzzy quotient group induced by A.

Proof. Let x, y, x0, y0 ∈ G such thatAx = Ax0 andAy =
Ay0, and let g ∈ G. Then Axy(g) = A(gy−1x−1) and
Ax0y0(g) = A(gy−1

0 x−1
0 ). On the other hand,

AL(gy−1x−1) = AL(gy−1
0 y0y

−1x−1)

= AL(gy−1
0 x−1

0 x0y0y
−1x−1)

≥ AL(gy−1
0 x−1

0 ) ∧AL(x0y0y
−1x−1).

(Since A ∈ IVG(G)) (4.1)

By the similar arguments, we have that
AU (gy−1x−1) ≥ AU (gy−1

0 x−1
0 ) ∧

AU (x0y0y
−1x−1).(4.2)

SinceAx−Ax0 andAy = Ay0,A(gx−1) = A(gx−1
0 ) and

A(gy−1) = A(gy−1
0 ). In Particular,

A(x0y0y
−1x−1) = A(x0y0y

−1x−1
0 )

= A(y0y
−1) (Since A ∈ IVNG(G))

= A(e).

So [AL(x0y0y
−1x−1), AU (x0y0y

−1x−1)] =
[AL(e), AU (e)]. By Result 1.B(b), AL(e) ≥
AL(gy−1

0 x−1
0 ) and AU (e) ≥ AU (gy−1

0 x−1
0 ). Thus,

by (4.1) and (4.2),
AL(gy−1x−1) ≥ AL(gy−1

0 x−1
0 ) and AU (gy−1x−1) ≥

AU (gy−1
0 x−1

0 ). By the similar arguments, we have that
AL(gy−1

0 x−1
0 ) ≥ AL(gy−1x−1)

and
AU (gy−1

0 x−1
0 ) ≥ AL(gy−1x−1).

So A(gy−1
0 x−1

0 ) = A(gy−1x−1), i.e., Ax0y0(g) =
Axy(g). Hence ∗ is well-defined. Furthermore, we can
easily check that the followings are true:

(i) ∗ is associative.
(ii) Ax−1 is the inverse of Ax for each x ∈ G.
(iii) Ae = A is the identity of G/A. Therefore (G/A, ∗)

is a group. This completes the proof

Proposition 4.8. Let A be an IVNG of a group G. We
define a mapping Ā : G/A → D(I) as follows: For each
x ∈ G, Ā(Ax) = Ax. Then Ā is an IVG of G/A. In this
case, Ā is called the interval - valued fuzzy subquotient
group determined by A.

Proof. From the definition of Ā, it is clear that Ā ∈
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D(I)G/A. Let x, y ∈ G. Then

ĀL(Ax ∗Ay) = ĀL(Axy)

= ĀL(xy)

≥ AL(x) ∧AL(y)

= ĀL(Ax) ∧ ĀL(Ay).

By the similar arguments, we have that ĀU (Ax ∗ Ay) ≥
ĀU (Ax) ∧ ĀU (Ay). On the other hand,

ĀL((Ax)−1) = ĀL(Ax−1) = ĀL(x)−1)

≥ AL(x) = ĀL(Ax)

and

ĀU ((Ax)−1) = ĀU (Ax−1) = ĀU (x)−1)

≥ AU (x) = ĀU (Ax).

Hence Ā ∈ IVG(G/A).

Proposition 4.9. Let A be an IVNG of a group G.
We define a mapping π : G → G/A as follows: For
each x ∈ G, π(x) = Ax. Then π is a homomorphism
with Ker(π) = GA. In this case, π is called the
natural homomorphism .

Proof. Let x, y ∈ G. Then π(xy) = Axy = Ax ∗ Ay =
π(x) ∗ π(y). So π is a homomorphism. Furthermore,

Ker(π) = {x ∈ G : π(x) = Ae}
= {x ∈ G : A(x) = Ae}
= {x ∈ G : Ax(x) = Ae(x)}
= {x ∈ G : A(e) = A(x)}
= GA.

This completes the proof.

Now we obtain for interval-valued fuzzy subgroups
an analogous result of the “Fundamental Theorem of
Homomorphism of Groups”.

Proposition 4.10. Let A ∈ IVNG(G). Then each interval-
valued fuzzy(normal) subgroup of G/A corresponds in a
natural way to an interval-valued fuzzy(normal) subgroup
of G.

Proof. Let A∗ be an interval-valued fuzzy subgroup of
G/A. Define a mapping B : G → D(I) as follows: For
each x ∈ G,B(x) = A∗(Ax). By the definition of B, it is
clear that B ∈ D(I)G. Let x, y ∈ G. Then

BL(xy) = A∗
L

(Axy)

= A∗
L

(Ax ∗Ay)

≥ A∗
L

(Ax) ∧A∗
L

(Ay) (Since A∗ ∈ IVG(G/A))
= BL(x) ∧BL(y).

By the similar arguments, we have that BU (xy) ≥
BU (x) ∧ BU (y). Since A∗ ∈ IVG(G/A), A∗(Ax−1) =
A∗(Ax). Thus

B(x−1) = [BL(x−1), BU (x−1)]

= [A∗L(Ax−1), A∗U (Ax−1)]

= [A∗L(Ax), A∗U (Ax)]

= [BL(x) ∧BU (y)] = B(x).

Hence B ∈ IVG(G). It is easy to see that if B is an IVNG
of G/A, then B is an IVNG of G. This completes the
proof.

Now we will obtain an interval-valued fuzzy analog of
the famous “Lagrange’s Theorem” for finite groups which
is a basic result in group theory. Let A be an IVG of a
finite group G. Then it clear that G/A is finite.

Definition 4.11. Let A be an IVG of a finite group G.
Then the cardinality | G/A | of G/A is called the index of
A.

Theorem 4.12 (Interval-valued Fuzzy Lagrange’s
Theorem). Let A be an IVG of a finite group G. Then the
index of A divides the order of G.

Proof. By Proposition 4.9, there is the natural homomor-
phism π : G→ G/A. Let H be the subgroup of G defined
by H = {h ∈ G : Ah = Ae}, where e is the identity of G.
Let h ∈ H . Then Ah(g) = Ae(g) or A(gh−1) = A(g) for
each g ∈ G. In particular, A(h−1) = A(e). Since A is an
IVG of G, by Result 1.B(a), A(h) = A(e). Thus h ∈ GA.
So H ⊂ GA. Now let h ∈ GA. Then A(h) = A(e).
Thus, by Result 1.B(a), A(h−1) = A(e). By Lemma 2.2,
A(gh−1) = A(g) or Ah(g) = Ae(g) for each g ∈ G.
Thus Ah = Ae, i.e., h ∈ H . So GA ⊂ H . Hence
H = GA.
Now decompose G as a disjoint union of the cosets of G
with respect to H:

G = Hx1 ∪Hx2 ∪ · · · ∪Hxk (4.3)
where hx1 = H . We show that corresponding to each coset
Hxi given in (4.3), there is an interval-valued fuzzy coset
belonging to G/A, and further that this correspondence is
injective. Consider any coset Hxi. Let h ∈ H . Then
π(hxi) = Ahxi = Ah ∗Axi = Ae ∗Axi = Axi.
Thus π maps each element of Hxi into the interval-valued
fuzzy cosetAxi. Now we define a mapping π̄ : {Hxi : 1 ≤
i ≤ k} → G/A as follows: For each i ∈ {1, 2, · · ·,K},

π̄(Hxi) = Axi.

Then clearly, π̄ is well-defined. SupposeAxi = Axj . Then
Axix

−1
j = Ae. Thus xix−1

j ∈ H . So Hxi = Hxj . Hence
π̄ is injective. From the above discussion, it is clear that
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| G/A |= k. Since k divides the order of G, | G/A | also
divides the order of G. This completes the proof.
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